Search Clay Mathematics Institute

  • About
    About
    • About
    • History
    • Principal Activities
    • Who’s Who
    • CMI Logo
    • Policies
  • Programs & Awards
    Programs & Awards
    • Programs & Awards
    • Funded programs
    • Fellowship Nominations
    • Clay Research Award
    • Dissemination Award
  • People
  • The Millennium Prize Problems
    The Millennium Prize Problems
    • The Millennium Prize Problems
    • Birch and Swinnerton-Dyer Conjecture
    • Hodge Conjecture
    • Navier-Stokes Equation
    • P vs NP
    • Poincaré Conjecture
    • Riemann Hypothesis
    • Yang-Mills & the Mass Gap
    • Rules for the Millennium Prize Problems
  • Online resources
    Online resources
    • Online resources
    • Books
    • Video Library
    • Lecture notes
    • Collections
      Collections
      • Collections
      • Euclid’s Elements
      • Ada Lovelace’s Mathematical Papers
      • Collected Works of James G. Arthur
      • Klein Protokolle
      • Notes of the talks at the I.M.Gelfand Seminar
      • Quillen Notebooks
      • Riemann’s 1859 Manuscript
  • Events
  • News

Home — Lectures — Kähler-Einstein metric, K-stability and moduli spaces

Kähler-Einstein metric, K-stability and moduli spaces

Abstract: A complex variety with a positive first Chern class is called a Fano variety. The question of whether a Fano variety has a Kähler-Einstein metric has been a major topic in complex geometry since the 1980s. In the last decade, algebraic geometry, or more specifically higher dimensional geometry has played a surprising role in advancing our understanding of this problem. In fact, the algebraic part of this question is one step of a larger project, namely constructing projective moduli spaces that parametrize Fano varieties satisfying the K-stability condition. The latter is exactly the algebraic characterization of the existence of a Kähler-Einstein metric. In the lecture, I will explain the main ideas behind the recent progress of the field.

Share
  • Privacy Policy
  • Contact CMI

© 2025 Clay Mathematics Institute

Site by One