Εἰς τὸ δοθὲν πεντάγωνον, ὅ ἐστιν ἰσόπλευρόν τε καὶ ἰσογώνιον, κύκλον ἐγγράψαι. Ἔστω τὸ δοθὲν πεντάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον τὸ ΑΒΓΔΕ: δεῖ δὴ εἰς τὸ ΑΒΓΔΕ πεντάγωνον κύκλον ἐγγράψαι. Τετμήσθω γὰρ ἑκατέρα τῶν ὑπὸ ΒΓΔ, ΓΔΕ γωνιῶν δίχα ὑπὸ ἑκατέρας τῶν ΓΖ, ΔΖ εὐθειῶν: καὶ ἀπὸ τοῦ Ζ σημείου, καθ' ὃ συμβάλλουσιν ἀλλήλαις αἱ ΓΖ, ΔΖ εὐθεῖαι, ἐπεζεύχθωσαν αἱ ΖΒ, ΖΑ, ΖΕ εὐθεῖαι. καὶ ἐπεὶ ἴση ἐστὶν ἡ ΒΓ τῇ ΓΔ, κοινὴ δὲ ἡ ΓΖ, δύο δὴ αἱ ΒΓ, ΓΖ δυσὶ ταῖς ΔΓ, ΓΖ ἴσαι εἰσίν: καὶ γωνία ἡ ὑπὸ ΒΓΖ γωνίᾳ τῇ ὑπὸ ΔΓΖ [ἐστιν] ἴση: βάσις ἄρα ἡ ΒΖ βάσει τῇ ΔΖ ἐστιν ἴση, καὶ τὸ ΒΓΖ τρίγωνον τῷ ΔΓΖ τριγώνῳ ἐστιν ἴσον, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται, ὑφ' ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν: ἴση ἄρα ἡ ὑπὸ ΓΒΖ γωνία τῇ ὑπὸ ΓΔΖ. καὶ ἐπεὶ διπλῆ ἐστιν ἡ ὑπὸ ΓΔΕ τῆς ὑπὸ ΓΔΖ, ἴση δὲ ἡ μὲν ὑπὸ ΓΔΕ τῇ ὑπὸ ΑΒΓ, ἡ δὲ ὑπὸ ΓΔΖ τῇ ὑπὸ ΓΒΖ, καὶ ἡ ὑπὸ ΓΒΑ ἄρα τῆς ὑπὸ ΓΒΖ ἐστι διπλῆ: ἴση ἄρα ἡ ὑπὸ ΑΒΖ γωνία τῇ ὑπὸ ΖΒΓ: ἡ ἄρα ὑπὸ ΑΒΓ γωνία δίχα τέτμηται ὑπὸ τῆς ΒΖ εὐθείας. ὁμοίως δὴ δειχθήσεται, ὅτι καὶ ἑκατέρα τῶν ὑπὸ ΒΑΕ, ΑΕΔ δίχα τέτμηται ὑπὸ ἑκατέρας τῶν ΖΑ, ΖΕ εὐθειῶν. ἤχθωσαν δὴ ἀπὸ τοῦ Ζ σημείου ἐπὶ τὰς ΑΒ, ΒΓ, ΓΔ, ΔΕ, ΕΑ εὐθείας κάθετοι αἱ ΖΗ, ΖΘ, ΖΚ, ΖΛ, ΖΜ. καὶ ἐπεὶ ἴση ἐστὶν ἡ ὑπὸ ΘΓΖ γωνία τῇ ὑπὸ ΚΓΖ, ἐστὶ δὲ καὶ ὀρθὴ ἡ ὑπὸ ΖΘΓ [ὀρθῇ] τῇ ὑπὸ ΖΚΓ ἴση, δύο δὴ τρίγωνά ἐστι τὰ ΖΘΓ, ΖΚΓ τὰς δύο γωνίας δυσὶ γωνίαις ἴσας ἔχοντα καὶ μίαν πλευρὰν μιᾷ πλευρᾷ ἴσην κοινὴν αὐτῶν τὴν ΖΓ ὑποτείνουσαν ὑπὸ μίαν τῶν ἴσων γωνιῶν: καὶ τὰς λοιπὰς ἄρα πλευρὰς ταῖς λοιπαῖς πλευραῖς ἴσας ἕξει: ἴση ἄρα ἡ ΖΘ κάθετος τῇ ΖΚ καθέτῳ. ὁμοίως δὴ δειχθήσεται, ὅτι καὶ ἑκάστη τῶν ΖΛ, ΖΜ, ΖΗ ἑκατέρᾳ τῶν ΖΘ, ΖΚ ἴση ἐστίν: αἱ πέντε ἄρα εὐθεῖαι αἱ ΖΗ, ΖΘ, ΖΚ, ΖΛ, ΖΜ ἴσαι ἀλλήλαις εἰσίν. ὁ ἄρα κέντρῳ τῷ Ζ διαστήματι δὲ ἑνὶ τῶν Η, Θ, Κ, Λ, Μ κύκλος γραφόμενος ἥξει καὶ διὰ τῶν λοιπῶν σημείων καὶ ἐφάψεται τῶν ΑΒ, ΒΓ, ΓΔ, ΔΕ, ΕΑ εὐθειῶν διὰ τὸ ὀρθὰς εἶναι τὰς πρὸς τοῖς Η, Θ, Κ, Λ, Μ σημείοις γωνίας. εἰ γὰρ οὐκ ἐφάψεται αὐτῶν, ἀλλὰ τεμεῖ αὐτάς, συμβήσεται τὴν τῇ διαμέτρῳ τοῦ κύκλου πρὸς ὀρθὰς ἀπ' ἄκρας ἀγομένην ἐντὸς πίπτειν τοῦ κύκλου: ὅπερ ἄτοπον ἐδείχθη. οὐκ ἄρα ὁ κέντρῳ τῷ Ζ διαστήματι δὲ ἑνὶ τῶν Η, Θ, Κ, Λ, Μ σημείων γραφόμενος κύκλος τεμεῖ τὰς ΑΒ, ΒΓ, ΓΔ, ΔΕ, ΕΑ εὐθείας: ἐφάψεται ἄρα αὐτῶν. γεγράφθω ὡς ὁ ΗΘΚΛΜ. Εἰς ἄρα τὸ δοθὲν πεντάγωνον, ὅ ἐστιν ἰσόπλευρόν τε καὶ ἰσογώνιον, κύκλος ἐγγέγραπται: ὅπερ ἔδει ποιῆσαι.

