Search Clay Mathematics Institute

  • About
    About
    • About
    • History
    • Principal Activities
    • Who’s Who
    • CMI Logo
    • Policies
  • Programs & Awards
    Programs & Awards
    • Programs & Awards
    • Funded programs
    • Fellowship Nominations
    • Clay Research Award
    • Dissemination Award
  • People
  • The Millennium Prize Problems
    The Millennium Prize Problems
    • The Millennium Prize Problems
    • Birch and Swinnerton-Dyer Conjecture
    • Hodge Conjecture
    • Navier-Stokes Equation
    • P vs NP
    • Poincaré Conjecture
    • Riemann Hypothesis
    • Yang-Mills & the Mass Gap
    • Rules for the Millennium Prize Problems
  • Online resources
    Online resources
    • Online resources
    • Books
    • Video Library
    • Lecture notes
    • Collections
      Collections
      • Collections
      • Euclid’s Elements
      • Ada Lovelace’s Mathematical Papers
      • Collected Works of James G. Arthur
      • Klein Protokolle
      • Notes of the talks at the I.M.Gelfand Seminar
      • Quillen Notebooks
      • Riemann’s 1859 Manuscript
  • Events
  • News

Home — People — Claire Voisin

Claire Voisin

Category: Research Award Winners

Affiliation: Collège de France

The 2008 Clay Research Award was made to Claire Voisin for her disproof of the Kodaira conjecture.

The Kodaira conjecture was formulated in 1960, when Kunihiko Kodaira showed that any compact complex Kaehler surface can be deformed to a projective algebraic surface. For the proof, Kodaira used his classification theorem for complex surfaces. The conjecture asks whether Kaehler manifolds of higher dimension can be deformed to a projective algebraic manifold. Voisin constructs counterexamples: in each dimension four or greater, there is a compact Kaehler manifold which is not homotopy equivalent to a projective one. For dimension at least six, she gives examples which are also simply connected. A later result gives a substantial strengthening: in any even dimension ten or greater, there exist compact Kaehler manifolds, no bimeromorphic model of which is homotopy equivalent to a projective algebraic variety. Distinguishing the homotopy type of projective and non-projective Kaehler manifolds is achieved through novel Hodge-theoretic arguments that place subtle restrictions on the topological intersection ring of a projective manifold.

  • Privacy Policy
  • Contact CMI

© 2025 Clay Mathematics Institute

Site by One