Search Clay Mathematics Institute

  • About
    About
    • About
    • History
    • Principal Activities
    • Who’s Who
    • CMI Logo
    • Policies
  • Programs & Awards
    Programs & Awards
    • Programs & Awards
    • Funded programs
    • Fellowship Nominations
    • Clay Research Award
    • Dissemination Award
  • People
  • The Millennium Prize Problems
    The Millennium Prize Problems
    • The Millennium Prize Problems
    • Birch and Swinnerton-Dyer Conjecture
    • Hodge Conjecture
    • Navier-Stokes Equation
    • P vs NP
    • Poincaré Conjecture
    • Riemann Hypothesis
    • Yang-Mills & the Mass Gap
    • Rules for the Millennium Prize Problems
  • Online resources
    Online resources
    • Online resources
    • Books
    • Video Library
    • Lecture notes
    • Collections
      Collections
      • Collections
      • Euclid’s Elements
      • Ada Lovelace’s Mathematical Papers
      • Collected Works of James G. Arthur
      • Klein Protokolle
      • Notes of the talks at the I.M.Gelfand Seminar
      • Quillen Notebooks
      • Riemann’s 1859 Manuscript
  • Events
  • News

Home — Lectures — Algebraic geometry, categories and trace forumulas

Algebraic geometry, categories and trace forumulas

Abstract: In this talk I will present an approach to non-commutative algebraic geometry based on the following principle: a non-commutative variety simply is a category. This principle seems naive at first sight, but it has been very fruitful during the last 20 years, thanks to the works of many authors such as Kapranov, Bondal-Orlov, Rosenberg, Van den Bergh, Artin-Zhang, Konstevich-Soibelman, Keller, etc.

The purpose of this lecture is to explain how we can (or can not) “do geometry” with categories with a particular focus on cohomological and numerical aspects: Euler characteristic, Lefschetz’s type trace formula, etc. I will illustrate this by exploring its interactions with singularity theories, both in the classical complex analytic situation and in more arithmetic settings. In the last part of the lecture I will explain how this approach to non-commutative geometry can be used in order to make progress on the, still conjectural, Bloch’s conductor formula.

Share
  • Privacy Policy
  • Contact CMI

© 2025 Clay Mathematics Institute

Site by One