Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

Book 1 Proposition 30

22v-23r

22v-23r

Αἱ τῇ αὐτῇ εὐθείᾳ παράλληλοι καὶ ἀλλήλαις εἰσὶ παράλληλοι. Ἔστω ἑκατέρα τῶν ΑΒ, ΓΔ τῇ ΕΖ παράλληλος: λέγω, ὅτι καὶ ἡ ΑΒ τῇ ΓΔ ἐστι παράλληλος. Ἐμπιπτέτω γὰρ εἰς αὐτὰς εὐθεῖα ἡ ΗΚ. Καὶ ἐπεὶ εἰς παραλλήλους εὐθείας τὰς ΑΒ, ΕΖ εὐθεῖα ἐμπέπτωκεν ἡ ΗΚ, ἴση ἄρα ἡ ὑπὸ ΑΗΚ τῇ ὑπὸ ΗΘΖ. πάλιν, ἐπεὶ εἰς παραλλήλους εὐθείας τὰς ΕΖ, ΓΔ εὐθεῖα ἐμπέπτωκεν ἡ ΗΚ, ἴση ἐστὶν ἡ ὑπὸ ΗΘΖ τῇ ὑπὸ ΗΚΔ. ἐδείχθη δὲ καὶ ἡ ὑπὸ ΑΗΚ τῇ ὑπὸ ΗΘΖ ἴση. καὶ ἡ ὑπὸ ΑΗΚ ἄρα τῇ ὑπὸ ΗΚΔ ἐστιν ἴση: καί εἰσιν ἐναλλάξ. παράλληλος ἄρα ἐστὶν ἡ ΑΒ τῇ ΓΔ. [Αἱ ἄρα τῇ αὐτῇ εὐθείᾳ παράλληλοι καὶ ἀλλήλαις εἰσὶ παράλληλοι·] ὅπερ ἔδει δεῖξαι.

Straight lines parallel to the same straight line are also parallel to one another. Let each of the straight lines AB, CD be parallel to EF; I say that AB is also parallel to CD. For let the straight line GK fall upon them; Then, since the straight line GK has fallen on the parallel straight lines AB, EF, the angle AGK is equal to the angle GHF. [I. 29] Again, since the straight line GK has fallen on the parallel straight lines EF, CD, the angle GHF is equal to the angle GKD. [I. 29] But the angle AGK was also proved equal to the angle GHF; therefore the angle AGK is also equal to the angle GKD; [C.N. 1] and they are alternate. Therefore AB is parallel to CD.