Deformation Theory, Completed Cohomology, Leopoldt Conjecture and K-theory
Date: 5 - 9 December 2016
Location: CIRM, Marseille
Event type: Workshop
Organisers: Laurent Clozel (Paris Sud), Francesco Calegari (Chicago)
There has been exciting progress recently on two (three ?) connected topics: the extension of the Taylor-Wiles method to situations where the standard (im)parity condition fails, and the relation of deformation theory (starting with Hida’s idea) with the Leopoldt conjecture. The salient points are the paper(s) of Calegari and Geraghty, Calegari’s paper on stable (completed) homology for congruence groups, and the Khare-Thorne paper on Leopoldt; the construction of new Galois representations by Harris-Lan-Thorne-Taylor and Scholze, in particular for torsion classes, is also a crucial advance. Finally, Calegari’s paper reveals new relations with problems in K-theory on which our kowledge does not seem to have improved much since the Batelle meetings.
This workshop will be limited to the researchers involved in these developments. The aim is to obtain an up-to date integrated picture of these developments as well as their interrelations. Connected theories such as completed cohomology should be reviewed, as well as some complements in K-theory.
CMI Enhancement and Partnership Program
Related events
See all eventsGeometric Problems in Linear and Nonlinear PDEs
Sabhal Mor Ostaig, the Isle of Skye
Geometric Moduli Spaces – Rigidity, Genericity, Stability
ICMS Edinburgh
The William Rowan Hamilton Geometry and Topology Workshop: Celebrating Martin Bridson’s 60th Birthday
Trinity College Dublin
Women in Numbers Europe 5
University of Split