If a straight line be at right angles to any plane, all the planes through it will also be at right angles to the same plane.

Ἐὰν εὐθεῖα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ, καὶ πάντα τὰ δι' αὐτῆς ἐπίπεδα τῷ αὐτῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται. Εὐθεῖα γάρ τις ἡ ΑΒ τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθὰς ἔστω: λέγω, ὅτι καὶ πάντα τὰ διὰ τῆς ΑΒ ἐπίπεδα τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν. Ἐκβεβλήσθω γὰρ διὰ τῆς ΑΒ ἐπίπεδον τὸ ΔΕ, καὶ ἔστω κοινὴ τομὴ τοῦ ΔΕ ἐπιπέδου καὶ τοῦ ὑποκειμένου ἡ ΓΕ, καὶ εἰλήφθω ἐπὶ τῆς ΓΕ τυχὸν σημεῖον τὸ Ζ, καὶ ἀπὸ τοῦ Ζ τῇ ΓΕ πρὸς ὀρθὰς ἤχθω ἐν τῷ ΔΕ ἐπιπέδῳ ἡ ΖΗ. καὶ ἐπεὶ ἡ ΑΒ πρὸς τὸ ὑποκείμενον ἐπίπεδον ὀρθή ἐστιν, καὶ πρὸς πάσας ἄρα τὰς ἁπτομένας αὐτῆς εὐθείας καὶ οὔσας ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ ὀρθή ἐστιν ἡ ΑΒ: ὥστε καὶ πρὸς τὴν ΓΕ ὀρθή ἐστιν: ἡ ἄρα ὑπὸ ΑΒΖ γωνία ὀρθή ἐστιν. ἔστι δὲ καὶ ἡ ὑπὸ ΗΖΒ ὀρθή: παράλληλος ἄρα ἐστὶν ἡ ΑΒ τῇ ΖΗ. ἡ δὲ ΑΒ τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν: καὶ ἡ ΖΗ ἄρα τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν. καὶ ἐπίπεδον πρὸς ἐπίπεδον ὀρθόν ἐστιν, ὅταν αἱ τῇ κοινῇ τομῇ τῶν ἐπιπέδων πρὸς ὀρθὰς ἀγόμεναι εὐθεῖαι ἐν ἑνὶ τῶν ἐπιπέδων τῷ λοιπῷ ἐπιπέδῳ πρὸς ὀρθὰς ὦσιν. καὶ τῇ κοινῇ τομῇ τῶν ἐπιπέδων τῇ ΓΕ ἐν ἑνὶ τῶν ἐπιπέδων τῷ ΔΕ πρὸς ὀρθὰς ἀχθεῖσα ἡ ΖΗ ἐδείχθη τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθάς: τὸ ἄρα ΔΕ ἐπίπεδον ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον. ὁμοίως δὴ δειχθήσεται καὶ πάντα τὰ διὰ τῆς ΑΒ ἐπίπεδα ὀρθὰ τυγχάνοντα πρὸς τὸ ὑποκείμενον ἐπίπεδον. Ἐὰν ἄρα εὐθεῖα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ, καὶ πάντα τὰ δι' αὐτῆς ἐπίπεδα τῷ αὐτῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται: ὅπερ ἔδει δεῖξαι. | If a straight line be at right angles to any plane, all the planes through it will also be at right angles to the same plane. For let any straight line AB be at right angles to the plane of reference; I say that all the planes through AB are also at right angles to the plane of reference. For let the plane DE be drawn through AB, let CE be the common section of the plane DE and the plane of reference, let a point F be taken at random on CE, and from F let FG be drawn in the plane DE at right angles to CE. [I. 11] Now, since AB is at right angles to the plane of reference, AB is also at right angles to all the straight lines which meet it and are in the plane of reference; [XI. Def. 3] so that it is also at right angles to CE; therefore the angle ABF is right. But the angle GFB is also right; therefore AB is parallel to FG. [I. 28] But AB is at right angles to the plane of reference; therefore FG is also at right angles to the plane of reference. [XI. 8] Now a plane is at right angles to a plane, when the straight lines drawn, in one of the planes, at right angles to the common section of the planes are at right angles to the remaining plane. [XI. Def. 4] And FG, drawn in one of the planes DE at right angles to CE, the common section of the planes, was proved to be at right angles to the plane of reference; therefore the plane DE is at right angles to the plane of reference. Similarly also it can be proved that all the planes through AB are at right angles to the plane of reference. |