Search Clay Mathematics Institute

  • About
    About
    • About
    • History
    • Principal Activities
    • Who’s Who
    • CMI Logo
    • Policies
  • Programs & Awards
    Programs & Awards
    • Programs & Awards
    • Funded programs
    • Fellowship Nominations
    • Clay Research Award
    • Dissemination Award
  • People
  • The Millennium Prize Problems
    The Millennium Prize Problems
    • The Millennium Prize Problems
    • Birch and Swinnerton-Dyer Conjecture
    • Hodge Conjecture
    • Navier-Stokes Equation
    • P vs NP
    • Poincaré Conjecture
    • Riemann Hypothesis
    • Yang-Mills & the Mass Gap
    • Rules for the Millennium Prize Problems
  • Online resources
    Online resources
    • Online resources
    • Books
    • Video Library
    • Lecture notes
    • Collections
      Collections
      • Collections
      • Euclid’s Elements
      • Ada Lovelace’s Mathematical Papers
      • Collected Works of James G. Arthur
      • Klein Protokolle
      • Notes of the talks at the I.M.Gelfand Seminar
      • Quillen Notebooks
      • Riemann’s 1859 Manuscript
  • Events
  • News

Home — Resource — Surveys in Noncommutative Geometry

Surveys in Noncommutative Geometry

In June 2000, the Clay Mathematics Institute organized an Instructional Symposium on Noncommutative Geometry in conjunction with the AMS-IMS-SIAM Joint Summer Research Conference. These events were held at Mount Holyoke College in Massachusetts from June 18 to 29, 2000. The Instructional Symposium consisted of several series of expository lectures which were intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Those expository lectures have been edited and are reproduced in this volume.

The lectures of Rosenberg and Weinberger discuss various applications of noncommutative geometry to problems in “ordinary” geometry and topology. The lectures of Lagarias and Tretkoff discuss the Riemann hypothesis and the possible application of the methods of noncommutative geometry in number theory. Higson gives an account of the “residue index theorem” of Connes and Moscovici.

Noncommutative geometry is to an unusual extent the creation of a single mathematician, Alain Connes. The present volume gives an extended introduction to several aspects of Connes’ work in this fascinating area.

Authors: Stanley Chang, Nigel Higson, Jeffrey Lagarias, Jonathan Rosenberg, Paula Tretkoff, Shmuel Weinberger

Available at the AMS bookstore

Details

Editors: Nigel Higson, John Roe

Downloads

Surveys in Noncommutative Geometry PDF
Surveys in Noncommutative Geometry cover
  • Privacy Policy
  • Contact CMI

© 2025 Clay Mathematics Institute

Site by One