Index ← Previous Next →

Classification of incommensurables: Book 10 Proposition 76


Ἐὰν ἀπὸ εὐθείας εὐθεῖα ἀφαιρεθῇ δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ποιοῦσα τὰ μὲν ἀπ' αὐτῶν ἅμα ῥητόν, τὸ δ' ὑπ' αὐτῶν μέσον, ἡ λοιπὴ ἄλογός ἐστιν: καλείσθω δὲ ἐλάσσων. Ἀπὸ γὰρ εὐθείας τῆς ΑΒ εὐθεῖα ἀφῃρήσθω ἡ ΒΓ δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ ποιοῦσα τὰ προκείμενα. λέγω, ὅτι ἡ λοιπὴ ἡ ΑΓ ἄλογός ἐστιν ἡ καλουμένη ἐλάσσων. Ἐπεὶ γὰρ τὸ μὲν συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ τετραγώνων ῥητόν ἐστιν, τὸ δὲ δὶς ὑπὸ τῶν ΑΒ, ΒΓ μέσον, ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΒ, ΒΓ τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ: καὶ ἀναστρέψαντι λοιπῷ τῷ ἀπὸ τῆς ΑΓ ἀσύμμετρά ἐστι τὰ ἀπὸ τῶν ΑΒ, ΒΓ. ῥητὰ δὲ τὰ ἀπὸ τῶν ΑΒ, ΒΓ. ἄλογον ἄρα τὸ ἀπὸ τῆς ΑΓ: ἄλογος ἄρα ἡ ΑΓ: καλείσθω δὲ ἐλάσσων. ὅπερ ἔδει δεῖξαι.

For from the straight line AB let there be subtracted the straight line BC which is incommensurable in square with the whole and fulfils the given conditions. [X. 33] I say that the remainder AC is the irrational straight line called minor. For, since the sum of the squares on AB, BC is rational, while twice the rectangle AB, BC is medial, therefore the squares on AB, BC are incommensurable with twice the rectangle AB, BC; and, convertendo, the squares on AB, BC are incommensurable with the remainder, the square on AC. [II. 7, X. 16] But the squares on AB, BC are rational; therefore the square on AC is irrational; therefore AC is irrational.