Ῥητοῦ καὶ μέσου συντιθεμένου τέσσαρες ἄλογοι γίγνονται ἤτοι ἐκ δύο ὀνομάτων ἢ ἐκ δύο μέσων πρώτη ἢ μείζων ἢ ῥητὸν καὶ μέσον δυναμένη. Ἔστω ῥητὸν μὲν τὸ ΑΒ, μέσον δὲ τὸ ΓΔ: λέγω, ὅτι ἡ τὸ ΑΔ χωρίον δυναμένη ἤτοι ἐκ δύο ὀνομάτων ἐστὶν ἢ ἐκ δύο μέσων πρώτη ἢ μείζων ἢ ῥητὸν καὶ μέσον δυναμένη. Τὸ γὰρ ΑΒ τοῦ ΓΔ ἤτοι μεῖζόν ἐστιν ἢ ἔλασσον. ἔστω πρότερον μεῖζον: καὶ ἐκκείσθω ῥητὴ ἡ ΕΖ, καὶ παραβεβλήσθω παρὰ τὴν ΕΖ τῷ ΑΒ ἴσον τὸ ΕΗ πλάτος ποιοῦν τὴν ΕΘ: τῷ δὲ ΔΓ ἴσον παρὰ τὴν ΕΖ παραβεβλήσθω τὸ ΘΙ πλάτος ποιοῦν τὴν ΘΚ. καὶ ἐπεὶ ῥητόν ἐστι τὸ ΑΒ καί ἐστιν ῥητόν ἐστι τὸ ΑΒ καί ἐστιν ἴσον τῷ ΕΗ, ῥητὸν ἄρα καὶ τὸ ΕΗ. καὶ παρὰ [ῥητὴν] τὴν ΕΖ παραβέβληται πλάτος ποιοῦν τὴν ΕΘ: ἡ ΕΘ ἄρα ῥητή ἐστι καὶ σύμμετρος τῇ ΕΖ μήκει. πάλιν, ἐπεὶ μέσον ἐστὶ τὸ ΓΔ καί ἐστιν ἴσον τῷ ΘΙ, μέσον ἄρα ἐστὶ καὶ τὸ ΘΙ. καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν τὴν ΘΚ: ῥητὴ ἄρα ἐστὶν ἡ ΘΚ καὶ ἀσύμμετρος τῇ ΕΖ μήκει. καὶ ἐπεὶ μέσον ἐστὶ τὸ ΓΔ, ῥητὸν δὲ τὸ ΑΒ, ἀσύμμετρον ἄρα ἐστὶ τὸ ΑΒ τῷ ΓΔ: ὥστε καὶ τὸ ΕΗ ἀσύμμετρόν ἐστι τῷ ΘΙ. ὡς δὲ τὸ ΕΗ πρὸς τὸ ΘΙ, οὕτως ἐστὶν ἡ ΕΘ πρὸς τὴν ΘΚ: ἀσύμμετρος ἄρα ἐστὶ καὶ ἡ ΕΘ τῇ ΘΚ μήκει. καί εἰσιν ἀμφότεραι ῥηταί: αἱ ΕΘ, ΘΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΕΚ διῃρημένη κατὰ τὸ Θ. καὶ ἐπεὶ μεῖζόν ἐστι τὸ ΑΒ τοῦ ΓΔ, ἴσον δὲ τὸ μὲν ΑΒ τῷ ΕΗ, τὸ δὲ ΓΔ τῷ ΘΙ, μεῖζον ἄρα καὶ τὸ ΕΗ τοῦ ΘΙ: καὶ ἡ ΕΘ ἄρα μείζων ἐστὶ τῆς ΘΚ. ἤτοι οὖν ἡ ΕΘ τῆς ΘΚ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει ἢ τῷ ἀπὸ ἀσυμμέτρου. δυνάσθω πρότερον τῷ ἀπὸ συμμέτρου ἑαυτῇ. καί ἐστιν ἡ μείζων ἡ ΘΕ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ τῇ ΕΖ: ἡ ἄρα ΕΚ ἐκ δύο ὀνομάτων ἐστὶ πρώτη. ῥητὴ δὲ ἡ ΕΖ: ἐὰν δὲ χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων πρώτης, ἡ τὸ χωρίον δυναμένη ἐκ δύο ὀνομάτων ἐστίν. ἡ ἄρα τὸ ΕΙ δυναμένη ἐκ δύο ὀνομάτων ἐστίν: ὥστε καὶ ἡ τὸ ΑΔ δυναμένη ἐκ δύο ὀνομάτων ἐστίν. ἀλλὰ δὴ δυνάσθω ἡ ΕΘ τῆς ΘΚ μεῖζον τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ: καί ἐστιν ἡ μείζων ἡ ΕΘ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ τῇ ΕΖ μήκει: ἡ ἄρα ΕΚ ἐκ δύο ὀνομάτων ἐστὶ τετάρτη. ῥητὴ δὲ ἡ ΕΖ: ἐὰν δὲ χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων τετάρτης, ἡ τὸ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη μείζων. ἡ ἄρα τὸ ΕΙ χωρίον δυναμένη μείζων ἐστίν: ὥστε καὶ ἡ τὸ ΑΔ δυναμένη μείζων ἐστίν. Ἀλλὰ δὴ ἔστω ἔλασσον τὸ ΑΒ τοῦ ΓΔ: καὶ τὸ ΕΗ ἄρα ἔλασσόν ἐστι τοῦ ΘΙ: ὥστε καὶ ἡ ΕΘ ἐλάσσων ἐστὶ τῆς ΘΚ. ἤτοι δὲ ἡ ΘΚ τῆς ΕΘ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ ἢ τῷ ἀπὸ ἀσυμμέτρου. δυνάσθω πρότερον τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει: καί ἐστιν ἡ ἐλάσσων ἡ ΕΘ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ τῇ ΕΖ μήκει: ἡ ἄρα ΕΚ ἐκ δύο ὀνομάτων ἐστὶ δευτέρα. ῥητὴ δὲ ἡ ΕΖ: ἐὰν δὲ χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων δευτέρας, ἡ τὸ χωρίον δυναμένη ἐκ δύο μέσων ἐστὶ πρώτη. ἡ ἄρα τὸ ΕΙ χωρίον δυναμένη ἐκ δύο μέσων ἐστὶ πρώτη: ὥστε καὶ ἡ τὸ ΑΔ δυναμένη ἐκ δύο μέσων ἐστὶ πρώτη. ἀλλὰ δὴ ἡ ΘΚ τῆς ΘΕ μεῖζον δυνάσθω τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ. καί ἐστιν ἡ ἐλάσσων ἡ ΕΘ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ τῇ ΕΖ: ἡ ἄρα ΕΚ ἐκ δύο ὀνομάτων ἐστὶ πέμπτη. ῥητὴ δὲ ἡ ΕΖ: ἐὰν δὲ χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων πέμπτης, ἡ τὸ χωρίον δυναμένη ῥητὸν καὶ μέσον δυναμένη ἐστίν. ἡ ἄρα τὸ ΕΙ χωρίον δυναμένη ῥητὸν καὶ μέσον δυναμένη ἐστίν: ὥστε καὶ ἡ τὸ ΑΔ χωρίον δυναμένη ῥητὸν καὶ μέσον δυναμένη ἐστίν. Ῥητοῦ ἄρα καὶ μέσου συντιθεμένου τέσσαρες ἄλογοι γίγνονται ἤτοι ἐκ δύο ὀνομάτων ἢ ἐκ δύο μέσων πρώτη ἢ μείζων ἢ ῥητὸν καὶ μέσον δυναμένη: ὅπερ ἔδει δεῖξαι.

