Index ← Previous Next →

## Translations

Ἐὰν κύκλου ληφθῇ τι σημεῖον ἐκτός, καὶ ἀπ' αὐτοῦ πρὸς τὸν κύκλον προσπίπτωσι δύο εὐθεῖαι, καὶ ἡ μὲν αὐτῶν τέμνῃ τὸν κύκλον, ἡ δὲ ἐφάπτηται, ἔσται τὸ ὑπὸ ὅλης τῆς τεμνούσης καὶ τῆς ἐκτὸς ἀπολαμβανομένης μεταξὺ τοῦ τε σημείου καὶ τῆς κυρτῆς περιφερείας ἴσον τῷ ἀπὸ τῆς ἐφαπτομένης τετραγώνῳ. Κύκλου γὰρ τοῦ ΑΒΓ εἰλήφθω τι σημεῖον ἐκτὸς τὸ Δ, καὶ ἀπὸ τοῦ Δ πρὸς τὸν ΑΒΓ κύκλον προσπιπτέτωσαν δύο εὐθεῖαι αἱ ΔΓ[Α], ΔΒ: καὶ ἡ μὲν ΔΓΑ τεμνέτω τὸν ΑΒΓ κύκλον, ἡ δὲ ΒΔ ἐφαπτέσθω: λέγω, ὅτι τὸ ὑπὸ τῶν ΑΔ, ΔΓ περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ἀπὸ τῆς ΔΒ τετραγώνῳ. Ἡ ἄρα [Δ]ΓΑ ἤτοι διὰ τοῦ κέντρου ἐστὶν ἢ οὔ. ἔστω πρότερον διὰ τοῦ κέντρου, καὶ ἔστω τὸ Ζ κέντρον τοῦ ΑΒΓ κύκλου, καὶ ἐπεζεύχθω ἡ ΖΒ: ὀρθὴ ἄρα ἐστὶν ἡ ὑπὸ ΖΒΔ. καὶ ἐπεὶ εὐθεῖα ἡ ΑΓ δίχα τέτμηται κατὰ τὸ Ζ, πρόσκειται δὲ αὐτῇ ἡ ΓΔ, τὸ ἄρα ὑπὸ τῶν ΑΔ, ΔΓ μετὰ τοῦ ἀπὸ τῆς ΖΓ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΖΔ. ἴση δὲ ἡ ΖΓ τῇ ΖΒ: τὸ ἄρα ὑπὸ τῶν ΑΔ, ΔΓ μετὰ τοῦ ἀπὸ τῆς ΖΒ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΖΔ. τῷ δὲ ἀπὸ τῆς ΖΔ ἴσα ἐστὶ τὰ ἀπὸ τῶν ΖΒ, ΒΔ: τὸ ἄρα ὑπὸ τῶν ΑΔ, ΔΓ μετὰ τοῦ ἀπὸ τῆς ΖΒ ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΖΒ, ΒΔ. κοινὸν ἀφῃρήσθω τὸ ἀπὸ τῆς ΖΒ: λοιπὸν ἄρα τὸ ὑπὸ τῶν ΑΔ, ΔΓ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΔΒ ἐφαπτομένης. ἀλλὰ δὴ ἡ ΔΓΑ μὴ ἔστω διὰ τοῦ κέντρου τοῦ ΑΒΓ κύκλου, καὶ εἰλήφθω τὸ κέντρον τὸ Ε, καὶ ἀπὸ τοῦ Ε ἐπὶ τὴν ΑΓ κάθετος ἤχθω ἡ ΕΖ, καὶ ἐπεζεύχθωσαν αἱ ΕΒ, ΕΓ, ΕΔ: ὀρθὴ ἄρα ἐστὶν ἡ ὑπὸ ΕΒΔ. καὶ ἐπεὶ εὐθεῖά τις διὰ τοῦ κέντρου ἡ ΕΖ εὐθεῖάν τινα μὴ διὰ τοῦ κέντρου τὴν ΑΓ πρὸς ὀρθὰς τέμνει, καὶ δίχα αὐτὴν τέμνει: ἡ ΑΖ ἄρα τῇ ΖΓ ἐστιν ἴση. καὶ ἐπεὶ εὐθεῖα ἡ ΑΓ τέτμηται δίχα κατὰ τὸ Ζ σημεῖον, πρόσκειται δὲ αὐτῇ ἡ ΓΔ, τὸ ἄρα ὑπὸ τῶν ΑΔ, ΔΓ μετὰ τοῦ ἀπὸ τῆς ΖΓ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΖΔ. κοινὸν προσκείσθω τὸ ἀπὸ τῆς ΖΕ: τὸ ἄρα ὑπὸ τῶν ΑΔ, ΔΓ μετὰ τῶν ἀπὸ τῶν ΓΖ, ΖΕ ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΖΔ, ΖΕ. τοῖς δὲ ἀπὸ τῶν ΓΖ, ΖΕ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΕΓ: ὀρθὴ γὰρ [ἐστιν] ἡ ὑπὸ ΕΖΓ [γωνία]: τοῖς δὲ ἀπὸ τῶν ΔΖ, ΖΕ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΕΔ: τὸ ἄρα ὑπὸ τῶν ΑΔ, ΔΓ μετὰ τοῦ ἀπὸ τῆς ΕΓ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΕΔ. ἴση δὲ ἡ ΕΓ τῇ ΕΒ: τὸ ἄρα ὑπὸ τῶν ΑΔ, ΔΓ μετὰ τοῦ ἀπὸ τῆς ΕΒ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΕΔ. τῷ δὲ ἀπὸ τῆς ΕΔ ἴσα ἐστὶ τὰ ἀπὸ τῶν ΕΒ, ΒΔ: ὀρθὴ γὰρ ἡ ὑπὸ ΕΒΔ γωνία: τὸ ἄρα ὑπὸ τῶν ΑΔ, ΔΓ μετὰ τοῦ ἀπὸ τῆς ΕΒ ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΕΒ, ΒΔ. κοινὸν ἀφῃρήσθω τὸ ἀπὸ τῆς ΕΒ: λοιπὸν ἄρα τὸ ὑπὸ τῶν ΑΔ, ΔΓ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΔΒ. Ἐὰν ἄρα κύκλου ληφθῇ τι σημεῖον ἐκτός, καὶ ἀπ' αὐτοῦ πρὸς τὸν κύκλον προσπίπτωσι δύο εὐθεῖαι, καὶ ἡ μὲν αὐτῶν τέμνῃ τὸν κύκλον, ἡ δὲ ἐφάπτηται, ἔσται τὸ ὑπὸ ὅλης τῆς τεμνούσης καὶ τῆς ἐκτὸς ἀπολαμβανομένης μεταξὺ τοῦ τε σημείου καὶ τῆς κυρτῆς περιφερείας ἴσον τῷ ἀπὸ τῆς ἐφαπτομένης τετραγώνῳ: ὅπερ ἔδει δεῖξαι.