Ἐὰν δύο ἀριθμῶν ἑκατέρου καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτωσιν ἀριθμοί, ὅσοι ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί, τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεσοῦνται. Δύο γὰρ ἀριθμῶν τῶν Α, Β καὶ μονάδος τῆς Γ μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπιπτέτωσαν ἀριθμοὶ οἵ τε Δ, Ε καὶ οἱ Ζ, Η: λέγω, ὅτι ὅσοι ἑκατέρου τῶν Α, Β καὶ μονάδος τῆς Γ μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεπτώκασιν ἀριθμοί, τοσοῦτοι καὶ εἰς τοὺς Α, Β μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεσοῦνται. Ὁ Δ γὰρ τὸν Ζ πολλαπλασιάσας τὸν Θ ποιείτω, ἑκάτερος δὲ τῶν Δ, Ζ τὸν Θ πολλαπλασιάσας ἑκάτερον τῶν Κ, Λ ποιείτω. Καὶ ἐπεί ἐστιν ὡς ἡ Γ μονὰς πρὸς τὸν Δ ἀριθμόν, οὕτως ὁ Δ πρὸς τὸν Ε, ἰσάκις ἄρα ἡ Γ μονὰς τὸν Δ ἀριθμὸν μετρεῖ καὶ ὁ Δ τὸν Ε. ἡ δὲ Γ μονὰς τὸν Δ ἀριθμὸν μετρεῖ κατὰ τὰς ἐν τῷ Δ μονάδας: καὶ ὁ Δ ἄρα ἀριθμὸς τὸν Ε μετρεῖ κατὰ τὰς ἐν τῷ Δ μονάδας: ὁ Δ ἄρα ἑαυτὸν πολλαπλασιάσας τὸν Ε πεποίηκεν. πάλιν, ἐπεί ἐστιν ὡς ἡ Γ [μονὰς] πρὸς τὸν Δ ἀριθμὸν, οὕτως ὁ Ε πρὸς τὸν Α, ἰσάκις ἄρα ἡ Γ μονὰς τὸν Δ ἀριθμὸν μετρεῖ καὶ ὁ Ε τὸν Α. ἡ δὲ Γ μονὰς τὸν Δ ἀριθμὸν μετρεῖ κατὰ τὰς ἐν τῷ Δ μονάδας: καὶ ὁ Ε ἄρα τὸν Α μετρεῖ κατὰ τὰς ἐν τῷ Δ μονάδας: ὁ Δ ἄρα τὸν Ε πολλαπλασιάσας τὸν Α πεποίηκεν. διὰ τὰ αὐτὰ δὴ καὶ ὁ μὲν Ζ ἑαυτὸν πολλαπλασιάσας τὸν Η πεποίηκεν, τὸν δὲ Η πολλαπλασιάσας τὸν Β πεποίηκεν. καὶ ἐπεὶ ὁ Δ ἑαυτὸν μὲν πολλαπλασιάσας τὸν Ε πεποίηκεν, τὸν δὲ Ζ πολλαπλασιάσας τὸν Θ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Ε πρὸς τὸν Θ. διὰ τὰ αὐτὰ δὴ καὶ ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Θ πρὸς τὸν Η. καὶ ὡς ἄρα ὁ Ε πρὸς τὸν Θ, οὕτως ὁ Θ πρὸς τὸν Η. πάλιν, ἐπεὶ ὁ Δ ἑκάτερον τῶν Ε, Θ πολλαπλασιάσας ἑκάτερον τῶν Α, Κ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Ε πρὸς τὸν Θ, οὕτως ὁ Α πρὸς τὸν Κ. ἀλλ' ὡς ὁ Ε πρὸς τὸν Θ, οὕτως ὁ Δ πρὸς τὸν Ζ: καὶ ὡς ἄρα ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Α πρὸς τὸν Κ. πάλιν, ἐπεὶ ἑκάτερος τῶν Δ, Ζ τὸν Θ πολλαπλασιάσας ἑκάτερον τῶν Κ, Λ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Κ πρὸς τὸν Λ. ἀλλ' ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Α πρὸς τὸν Κ: καὶ ὡς ἄρα ὁ Α πρὸς τὸν Κ, οὕτως ὁ Κ πρὸς τὸν Λ. ἔτι ἐπεὶ ὁ Ζ ἑκάτερον τῶν Θ, Η πολλαπλασιάσας ἑκάτερον τῶν Λ, Β πεποίηκεν, ἔστιν ἄρα ὡς ὁ Θ πρὸς τὸν Η, οὕτως ὁ Λ πρὸς τὸν Β. ὡς δὲ ὁ Θ πρὸς τὸν Η, οὕτως ὁ Δ πρὸς τὸν Ζ: καὶ ὡς ἄρα ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Λ πρὸς τὸν Β. ἐδείχθη δὲ καὶ ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὅ τε Α πρὸς τὸν Κ καὶ ὁ Κ πρὸς τὸν Λ: καὶ ὡς ἄρα ὁ Α πρὸς τὸν Κ, οὕτως ὁ Κ πρὸς τὸν Λ καὶ ὁ Λ πρὸς τὸν Β. οἱ Α, Κ, Λ, Β ἄρα κατὰ τὸ συνεχὲς ἑξῆς εἰσιν ἀνάλογον. ὅσοι ἄρα ἑκατέρου τῶν Α, Β καὶ τῆς Γ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί, τοσοῦτοι καὶ εἰς τοὺς Α, Β μεταξὺ κατὰ τὸ συνεχὲς ἐμπεσοῦνται: ὅπερ ἔδει δεῖξαι.

If numbers fall between each of two numbers and an unit in continued proportion, however many numbers fall between each of them and an unit in continued proportion, so many also will fall between the numbers themselves in continued proportion. For let the numbers D, E and F, G respectively fall between the two numbers A, B and the unit C in continued proportion; I say that, as many numbers as have fallen between each of the numbers A, B and the unit C in continued proportion, so many numbers will also fall between A, B in continued proportion. For let D by multiplying F make H, and let the numbers D, F by multiplying H make K, L respectively. Now, since, as the unit C is to the number D, so is D to E, therefore the unit C measures the number D the same number of times as D measures E. [VII. Def. 20] But the unit C measures the number D according to the units in D; therefore the number D also measures E according to the units in D; therefore D by multiplying itself has made E. Again, since, as C is to the number D, so is E to A, therefore the unit C measures the number D the same number of times as E measures A. But the unit C measures the number D according to the units in D; therefore E also measures A according to the units in D; therefore D by multiplying E has made A. For the same reason also F by multiplying itself has made G, and by multiplying G has made B. And, since D by multiplying itself has made E and by multiplying F has made H, therefore, as D is to F, so is E to H. [VII. 17] For the same reason also, as D is to F, so is H to G. [VII. 18] Therefore also, as E is to H, so is H to G. Again, since D by multiplying the numbers E, H has made A, K respectively, therefore, as E is to H, so is A to K. [VII. 17] But, as E is to H, so is D to F; therefore also, as D is to F, so is A to K. Again, since the numbers D, F by multiplying H have made K, L respectively, therefore, as D is to F, so is K to L. [VII. 18] But, as D is to F, so is A to K; therefore also, as A is to K, so is K to L. Further, since F by multiplying the numbers H, G has made L, B respectively, therefore, as H is to G, so is L to B. [VII. 17] But, as H is to G, so is D to F; therefore also, as D is to F, so is L to B. But it was also proved that, as D is to F, so is A to K and K to L; therefore also, as A is to K, so is K to L and L to B. Therefore A, K, L, B are in continued proportion.