Search Clay Mathematics Institute

  • About
    About
    • About
    • History
    • Principal Activities
    • Who’s Who
    • CMI Logo
    • Policies
  • Programs & Awards
    Programs & Awards
    • Programs & Awards
    • Funded programs
    • Fellowship Nominations
    • Clay Research Award
    • Dissemination Award
  • People
  • The Millennium Prize Problems
    The Millennium Prize Problems
    • The Millennium Prize Problems
    • Birch and Swinnerton-Dyer Conjecture
    • Hodge Conjecture
    • Navier-Stokes Equation
    • P vs NP
    • Poincaré Conjecture
    • Riemann Hypothesis
    • Yang-Mills & the Mass Gap
    • Rules for the Millennium Prize Problems
  • Online resources
    Online resources
    • Online resources
    • Books
    • Video Library
    • Lecture notes
    • Collections
      Collections
      • Collections
      • Euclid’s Elements
      • Ada Lovelace’s Mathematical Papers
      • Collected Works of James G. Arthur
      • Klein Protokolle
      • Notes of the talks at the I.M.Gelfand Seminar
      • Quillen Notebooks
      • Riemann’s 1859 Manuscript
  • Events
  • News

Home — People — Rahul Pandharipande

Rahul Pandharipande

Category: Research Award Winners

Affiliation: ETH Zürich

The 2013 Clay Research Award was made to Rahul Pandharipande for his recent outstanding work in enumerative geometry, specifically for his proof in a large class of cases of the MNOP conjecture that he formulated with Maulik, Okounkov, and Nekrasov.

The conjecture relates two methods of counting curves in an algebraic variety, one given by Gromov-Witten theory and the other by Donaldson-Thomas invariants. By building in particular on joint work with Thomas on stable pairs, Pandharipande and his student Aaron Pixton proved the conjecture for many (possibly most) Calabi-Yau three-folds.

  • Privacy Policy
  • Contact CMI

© 2025 Clay Mathematics Institute

Site by One