Index ← Previous Next →

## Translations

Ἐὰν ὦσι δύο εὐθεῖαι, τμηθῇ δὲ ἡ ἑτέρα αὐτῶν εἰς ὁσαδηποτοῦν τμήματα, τὸ περιεχόμενον ὀρθογώνιον ὑπὸ τῶν δύο εὐθειῶν ἴσον ἐστὶ τοῖς ὑπό τε τῆς ἀτμήτου καὶ ἑκάστου τῶν τμημάτων περιεχομένοις ὀρθογωνίοις. Ἔστωσαν δύο εὐθεῖαι αἱ Α, ΒΓ, καὶ τετμήσθω ἡ ΒΓ, ὡς ἔτυχεν, κατὰ τὰ Δ, Ε σημεῖα: λέγω, ὅτι τὸ ὑπὸ τῶν Α, ΒΓ περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ τε ὑπὸ τῶν Α, ΒΔ περιεχομένῳ ὀρθογωνίῳ καὶ τῷ ὑπὸ τῶν Α, ΔΕ καὶ ἔτι τῷ ὑπὸ τῶν Α, ΕΓ. Ἤχθω γὰρ ἀπὸ τοῦ Β τῇ ΒΓ πρὸς ὀρθὰς ἡ ΒΖ, καὶ κείσθω τῇ Α ἴση ἡ ΒΗ, καὶ διὰ μὲν τοῦ Η τῇ ΒΓ παράλληλος ἤχθω ἡ ΗΘ, διὰ δὲ τῶν Δ, Ε, Γ τῇ ΒΗ παράλληλοι ἤχθωσαν αἱ ΔΚ, ΕΛ, ΓΘ. Ἴσον δή ἐστι τὸ ΒΘ τοῖς ΒΚ, ΔΛ, ΕΘ. καί ἐστι τὸ μὲν ΒΘ τὸ ὑπὸ τῶν Α, ΒΓ: περιέχεται μὲν γὰρ ὑπὸ τῶν ΗΒ, ΒΓ, ἴση δὲ ἡ ΒΗ τῇ Α: τὸ δὲ ΒΚ τὸ ὑπὸ τῶν Α, ΒΔ: περιέχεται μὲν γὰρ ὑπὸ τῶν ΗΒ, ΒΔ, ἴση δὲ ἡ ΒΗ τῇ Α. τὸ δὲ ΔΛ τὸ ὑπὸ τῶν Α, ΔΕ: ἴση γὰρ ἡ ΔΚ, τουτέστιν ἡ ΒΗ, τῇ Α. καὶ ἔτι ὁμοίως τὸ ΕΘ τὸ ὑπὸ τῶν Α, ΕΓ: τὸ ἄρα ὑπὸ τῶν Α, ΒΓ ἴσον ἐστὶ τῷ τε ὑπὸ Α, ΒΔ καὶ τῷ ὑπὸ Α, ΔΕ καὶ ἔτι τῷ ὑπὸ Α, ΕΓ. Ἐὰν ἄρα ὦσι δύο εὐθεῖαι, τμηθῇ δὲ ἡ ἑτέρα αὐτῶν εἰς ὁσαδηποτοῦν τμήματα, τὸ περιεχόμενον ὀρθογώνιον ὑπὸ τῶν δύο εὐθειῶν ἴσον ἐστὶ τοῖς ὑπό τε τῆς ἀτμήτου καὶ ἑκάστου τῶν τμημάτων περιεχομένοις ὀρθογωνίοις: ὅπερ ἔδει δεῖξαι.

If there be two straight lines, and one of them be cut into any number of segments whatever, the rectangle contained by the two straight lines is equal to the rectangles contained by the uncut straight line and each of the segments. Let A, BC be two straight lines, and let BC be cut at random at the points D, E; I say that the rectangle contained by A, BC is equal to the rectangle contained by A, BD, that contained by A, DE and that contained by A, EC. For let BF be drawn from B at right angles to BC; [I. 11] let BG be made equal to A, [I. 3] through G let GH be drawn parallel to BC, [I. 31] and through D, E, C let DK, EL, CH be drawn parallel to BG. Then BH is equal to BK, DL, EH. Now BH is the rectangle A, BC, for it is contained by GB, BC, and BG is equal to A; BK is the rectangle A, BD, for it is contained by GB, BD, and BG is equal to A; and DL is the rectangle A, DE, for DK, that is BG [I. 34], is equal to A. Similarly also EH is the rectangle A, EC. Therefore the rectangle A, BC is equal to the rectangle A, BD, the rectangle A, DE and the rectangle A, EC.