Index ← Previous Next →

## Translations

Περὶ τὸν δοθέντα κύκλον τῷ δοθέντι τριγώνῳ ἰσογώνιον τρίγωνον περιγράψαι. Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓ, τὸ δὲ δοθὲν τρίγωνον τὸ ΔΕΖ: δεῖ δὴ περὶ τὸν ΑΒΓ κύκλον τῷ ΔΕΖ τριγώνῳ ἰσογώνιον τρίγωνον περιγράψαι. Ἐκβεβλήσθω ἡ ΕΖ ἐφ' ἑκάτερα τὰ μέρη κατὰ τὰ Η, Θ σημεῖα, καὶ εἰλήφθω τοῦ ΑΒΓ κύκλου κέντρον τὸ Κ, καὶ διήχθω, ὡς ἔτυχεν, εὐθεῖα ἡ ΚΒ, καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ μὲν ὑπὸ ΔΕΗ γωνίᾳ ἴση ἡ ὑπὸ ΒΚΑ, τῇ δὲ ὑπὸ ΔΖΘ ἴση ἡ ὑπὸ ΒΚΓ, καὶ διὰ τῶν Α, Β, Γ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓ κύκλου αἱ ΛΑΜ, ΜΒΝ, ΝΓΛ. Καὶ ἐπεὶ ἐφάπτονται τοῦ ΑΒΓ κύκλου αἱ ΛΜ, ΜΝ, ΝΛ κατὰ τὰ Α, Β, Γ σημεῖα, ἀπὸ δὲ τοῦ Κ κέντρου ἐπὶ τὰ Α, Β, Γ σημεῖα ἐπεζευγμέναι εἰσὶν αἱ ΚΑ, ΚΒ, ΚΓ, ὀρθαὶ ἄρα εἰσὶν αἱ πρὸς τοῖς Α, Β, Γ σημείοις γωνίαι. καὶ ἐπεὶ τοῦ ΑΜΒΚ τετραπλεύρου αἱ τέσσαρες γωνίαι τέτρασιν ὀρθαῖς ἴσαι εἰσίν, ἐπειδήπερ καὶ εἰς δύο τρίγωνα διαιρεῖται τὸ ΑΜΒΚ, καί εἰσιν ὀρθαὶ αἱ ὑπὸ ΚΑΜ, ΚΒΜ γωνίαι, λοιπαὶ ἄρα αἱ ὑπὸ ΑΚΒ, ΑΜΒ δυσὶν ὀρθαῖς ἴσαι εἰσίν. εἰσὶ δὲ καὶ αἱ ὑπὸ ΔΕΗ, ΔΕΖ δυσὶν ὀρθαῖς ἴσαι: αἱ ἄρα ὑπὸ ΑΚΒ, ΑΜΒ ταῖς ὑπὸ ΔΕΗ, ΔΕΖ ἴσαι εἰσίν, ὧν ἡ ὑπὸ ΑΚΒ τῇ ὑπὸ ΔΕΗ ἐστιν ἴση: λοιπὴ ἄρα ἡ ὑπὸ ΑΜΒ λοιπῇ τῇ ὑπὸ ΔΕΖ ἐστιν ἴση. ὁμοίως δὴ δειχθήσεται, ὅτι καὶ ἡ ὑπὸ ΛΝΒ τῇ ὑπὸ ΔΖΕ ἐστιν ἴση: καὶ λοιπὴ ἄρα ἡ ὑπὸ ΜΛΝ [λοιπῇ] τῇ ὑπὸ ΕΔΖ ἐστιν ἴση. ἰσογώνιον ἄρα ἐστὶ τὸ ΛΜΝ τρίγωνον τῷ ΔΕΖ τριγώνῳ: καὶ περιγέγραπται περὶ τὸν ΑΒΓ κύκλον. Περὶ τὸν δοθέντα ἄρα κύκλον τῷ δοθέντι τριγώνῳ ἰσογώνιον τρίγωνον περιγέγραπται: ὅπερ ἔδει ποιῆσαι.

About a given circle to circumscribe a triangle equiangular with a given triangle. Let ABC be the given circle, and DEF the given triangle; thus it is required to circumscribe about the circle ABC a triangle equiangular with the triangle DEF. Let EF be produced in both directions to the points G, H, let the centre K of the circle ABC be taken [III. 1], and let the straight line KB be drawn across at random; on the straight line KB, and at the point K on it, let the angle BKA be constructed equal to the angle DEG, and the angle BKC equal to the angle DFH; [I. 23] and through the points A, B, C let LAM, MBN, NCL be drawn touching the circle ABC. [III. 16, Por.] Now, since LM, MN, NL touch the circle ABC at the points A, B, C, and KA, KB, KC have been joined from the centre K to the points A, B, C, therefore the angles at the points A, B, C are right. [III. 18] And, since the four angles of the quadrilateral AMBK are equal to four right angles, inasmuch as AMBK is in fact divisible into two triangles, and the angles KAM, KBM are right, therefore the remaining angles AKB, AMB are equal to two right angles. But the angles DEG, DEF are also equal to two right angles; [I. 13] therefore the angles AKB, AMB are equal to the angles DEG, DEF, of which the angle AKB is equal to the angle DEG; therefore the angle AMB which remains is equal to the angle DEF which remains. Similarly it can be proved that the angle LNB is also equal to the angle DFE; therefore the remaining angle MLN is equal to the angle EDF. [I. 32] Therefore the triangle LMN is equiangular with the triangle DEF; and it has been circumscribed about the circle ABC.