Τὸ ἀπὸ ἀποτομῆς παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ ἀποτομὴν πρώτην. Ἔστω ἀποτομὴ ἡ ΑΒ, ῥητὴ δὲ ἡ ΓΔ, καὶ τῷ ἀπὸ τῆς ΑΒ ἴσον παρὰ τὴν ΓΔ παραβεβλήσθω τὸ ΓΕ πλάτος ποιοῦν τὴν ΓΖ: λέγω, ὅτι ἡ ΓΖ ἀποτομή ἐστι πρώτη. Ἔστω γὰρ τῇ ΑΒ προσαρμόζουσα ἡ ΒΗ: αἱ ἄρα ΑΗ, ΗΒ ῥηταί εἰσι δυνάμει μόνον σύμμετροι. καὶ τῷ μὲν ἀπὸ τῆς ΑΗ ἴσον παρὰ τὴν ΓΔ παραβεβλήσθω τὸ ΓΘ, τῷ δὲ ἀπὸ τῆς ΒΗ τὸ ΚΛ. ὅλον ἄρα τὸ ΓΛ ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΑΗ, ΗΒ: ὧν τὸ ΓΕ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΑΒ: λοιπὸν ἄρα τὸ ΖΛ ἴσον ἐστὶ τῷ δὶς ὑπὸ τῶν ΑΗ, ΗΒ. τετμήσθω ἡ ΖΜ δίχα κατὰ τὸ Ν σημεῖον, καὶ ἤχθω διὰ τοῦ Ν τῇ ΓΔ παράλληλος ἡ ΝΞ: ἑκάτερον ἄρα τῶν ΖΞ, ΛΝ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΑΗ, ΗΒ. καὶ ἐπεὶ τὰ ἀπὸ τῶν ΑΗ, ΗΒ ῥητά ἐστιν, καί ἐστι τοῖς ἀπὸ τῶν ΑΗ, ΗΒ ἴσον τὸ ΔΜ, ῥητὸν ἄρα ἐστὶ τὸ ΔΜ. καὶ παρὰ ῥητὴν τὴν ΓΔ παραβέβληται πλάτος ποιοῦν τὴν ΓΜ: ῥητὴ ἄρα ἐστὶν ἡ ΓΜ καὶ σύμμετρος τῇ ΓΔ μήκει. πάλιν, ἐπεὶ μέσον ἐστὶ τὸ δὶς ὑπὸ τῶν ΑΗ, ΗΒ, καὶ τῷ δὶς ὑπὸ τῶν ΑΗ, ΗΒ ἴσον τὸ ΖΛ, μέσον ἄρα τὸ ΖΛ. καὶ παρὰ ῥητὴν τὴν ΓΔ παράκειται πλάτος ποιοῦν τὴν ΖΜ: ῥητὴ ἄρα ἐστὶν ἡ ΖΜ καὶ ἀσύμμετρος τῇ ΓΔ μήκει. καὶ ἐπεὶ τὰ μὲν ἀπὸ τῶν ΑΗ, ΗΒ ῥητά ἐστιν, τὸ δὲ δὶς ὑπὸ τῶν ΑΗ, ΗΒ μέσον, ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΗ, ΗΒ τῷ δὶς ὑπὸ τῶν ΑΗ, ΗΒ. καὶ τοῖς μὲν ἀπὸ τῶν ΑΗ, ΗΒ ἴσον ἐστὶ τὸ ΓΛ, τῷ δὲ δὶς ὑπὸ τῶν ΑΗ, ΗΒ τὸ ΖΛ: ἀσύμμετρον ἄρα ἐστὶ τὸ ΔΜ τῷ ΖΛ. ὡς δὲ τὸ ΔΜ πρὸς τὸ ΖΛ, οὕτως ἐστὶν ἡ ΓΜ πρὸς τὴν ΖΜ. ἀσύμμετρος ἄρα ἐστὶν ἡ ΓΜ τῇ ΖΜ μήκει. καί εἰσιν ἀμφότεραι ῥηταί: αἱ ἄρα ΓΜ, ΜΖ ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἡ ΓΖ ἄρα ἀποτομή ἐστιν. Λέγω δή, ὅτι καὶ πρώτη. Ἐπεὶ γὰρ τῶν ἀπὸ τῶν ΑΗ, ΗΒ μέσον ἀνάλογόν ἐστι τὸ ὑπὸ τῶν ΑΗ, ΗΒ, καί ἐστι τῷ μὲν ἀπὸ τῆς ΑΗ ἴσον τὸ ΓΘ, τῷ δὲ ἀπὸ τῆς ΒΗ ἴσον τὸ ΚΛ, τῷ δὲ ὑπὸ τῶν ΑΗ, ΗΒ τὸ ΝΛ, καὶ τῶν ΓΘ, ΚΛ ἄρα μέσον ἀνάλογόν ἐστι τὸ ΝΛ: ἔστιν ἄρα ὡς τὸ ΓΘ πρὸς τὸ ΝΛ, οὕτως τὸ ΝΛ πρὸς τὸ ΚΛ. ἀλλ' ὡς μὲν τὸ ΓΘ πρὸς τὸ ΝΛ, οὕτως ἐστὶν ἡ ΓΚ πρὸς τὴν ΝΜ: ὡς δὲ τὸ ΝΛ πρὸς τὸ ΚΛ, οὕτως ἐστὶν ἡ ΝΜ πρὸς τὴν ΚΜ: τὸ ἄρα ὑπὸ τῶν ΓΚ, ΚΜ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΝΜ, τουτέστι τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΖΜ. καὶ ἐπεὶ σύμμετρόν ἐστι τὸ ἀπὸ τῆς ΑΗ τῷ ἀπὸ τῆς ΗΒ, σύμμετρόν [ἐστι] καὶ τὸ ΓΘ τῷ ΚΛ. ὡς δὲ τὸ ΓΘ πρὸς τὸ ΚΛ, οὕτως ἡ ΓΚ πρὸς τὴν ΚΜ: σύμμετρος ἄρα ἐστὶν ἡ ΓΚ τῇ ΚΜ. ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ, ΜΖ, καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΖΜ ἴσον παρὰ τὴν ΓΜ παραβέβληται ἐλλεῖπον εἴδει τετραγώνῳ τὸ ὑπὸ τῶν ΓΚ, ΚΜ, καί ἐστι σύμμετρος ἡ ΓΚ τῇ ΚΜ, ἡ ἄρα ΓΜ τῆς ΜΖ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει. καί ἐστιν ἡ ΓΜ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ τῇ ΓΔ μήκει: ἡ ἄρα ΓΖ ἀποτομή ἐστι πρώτη. Τὸ ἄρα ἀπὸ ἀποτομῆς παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ ἀποτομὴν πρώτην: ὅπερ ἔδει δεῖξαι.

