Search Clay Mathematics Institute

  • About
    About
    • About
    • History
    • Principal Activities
    • Who’s Who
    • CMI Logo
    • Policies
  • Programs & Awards
    Programs & Awards
    • Programs & Awards
    • Funded programs
    • Fellowship Nominations
    • Clay Research Award
    • Dissemination Award
  • People
  • The Millennium Prize Problems
    The Millennium Prize Problems
    • The Millennium Prize Problems
    • Birch and Swinnerton-Dyer Conjecture
    • Hodge Conjecture
    • Navier-Stokes Equation
    • P vs NP
    • Poincaré Conjecture
    • Riemann Hypothesis
    • Yang-Mills & the Mass Gap
    • Rules for the Millennium Prize Problems
  • Online resources
    Online resources
    • Online resources
    • Books
    • Video Library
    • Lecture notes
    • Collections
      Collections
      • Collections
      • Euclid’s Elements
      • Ada Lovelace’s Mathematical Papers
      • Collected Works of James G. Arthur
      • Klein Protokolle
      • Notes of the talks at the I.M.Gelfand Seminar
      • Quillen Notebooks
      • Riemann’s 1859 Manuscript
  • Events
  • News

Home — Events — Diophantine Equations

Diophantine Equations

Date: 15 - 19 September 2015

Location: Baskervillel Hall, Hay-on-Wye

Event type: CMI-LMS Research School

Organisers: Tim Dokchitser (Bristol), Vladimir Dokchitser (Warwick)

Website: people.maths.bris.ac.uk/~matyd/DE/index.html

The course will give an overview of the existing methods for investigating integer and rational solutions to Diophantine equations. It will include both the algebraic, analytic and model theory aspects of the subject. The course will take the format of three 6-hour mini-courses, supported by exercise classes.

1. Rational Points
A. Rational points on curves (Michael Stoll, Bremen)
B. Higher-dimensional varieties (Alexei Skorobogatov, Imperial)

2. Integral Points
A. Basic methods and solubility (Jennifer Park, McGill)
B. Analytic methods, (Trevor Wooley, Bristol)

3. Elliptic and modular curves
A. Elliptic curves (Tim Dokchitser, Bristol and Vladimir Dokchitser, Warwick)
B. Modularity (Andrew Granville, Montreal/UCL)

Share
A CMI event

Related events

See all events
See all events
  • Privacy Policy
  • Contact CMI

© 2025 Clay Mathematics Institute

Site by One