In a given pentagon, which is equilateral and equiangular, to inscribe a circle. Let ABCDE be the given equilateral and equiangular pentagon; thus it is required to inscribe a circle in the pentagon ABCDE. For let the angles BCD, CDE be bisected by the straight lines CF, DF respectively; and from the point F, at which the straight lines CF, DF meet one another, let the straight lines FB, FA, FE be joined. Then, since BC is equal to CD, and CF common, the two sides BC, CF are equal to the two sides DC, CF; and the angle BCF is equal to the angle DCF; therefore the base BF is equal to the base DF, and the triangle BCF is equal to the triangle DCF, and the remaining angles will be equal to the remaining angles, namely those which the equal sides subtend. [I. 4] Therefore the angle CBF is equal to the angle CDF. And, since the angle CDE is double of the angle CDF, and the angle CDE is equal to the angle ABC, while the angle CDF is equal to the angle CBF; therefore the angle CBA is also double of the angle CBF; therefore the angle ABF is equal to the angle FBC; therefore the angle ABC has been bisected by the straight line BF. Similarly it can be proved that the angles BAE, AED have also been bisected by the straight lines FA, FE respectively. Now let FG, FH, FK, FL, FM be drawn from the point F perpendicular to the straight lines AB, BC, CD, DE, EA. Then, since the angle HCF is equal to the angle KCF, and the right angle FHC is also equal to the angle FKC, FHC, FKC are two triangles having two angles equal to two angles and one side equal to one side, namely FC which is common to them and subtends one of the equal angles; therefore they will also have the remaining sides equal to the remaining sides; [I. 26] therefore the perpendicular FH is equal to the perpendicular FK. Similarly it can be proved that each of the straight lines FL, FM, FG is also equal to each of the straight lines FH, FK; therefore the five straight lines FG, FH, FK, FL, FM are equal to one another. Therefore the circle described with centre F and distance one of the straight lines FG, FH, FK, FL, FM will pass also through the remaining points; and it will touch the straight lines AB, BC, CD, DE, EA, because the angles at the points G, H, K, L, M are right. For, if it does not touch them. but cuts them, it will result that the straight line drawn at right angles to the diameter of the circle from its extremity falls within the circle: which was proved absurd. [III. 16] Therefore the circle described with centre F and distance one of the straight lines FG, FH, FK, FL, FM will not cut the straight lines AB, BC, CD, DE, EA; therefore it will touch them. Let it be described, as GHKLM.