Mathematical Problems in Fluid Dynamics
Date: 19 January - 28 May 2021
Location: MSRI, Berkeley, CA
Event type: Extended Format
Organisers: Thomas Alazard (ENS), Hajer Bahouri (Paris-Est), Mihaela Ifrim (Wisconsin), Igor Kukavica (USC), David Lannes (Bordeaux), Daniel Tataru (Berkeley)
Fluid dynamics is one of the classical areas of partial differential equations, and has been the subject of extensive research over hundreds of years. It is perhaps one of the most challenging and exciting fields of scientific pursuit simply because of the complexity of the subject and the endless breadth of applications.
The focus of the program is on incompressible fluids, where water is a primary example. The fundamental equations in this area are the well-known Euler equations for inviscid fluids, and the Navier-Stokes equations for the viscous fluids. Relating the two is the problem of the zero viscosity limit, and its connection to the phenomena of turbulence. Water waves, or more generally interface problems in fluids, represent another target area for the program. Both theoretical and numerical aspects will be considered.
Professor Jean-Marc Delort (Paris 13) has been appointed as a Clay Senior Scholar to participate in this program.
CMI Enhancement and Partnership Program
Related events
See all eventsRepresentation Theory and Noncommutative Geometry
CIRM and IHP
Geometry and Dynamics for Discrete Subgroups of Higher Rank Lie Groups
Simons Laufer Mathematical Sciences Institute
Topological and Geometric Structures in Low Dimensions
Simons Laufer Mathematical Research Institute
Recent Trends in Stochastic Partial Differential Equations
Simons Laufer Mathematical Sciences Institute