Ἐν κύκλῳ αἱ ἴσαι εὐθεῖαι ἴσον ἀπέχουσιν ἀπὸ τοῦ κέντρου, καὶ αἱ ἴσον ἀπέχουσαι ἀπὸ τοῦ κέντρου ἴσαι ἀλλήλαις εἰσίν. Ἔστω κύκλος ὁ ΑΒΓΔ, καὶ ἐν αὐτῷ ἴσαι εὐθεῖαι ἔστωσαν αἱ ΑΒ, ΓΔ: λέγω, ὅτι αἱ ΑΒ, ΓΔ ἴσον ἀπέχουσιν ἀπὸ τοῦ κέντρου. Εἰλήφθω γὰρ τὸ κέντρον τοῦ ΑΒΓΔ κύκλου καὶ ἔστω τὸ Ε, καὶ ἀπὸ τοῦ Ε ἐπὶ τὰς ΑΒ, ΓΔ κάθετοι ἤχθωσαν αἱ ΕΖ, ΕΗ, καὶ ἐπεζεύχθωσαν αἱ ΑΕ, ΕΓ. Ἐπεὶ οὖν εὐθεῖά τις διὰ τοῦ κέντρου ἡ ΕΖ εὐθεῖάν τινα μὴ διὰ τοῦ κέντρου τὴν ΑΒ πρὸς ὀρθὰς τέμνει, καὶ δίχα αὐτὴν τέμνει. ἴση ἄρα ἡ ΑΖ τῇ ΖΒ: διπλῆ ἄρα ἡ ΑΒ τῆς ΑΖ. διὰ τὰ αὐτὰ δὴ καὶ ἡ ΓΔ τῆς ΓΗ ἐστι διπλῆ: καί ἐστιν ἴση ἡ ΑΒ τῇ ΓΔ: ἴση ἄρα καὶ ἡ ΑΖ τῇ ΓΗ. καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΕ τῇ ΕΓ, ἴσον καὶ τὸ ἀπὸ τῆς ΑΕ τῷ ἀπὸ τῆς ΕΓ. ἀλλὰ τῷ μὲν ἀπὸ τῆς ΑΕ ἴσα τὰ ἀπὸ τῶν ΑΖ, ΕΖ: ὀρθὴ γὰρ ἡ πρὸς τῷ Ζ γωνία: τῷ δὲ ἀπὸ τῆς ΕΓ ἴσα τὰ ἀπὸ τῶν ΕΗ, ΗΓ: ὀρθὴ γὰρ ἡ πρὸς τῷ Η γωνία: τὰ ἄρα ἀπὸ τῶν ΑΖ, ΖΕ ἴσα ἐστὶ τοῖς ἀπὸ τῶν ΓΗ, ΗΕ, ὧν τὸ ἀπὸ τῆς ΑΖ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΓΗ: ἴση γάρ ἐστιν ἡ ΑΖ τῇ ΓΗ: λοιπὸν ἄρα τὸ ἀπὸ τῆς ΖΕ τῷ ἀπὸ τῆς ΕΗ ἴσον ἐστίν: ἴση ἄρα ἡ ΕΖ τῇ ΕΗ. ἐν δὲ κύκλῳ ἴσον ἀπέχειν ἀπὸ τοῦ κέντρου εὐθεῖαι λέγονται, ὅταν αἱ ἀπὸ τοῦ κέντρου ἐπ' αὐτὰς κάθετοι ἀγόμεναι ἴσαι ὦσιν: αἱ ἄρα ΑΒ, ΓΔ ἴσον ἀπέχουσιν ἀπὸ τοῦ κέντρου. Ἀλλὰ δὴ αἱ ΑΒ, ΓΔ εὐθεῖαι ἴσον ἀπεχέτωσαν ἀπὸ τοῦ κέντρου, τουτέστιν ἴση ἔστω ἡ ΕΖ τῇ ΕΗ. λέγω, ὅτι ἴση ἐστὶ καὶ ἡ ΑΒ τῇ ΓΔ. Τῶν γὰρ αὐτῶν κατασκευασθέντων ὁμοίως δείξομεν, ὅτι διπλῆ ἐστιν ἡ μὲν ΑΒ τῆς ΑΖ, ἡ δὲ ΓΔ τῆς ΓΗ: καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΕ τῇ ΓΕ, ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΕ τῷ ἀπὸ τῆς ΓΕ: ἀλλὰ τῷ μὲν ἀπὸ τῆς ΑΕ ἴσα ἐστὶ τὰ ἀπὸ τῶν ΕΖ, ΖΑ, τῷ δὲ ἀπὸ τῆς ΓΕ ἴσα τὰ ἀπὸ τῶν ΕΗ, ΗΓ. τὰ ἄρα ἀπὸ τῶν ΕΖ, ΖΑ ἴσα ἐστὶ τοῖς ἀπὸ τῶν ΕΗ, ΗΓ: ὧν τὸ ἀπὸ τῆς ΕΖ τῷ ἀπὸ τῆς ΕΗ ἐστιν ἴσον: ἴση γὰρ ἡ ΕΖ τῇ ΕΗ: λοιπὸν ἄρα τὸ ἀπὸ τῆς ΑΖ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΓΗ: ἴση ἄρα ἡ ΑΖ τῇ ΓΗ: καί ἐστι τῆς μὲν ΑΖ διπλῆ ἡ ΑΒ, τῆς δὲ ΓΗ διπλῆ ἡ ΓΔ: ἴση ἄρα ἡ ΑΒ τῇ ΓΔ. Ἐν κύκλῳ ἄρα αἱ ἴσαι εὐθεῖαι ἴσον ἀπέχουσιν ἀπὸ τοῦ κέντρου, καὶ αἱ ἴσον ἀπέχουσαι ἀπὸ τοῦ κέντρου ἴσαι ἀλλήλαις εἰσίν: ὅπερ ἔδει δεῖξαι.