If a rational and a medial area be added together, four irrational straight lines arise, namely a binomial or a first bimedial or a major or a side of a rational plus a medial area. Let. AB be rational, and CD medial; I say that the side of the area AD is a binomial or a first bimedial or a major or a side of a rational plus a medial area. For AB is either greater or less than CD. First, let it be greater; let a rational straight line EF be set out, let there be applied to EF the rectangle EG equal to AB, producing EH as breadth, and let HI, equal to DC, be applied to EF, producing HK as breadth. Then, since AB is rational and is equal to EG, therefore EG is also rational. And it has been applied to EF, producing EH as breadth; therefore EH is rational and commensurable in length with EF. [X. 20] Again, since CD is medial and is equal to HI, therefore HI is also medial. And it is applied to the rational straight line EF, producing HK as breadth; therefore HK is rational and incommensurable in length with EF [X. 22] And, since CD is medial, while AB is rational, therefore AB is incommensurable with CD, so that EG is also incommensurable with HI. But, as EG is to HI, so is EH to HK; [VI. 1] therefore EH is also incommensurable in length with HK. [X. 11] And both are rational; therefore EH, HK are rational straight lines commensurable in square only; therefore EK is a binomial straight line, divided at H. [X. 36] And, since AB is greater than CD, while AB is equal to EG and CD to HI, therefore EG is also greater than HI; therefore EH is also greater than HK. The square, then, on EH is greater than the square on HK either by the square on a straight line commensurable in length with EH or by the square on a straight line incommensurable with it. First, let the square on it be greater by the square on a straight line commensurable with itself. Now the greater straight line HE is commensurable in length with the rational straight line EF set out; therefore EK is a first binomial. [X. Deff. II. 1] But EF is rational; and, if an area be contained by a rational straight line and the first binomial, the side of the square equal to the area is binomial. [X. 54] Therefore the side of EI is binomial; so that the side of AD is also binomial. Next, let the square on EH be greater than the square on HK by the square on a straight line incommensurable with EH. Now the greater straight line EH is commensurable in length with the rational straight line EF set out; therefore EK is a fourth binomial. [X. Deff. II. 4] But EF is rational; and, if an area be contained by a rational straight line and the fourth binomial, the side of the area is the irrational straight line called major. [X. 57] Therefore the side of the area EI is major; so that the side of the area AD is also major. Next, let AB be less than CD; therefore EG is also less than HI, so that EH is also less than HK. Now the square on HK is greater than the square on EH either by the square on a straight line commensurable with HK or by the square on a straight line incommensurable with it. First, let the square on it be greater by the square on a straight line commensurable in length with itself. Now the lesser straight line EH is commensurable in length with the rational straight line EF set out; therefore EK is a second binomial. [X. Deff. II. 2] But EF is rational, and, if an area be contained by a rational straight line and the second binomial, the side of the square equal to it is a first bimedial; [X. 55] therefore the side of the area EI is a first bimedial, so that the side of AD is also a first bimedial. Next, let the square on HK be greater than the square on HE by the square on a straight line incommensurable with HK. Now the lesser straight line EH is commensurable with the rational straight line EF set out; therefore EK is a fifth binomial. [X. Deff. II. 5] But EF is rational; and, if an area be contained by a rational straight line and the fifth binomial, the side of the square equal to the area is a side of a rational plus a medial area. [X. 58] Therefore the side of the area EI is a side of a rational plus a medial area, so that the side of the area AD is also a side of a rational plus a medial area.