Search Clay Mathematics Institute

  • About
    About
    • About
    • History
    • Principal Activities
    • Who’s Who
    • CMI Logo
    • Policies
  • Programs & Awards
    Programs & Awards
    • Programs & Awards
    • Funded programs
    • Fellowship Nominations
    • Clay Research Award
    • Dissemination Award
  • People
  • The Millennium Prize Problems
    The Millennium Prize Problems
    • The Millennium Prize Problems
    • Birch and Swinnerton-Dyer Conjecture
    • Hodge Conjecture
    • Navier-Stokes Equation
    • P vs NP
    • Poincaré Conjecture
    • Riemann Hypothesis
    • Yang-Mills & the Mass Gap
    • Rules for the Millennium Prize Problems
  • Online resources
    Online resources
    • Online resources
    • Books
    • Video Library
    • Lecture notes
    • Collections
      Collections
      • Collections
      • Euclid’s Elements
      • Ada Lovelace’s Mathematical Papers
      • Collected Works of James G. Arthur
      • Klein Protokolle
      • Notes of the talks at the I.M.Gelfand Seminar
      • Quillen Notebooks
      • Riemann’s 1859 Manuscript
  • Events
  • News

Home — People — Manjul Bhargava

Manjul Bhargava

Category: Research Award Winners

Affiliation: Princeton University

The 2005 Clay Research Award was made to Manjul Bhargava for his discovery of new composition laws for quadratic forms and for his work on the average size of ideal class groups.

The field of composition laws had lain dormant for 200 years since the pioneering work of C.F Gauss. The laws discovered by Bhargava were a complete surprise, and led him to another major breakthrough, namely, counting the number of quartic and quintic number fields with given discriminant. The ideal class group is an object of fundamental importance in number theory. Nonetheless, despite some conjectures of Cohen and Lenstra about this problem, there was not a single proven case before Bhargava’s work. Bhargava solved the problem for the 2-part of the class groups of cubic fields, in which case, curiously, the numerical evidence had led people to doubt the Cohen-Lenstra heuristics.

  • Privacy Policy
  • Contact CMI

© 2025 Clay Mathematics Institute

Site by One