Search Clay Mathematics Institute

  • About
    About
    • About
    • History
    • Principal Activities
    • Who’s Who
    • CMI Logo
    • Policies
  • Programs & Awards
    Programs & Awards
    • Programs & Awards
    • Funded programs
    • Fellowship Nominations
    • Clay Research Award
    • Dissemination Award
  • People
  • The Millennium Prize Problems
    The Millennium Prize Problems
    • The Millennium Prize Problems
    • Birch and Swinnerton-Dyer Conjecture
    • Hodge Conjecture
    • Navier-Stokes Equation
    • P vs NP
    • Poincaré Conjecture
    • Riemann Hypothesis
    • Yang-Mills & the Mass Gap
    • Rules for the Millennium Prize Problems
  • Online resources
    Online resources
    • Online resources
    • Books
    • Video Library
    • Lecture notes
    • Collections
      Collections
      • Collections
      • Euclid’s Elements
      • Ada Lovelace’s Mathematical Papers
      • Collected Works of James G. Arthur
      • Klein Protokolle
      • Notes of the talks at the I.M.Gelfand Seminar
      • Quillen Notebooks
      • Riemann’s 1859 Manuscript
  • Events
  • News

Home — Events — Extremal Combinatorics

Extremal Combinatorics

Date: 21 January - 16 May 2025

Location: Simons Laufer Mathematical Research Institute

Event type: Extended Format

Organisers: David Conlon (CalTech), Jacob Fox (Stanford), Penny Haxell (Waterloo), Janos Pach (Rényi Institute), Maya Stein (Chile), Andrew Suk (UCSD)

Website: www.slmath.org/programs/375

Extremal combinatorics concerns itself with problems about how large or small a finite collection of objects can be while satisfying certain conditions. Questions of this type arise naturally across mathematics, so this area has close connections and interactions with a broad array of other fields, including number theory, group theory, model theory, probability, statistical physics, optimization, and theoretical computer science.

The area has seen huge growth in the twenty-first century and, particularly in recent years, there has been a steady stream of solutions to important longstanding problems and many powerful new methods have been introduced. These advances include improvements in absorption techniques which have facilitated the proof of the existence of designs and related objects, the breakthrough on the sunflower conjecture whose further development eventually led to the proof of the Kahn–Kalai conjecture in discrete probability and the discovery of interactions between spectral graph theory and the study of equiangular lines in discrete geometry. These and other groundbreaking advances will be the central theme of this semester program.

Professor Gabor Tardos (Alfréd Rényi Institute) has been appointed as a Clay Senior Scholar to participate in this program.

Share

Related events

See all events
Mathematical Developments in Geophysical Fluid Dynamics
13 April - 10 July 2025

Mathematical Developments in Geophysical Fluid Dynamics

Institute Henri Poincaré

Read more
Operators Graphs Groups INI
7 July - 17 December 2025

Operators, Graphs, Groups

Isaac Newton Institute

Read more
6 - 26 July 2025

Extremal and Probabilistic Combinatorics

Park City Mathematics Institute

Read more
Geometry and Dynamics for Discrete Subgroups msri
20 January - 22 May 2026

Geometry and Dynamics for Discrete Subgroups of Higher Rank Lie Groups

Simons Laufer Mathematical Sciences Institute

Read more
See all events
  • Privacy Policy
  • Contact CMI

© 2025 Clay Mathematics Institute

Site by One