The square on an apotome applied to a rational straight line produces as breadth a first apotome. Let AB be an apotome, and CD rational, and to CD let there be applied CE equal to the square on AB and producing CF as breadth; I say that CF is a first apotome. For let BG be the annex to AB; therefore AG, GB are rational straight lines commensurable in square only. [X. 73] To CD let there be applied CH equal to the square on AG, and KL equal to the square on BG. Therefore the whole CL is equal to the squares on AG, GB, and, in these, CE is equal to the square on AB; therefore the remainder FL is equal to twice the rectangle AG, GB. [II. 7] Let FM be bisected at the point N, and let NO be drawn through N parallel to CD; therefore each of the rectangles FO, LN is equal to the rectangle AG, GB. Now, since the squares on AG, GB are rational, and DM is equal to the squares on AG, GB,. therefore DM is rational. And it has been applied to the rational straight line CD, producing CM as breadth; therefore CM is rational and commensurable in length with CD. [X. 20] Again, since twice the rectangle AG, GB is medial, and FL is equal to twice the rectangle AG, GB, therefore FL is medial. And it is applied to the rational straight line CD, producing FM as breadth; therefore FM is rational and incommensurable in length with CD. [X. 22] And, since the squares on AG, GB are rational, while twice the rectangle AG, GB is medial, therefore the squares on AG, GB are incommensurable with twice the rectangle AG, GB. And CL is equal to the squares on AG, GB, and FL to twice the rectangle AG, GB; therefore DM is incommensurable with FL. But, as DM is to FL, so is CM to FM; [VI. 1] therefore CM is incommensurable in length with FM. [X. 11] And both are rational; therefore CM, MF are rational straight lines commensurable in square only; therefore CF is an apotome. [X. 73] I say next that it is also a first apotome. For, since the rectangle AG, GB is a mean proportional between the squares on AG, GB, and CH is equal to the square on AG, KL equal to the square on BG, and NL equal to the rectangle AG, GB, therefore NL is also a mean proportional between CH, KL; therefore, as CH is to NL, so is NL to KL. But, as CH is to NL, so is CK to NM, and, as NL is to KL, so is NM to KM; [VI. 1] therefore the rectangle CK, KM is equal to the square on NM [VI. 17], that is, to the fourth part of the square on FM. And, since the square on AG is commensurable with the square on GB, CH is also commensurable with KL. But, as CH is to KL, so is CK to KM; [VI. 1] therefore CK is commensurable with KM. [X. 11] Since then CM, MF are two unequal straight lines, and to CM there has been applied the rectangle CK, KM equal to the fourth part of the square on FM and deficient by a square figure, while CK is commensurable with KM, therefore the square on CM is greater than the square on MF by the square on a straight line commensurable in length with CM. [X. 17] And CM is commensurable in length with the rational straight line CD set out; therefore CF is a first apotome. [X. Deff. III. 1]