Index ← Previous Next →

## Translations

Ἐὰν εὐθεῖα γραμμὴ τμηθῇ εἰς ἴσα καὶ ἄνισα, τὰ ἀπὸ τῶν ἀνίσων τῆς ὅλης τμημάτων τετράγωνα διπλάσιά ἐστι τοῦ τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου. Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς μὲν ἴσα κατὰ τὸ Γ, εἰς δὲ ἄνισα κατὰ τὸ Δ: λέγω, ὅτι τὰ ἀπὸ τῶν ΑΔ, ΔΒ τετράγωνα διπλάσιά ἐστι τῶν ἀπὸ τῶν ΑΓ, ΓΔ τετραγώνων. Ἤχθω γὰρ ἀπὸ τοῦ Γ τῇ ΑΒ πρὸς ὀρθὰς ἡ ΓΕ, καὶ κείσθω ἴση ἑκατέρᾳ τῶν ΑΓ, ΓΒ, καὶ ἐπεζεύχθωσαν αἱ ΕΑ, ΕΒ, καὶ διὰ μὲν τοῦ Δ τῇ ΕΓ παράλληλος ἤχθω ἡ ΔΖ, διὰ δὲ τοῦ Ζ τῇ ΑΒ ἡ ΖΗ, καὶ ἐπεζεύχθω ἡ ΑΖ. καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΓ τῇ ΓΕ, ἴση ἐστὶ καὶ ἡ ὑπὸ ΕΑΓ γωνία τῇ ὑπὸ ΑΕΓ. καὶ ἐπεὶ ὀρθή ἐστιν ἡ πρὸς τῷ Γ, λοιπαὶ ἄρα αἱ ὑπὸ ΕΑΓ, ΑΕΓ μιᾷ ὀρθῇ ἴσαι εἰσίν: καί εἰσιν ἴσαι: ἡμίσεια ἄρα ὀρθῆς ἐστιν ἑκατέρα τῶν ὑπὸ ΓΕΑ, ΓΑΕ. διὰ τὰ αὐτὰ δὴ καὶ ἑκατέρα τῶν ὑπὸ ΓΕΒ, ΕΒΓ ἡμίσειά ἐστιν ὀρθῆς: ὅλη ἄρα ἡ ὑπὸ ΑΕΒ ὀρθή ἐστιν. καὶ ἐπεὶ ἡ ὑπὸ ΗΕΖ ἡμίσειά ἐστιν ὀρθῆς, ὀρθὴ δὲ ἡ ὑπὸ ΕΗΖ: ἴση γάρ ἐστι τῇ ἐντὸς καὶ ἀπεναντίον τῇ ὑπὸ ΕΓΒ: λοιπὴ ἄρα ἡ ὑπὸ ΕΖΗ ἡμίσειά ἐστιν ὀρθῆς: ἴση ἄρα [ἐστὶν] ἡ ὑπὸ ΗΕΖ γωνία τῇ ὑπὸ ΕΖΗ: ὥστε καὶ πλευρὰ ἡ ΕΗ τῇ ΗΖ ἐστιν ἴση. πάλιν ἐπεὶ ἡ πρὸς τῷ Β γωνία ἡμίσειά ἐστιν ὀρθῆς, ὀρθὴ δὲ ἡ ὑπὸ ΖΔΒ: ἴση γὰρ πάλιν ἐστὶ τῇ ἐντὸς καὶ ἀπεναντίον τῇ ὑπὸ ΕΓΒ: λοιπὴ ἄρα ἡ ὑπὸ ΒΖΔ ἡμίσειά ἐστιν ὀρθῆς: ἴση ἄρα ἡ πρὸς τῷ Β γωνία τῇ ὑπὸ ΔΖΒ: ὥστε καὶ πλευρὰ ἡ ΖΔ πλευρᾷ τῇ ΔΒ ἐστιν ἴση. καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΓ τῇ ΓΕ, ἴσον ἐστὶ καὶ τὸ ἀπὸ ΑΓ τῷ ἀπὸ ΓΕ: τὰ ἄρα ἀπὸ τῶν ΑΓ, ΓΕ τετράγωνα διπλάσιά ἐστι τοῦ ἀπὸ ΑΓ. τοῖς δὲ ἀπὸ τῶν ΑΓ, ΓΕ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΕΑ τετράγωνον: ὀρθὴ γὰρ ἡ ὑπὸ ΑΓΕ γωνία: τὸ ἄρα ἀπὸ τῆς ΕΑ διπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΑΓ. πάλιν, ἐπεὶ ἴση ἐστὶν ἡ ΕΗ τῇ ΗΖ, ἴσον καὶ τὸ ἀπὸ τῆς ΕΗ τῷ ἀπὸ τῆς ΗΖ: τὰ ἄρα ἀπὸ τῶν ΕΗ, ΗΖ τετράγωνα διπλάσιά ἐστι τοῦ ἀπὸ τῆς ΗΖ τετραγώνου. τοῖς δὲ ἀπὸ τῶν ΕΗ, ΗΖ τετραγώνοις ἴσον ἐστὶ τὸ ἀπὸ τῆς ΕΖ τετράγωνον: τὸ ἄρα ἀπὸ τῆς ΕΖ τετράγωνον διπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΗΖ. ἴση δὲ ἡ ΗΖ τῇ ΓΔ: τὸ ἄρα ἀπὸ τῆς ΕΖ διπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΓΔ. ἔστι δὲ καὶ τὸ ἀπὸ τῆς ΕΑ διπλάσιον τοῦ ἀπὸ τῆς ΑΓ: τὰ ἄρα ἀπὸ τῶν ΑΕ, ΕΖ τετράγωνα διπλάσιά ἐστι τῶν ἀπὸ τῶν ΑΓ, ΓΔ τετραγώνων. τοῖς δὲ ἀπὸ τῶν ΑΕ, ΕΖ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΖ τετράγωνον: ὀρθὴ γάρ ἐστιν ἡ ὑπὸ ΑΕΖ γωνία: τὸ ἄρα ἀπὸ τῆς ΑΖ τετράγωνον διπλάσιόν ἐστι τῶν ἀπὸ τῶν ΑΓ, ΓΔ. τῷ δὲ ἀπὸ τῆς ΑΖ ἴσα τὰ ἀπὸ τῶν ΑΔ, ΔΖ: ὀρθὴ γὰρ ἡ πρὸς τῷ Δ γωνία: τὰ ἄρα ἀπὸ τῶν ΑΔ, ΔΖ διπλάσιά ἐστι τῶν ἀπὸ τῶν ΑΓ, ΓΔ τετραγώνων. ἴση δὲ ἡ ΔΖ τῇ ΔΒ: τὰ ἄρα ἀπὸ τῶν ΑΔ, ΔΒ τετράγωνα διπλάσιά ἐστι τῶν ἀπὸ τῶν ΑΓ, ΓΔ τετραγώνων. Ἐὰν ἄρα εὐθεῖα γραμμὴ τμηθῇ εἰς ἴσα καὶ ἄνισα, τὰ ἀπὸ τῶν ἀνίσων τῆς ὅλης τμημάτων τετράγωνα διπλάσιά ἐστι τοῦ τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου: ὅπερ ἔδει δεῖξαι.