In a circle equal straight lines are equally distant from the centre, and those which are equally distant from the centre are equal to one another. Let ABDC be a circle, and let AB, CD be equal straight lines in it; I say that AB, CD are equally distant from the centre. For let the centre of the circle ABDC be taken [III. 1], and let it be E; from E let EF, EG be drawn perpendicular to AB, CD, and let AE, EC be joined. Then, since a straight line EF through the centre cuts a straight line AB not through the centre at right angles, it also bisects it. [III. 3] Therefore AF is equal to FB; therefore AB is double of AF. For the same reason CD is also double of CG; and AB is equal to CD; therefore AF is also equal to CG. And, since AE is equal to EC, the square on AE is also equal to the square on EC. But the squares on AF, EF are equal to the square on AE, for the angle at F is right; and the squares on EG, GC are equal to the square on EC, for the angle at G is right; [I. 47] therefore the squares on AF, FE are equal to the squares on CG, GE, of which the square on AF is equal to the square on CG, for AF is equal to CG; therefore the square on FE which remains is equal to the square on EG, therefore EF is equal to EG. But in a circle straight lines are said to be equally distant from the centre when the perpendiculars drawn to them from the centre are equal; [III. Def. 4] therefore AB, CD are equally distant from the centre. Next, let the straight lines AB, CD be equally distant from the centre; that is, let EF be equal to EG. I say that AB is also equal to CD. For, with the same construction, we can prove, similarly, that AB is double of AF, and CD of CG. And, since AE is equal to CE, the square on AE is equal to the square on CE. But the squares on EF, FA are equal to the square on AE, and the squares on EG, GC equal to the square on CE. [I. 47] Therefore the squares on EF, FA are equal to the squares on EG, GC, of which the square on EF is equal to the square on EG, for EF is equal to EG; therefore the square on AF which remains is equal to the square on CG; therefore AF is equal to CG. And AB is double of AF, and CD double of CG; therefore AB is equal to CD.