Index ← Previous Next →

Translations

Ἡ τῇ δύο μέσα δυναμένῃ σύμμετρος δύο μέσα δυναμένη ἐστίν. Ἔστω δύο μέσα δυναμένη ἡ ΑΒ, καὶ τῇ ΑΒ σύμμετρος ἡ ΓΔ: δεικτέον, ὅτι καὶ ἡ ΓΔ δύο μέσα δυναμένη ἐστίν. επεὶ γὰρ δύο μέσα δυναμένη ἐστὶν ἡ ΑΒ, διῃρήσθω εἰς τὰς εὐθείας κατὰ τὸ Ε: αἱ ΑΕ, ΕΒ ἄρα δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τό τε συγκείμενον ἐκ τῶν ἀπ' αὐτῶν [τετραγώνων] μέσον καὶ τὸ ὑπ' αὐτῶν μέσον καὶ ἔτι ἀσύμμετρον τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΕ, ΕΒ τετραγώνων τῷ ὑπὸ τῶν ΑΕ, ΕΒ: καὶ κατεσκευάσθω τὰ αὐτὰ τοῖς πρότερον. ὁμοίως δὴ δείξομεν, ὅτι καὶ αἱ ΓΖ, ΖΔ δυνάμει εἰσὶν ἀσύμμετροι καὶ σύμμετρον τὸ μὲν συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΕ, ΕΒ τῷ συγκειμένῳ ἐκ τῶν ἀπὸ τῶν ΓΖ, ΖΔ, τὸ δὲ ὑπὸ τῶν ΑΕ, ΕΒ τῷ ὑπὸ τῶν ΓΖ, ΖΔ: ὥστε καὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΓΖ, ΖΔ τετραγώνων μέσον ἐστὶ καὶ τὸ ὑπὸ τῶν ΓΖ, ΖΔ μέσον καὶ ἔτι ἀσύμμετρον τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΓΖ, ΖΔ τετραγώνων τῷ ὑπὸ τῶν ΓΖ, ΖΔ. Ἡ ἄρα ΓΔ δύο μέσα δυναμένη ἐστίν: ὅπερ ἔδει δεῖξαι.

A straight line commensurable with the side of the sum of two medial areas is the side of the sum of two medial areas. Let AB be the side of the sum of two medial areas, and CD commensurable with AB; it is to be proved that CD is also the side of the sum of two medial areas. For, since AB is the side of the sum of two medial areas, let it be divided into its straight lines at E; therefore AE, EB are straight lines incommensurable in square which make the sum of the squares on them medial, the rectangle contained by them medial, and furthermore the sum of the squares on AE, EB incommensurable with the rectangle AE, EB. [X. 41] Let the same construction be made as before. We can then prove similarly that CF, FD are also incommensurable in square, the sum of the squares on AE, EB is commensurable with the sum of the squares on CF, FD, and the rectangle AE, EB with the rectangle CF, FD; so that the sum of the squares on CF, FD is also medial, the rectangle CF, FD is medial, and moreover the sum of the squares on CF, FD is incommensurable with the rectangle CF, FD.