Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

Book 11 Proposition 1



Εὐθείας γραμμῆς μέρος μέν τι οὐκ ἔστιν ἐν τῷ ὑποκειμένῳ, ἐπιπέδῳ, μέρος δέ τι ἐν μετεωροτέρῳ. Εἰ γὰρ δυνατόν, εὐθείας γραμμῆς τῆς ΑΒΓ μέρος μέν τι τὸ ΑΒ ἔστω ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ, μέρος δέ τι τὸ ΒΓ ἐν μετεωροτέρῳ. Ἔσται δή τις τῇ ΑΒ συνεχὴς εὐθεῖα ἐπ' εὐθείας ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ. ἔστω ἡ ΒΔ: δύο ἄρα εὐθειῶν τῶν ΑΒΓ, ΑΒΔ κοινὸν τμῆμά ἐστιν ἡ ΑΒ: ὅπερ ἐστὶν ἀδύνατον, ἐπειδήπερ ἐὰν κέντρῳ τῷ Β καὶ διαστήματι τῷ ΑΒ κύκλον γράψωμεν, αἱ διάμετροι ἀνίσους ἀπολήψονται τοῦ κύκλου περιφερείας. Εὐθείας ἄρα γραμμῆς μέρος μέν τι οὐκ ἔστιν ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ, τὸ δὲ ἐν μετεωροτέρῳ: ὅπερ ἔδει δεῖξαι.

A part of a straight line cannot be in the plane of reference and a part in a plane more elevated. For, if possible, let a part AB of the straight line ABC be in the plane of reference, and a part BC in a plane more elevated. There will then be in the plane of reference some straight line continuous with AB in a straight line. Let it be BD; therefore AB is a common segment of the two straight lines ABC, ABD: which is impossible, inasmuch as, if we describe a circle with centre B and distance AB, the diameters will cut off unequal circumferences of the circle.