If a straight line be cut into equal and unequal segments, the squares on the unequal segments of the whole are double of the square on the half and of the square on the straight line between the points of section. For let a straight line AB be cut into equal segments at C, and into unequal segments at D; I say that the squares on AD, DB are double of the squares on AC, CD. For let CE be drawn from C at right angles to AB, and let it be made equal to either AC or CB; let EA, EB be joined, let DF be drawn through D parallel to EC, and FG through F parallel to AB, and let AF be joined. Then, since AC is equal to CE, the angle EAC is also equal to the angle AEC. And, since the angle at C is right, the remaining angles EAC, AEC are equal to one right angle. [I. 32] And they are equal; therefore each of the angles CEA, CAE is half a right angle. For the same reason each of the angles CEB, EBC is also half a right angle; therefore the whole angle AEB is right. And, since the angle GEF is half a right angle, and the angle EGF is right, for it is equal to the interior and opposite angle ECB, [I. 29] the remaining angle EFG is half a right angle; [I. 32] therefore the angle GEF is equal to the angle EFG, so that the side EG is also equal to GF. [I. 6] Again, since the angle at B is half a right angle, and the angle FDB is right, for it is again equal to the interior and opposite angle ECB, [I. 29] the remaining angle BFD is half a right angle; [I. 32] therefore the angle at B is equal to the angle DFB, so that the side FD is also equal to the side DB. [I. 6] Now, since AC is equal to CE, the square on AC is also equal to the square on CE; therefore the squares on AC, CE are double of the square on AC. But the square on EA is equal to the squares on AC, CE, for the angle ACE is right; [I. 47] therefore the square on EA is double of the square on AC. Again, since EG is equal to GF, the square on EG is also equal to the square on GF; therefore the squares on EG, GF are double of the square on GF. But the square on EF is equal to the squares on EG, GF; therefore the square on EF is double of the square on GF. But GF is equal to CD; [I. 34] therefore the square on EF is double of the square on CD. But the square on EA is also double of the square on AC; therefore the squares on AE, EF are double of the squares on AC, CD. And the square on AF is equal to the squares on AE, EF, for the angle AEF is right; [I. 47] therefore the square on AF is double of the squares on AC, CD. But the squares on AD, DF are equal to the square on AF, for the angle at D is right; [I. 47] therefore the squares on AD, DF are double of the squares on AC, CD. And DF is equal to DB; therefore the squares on AD, DB are double of the squares on AC, CD.