## Book IX, Proposition 15

If three numbers in continued proportion be the least of those which have the same ratio with them, any two whatever added together will be prime to the remaining number.

 Ἐὰν τρεῖς ἀριθμοὶ ἑξῆς ἀνάλογον ὦσιν ἐλάχιστοι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς, δύο ὁποιοιοῦν συντεθέντες πρὸς τὸν λοιπὸν πρῶτοί εἰσιν. Ἔστωσαν τρεῖς ἀριθμοὶ ἑξῆς ἀνάλογον ἐλάχιστοι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς οἱ Α, Β, Γ: λέγω, ὅτι τῶν Α, Β, Γ δύο ὁποιοιοῦν συντεθέντες πρὸς τὸν λοιπὸν πρῶτοί εἰσιν, οἱ μὲν Α, Β πρὸς τὸν Γ, οἱ δὲ Β, Γ πρὸς τὸν Α καὶ ἔτι οἱ Α, Γ πρὸς τὸν Β. Εἰλήφθωσαν γὰρ ἐλάχιστοι ἀριθμοὶ τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α, Β, Γ δύο οἱ ΔΕ, ΕΖ. φανερὸν δή, ὅτι ὁ μὲν ΔΕ ἑαυτὸν πολλαπλασιάσας τὸν Α πεποίηκεν, τὸν δὲ ΕΖ πολλαπλασιάσας τὸν Β πεποίηκεν, καὶ ἔτι ὁ ΕΖ ἑαυτὸν πολλαπλασιάσας τὸν Γ πεποίηκεν. καὶ ἐπεὶ οἱ ΔΕ, ΕΖ ἐλάχιστοί εἰσιν, πρῶτοι πρὸς ἀλλήλους εἰσίν. ἐὰν δὲ δύο ἀριθμοί πρῶτοι πρὸς ἀλλήλους ὦσιν, καὶ συναμφότερος πρὸς ἑκάτερον πρῶτός ἐστιν: καὶ ὁ ΔΖ ἄρα πρὸς ἑκάτερον τῶν ΔΕ, ΕΖ πρῶτός ἐστιν. ἀλλὰ μὴν καὶ ὁ ΔΕ πρὸς τὸν ΕΖ πρῶτός ἐστιν: οἱ ΔΖ, ΔΕ ἄρα πρὸς τὸν ΕΖ πρῶτοί εἰσιν. ἐὰν δὲ δύο ἀριθμοὶ πρός τινα ἀριθμὸν πρῶτοι ὦσιν, καὶ ὁ ἐξ αὐτῶν γενόμενος πρὸς τὸν λοιπὸν πρῶτός ἐστιν: ὥστε ὁ ἐκ τῶν ΖΔ, ΔΕ πρὸς τὸν ΕΖ πρῶτός ἐστιν: ὥστε καὶ ὁ ἐκ τῶν ΖΔ, ΔΕ πρὸς τὸν ἀπὸ τοῦ ΕΖ πρῶτός ἐστιν. [ ἐὰν γὰρ δύο ἀριθμοὶ πρῶτοι πρὸς ἀλλήλους ὦσιν, ὁ ἐκ τοῦ ἑνὸς αὐτῶν γενόμενος πρὸς τὸν λοιπὸν πρῶτός ἐστιν ]. ἀλλ' ὁ ἐκ τῶν ΖΔ, ΔΕ ὁ ἀπὸ τοῦ ΔΕ ἐστι μετὰ τοῦ ἐκ τῶν ΔΕ, ΕΖ: ὁ ἄρα ἀπὸ τοῦ ΔΕ μετὰ τοῦ ἐκ τῶν ΔΕ, ΕΖ πρὸς τὸν ἀπὸ τοῦ ΕΖ πρῶτός ἐστιν. καί ἐστιν ὁ μὲν ἀπὸ τοῦ ΔΕ ὁ Α, ὁ δὲ ἐκ τῶν ΔΕ, ΕΖ ὁ Β, ὁ δὲ ἀπὸ τοῦ ΕΖ ὁ Γ: οἱ Α, Β ἄρα συντεθέντες πρὸς τὸν Γ πρῶτοί εἰσιν. ὁμοίως δὴ δείξομεν, ὅτι καὶ οἱ Β, Γ πρὸς τὸν Α πρῶτοί εἰσιν. λέγω δή, ὅτι καὶ οἱ Α, Γ πρὸς τὸν Β πρῶτοί εἰσιν. ἐπεὶ γὰρ ὁ ΔΖ πρὸς ἑκάτερον τῶν ΔΕ, ΕΖ πρῶτός ἐστιν, καὶ ὁ ἀπὸ τοῦ ΔΖ πρὸς τὸν ἐκ τῶν ΔΕ, ΕΖ πρῶτός ἐστιν. ἀλλὰ τῷ ἀπὸ τοῦ ΔΖ ἴσοι εἰσὶν οἱ ἀπὸ τῶν ΔΕ, ΕΖ μετὰ τοῦ δὶς ἐκ τῶν ΔΕ, ΕΖ: καὶ οἱ ἀπὸ τῶν ΔΕ, ΕΖ ἄρα μετὰ τοῦ δὶς ὑπὸ τῶν ΔΕ, ΕΖ πρὸς τὸν ὑπὸ τῶν ΔΕ, ΕΖ πρῶτοί [ εἰσι ]. διελόντι οἱ ἀπὸ τῶν ΔΕ, ΕΖ μετὰ τοῦ ἅπαξ ὑπὸ ΔΕ, ΕΖ πρὸς τὸν ὑπὸ ΔΕ, ΕΖ πρῶτοί εἰσιν. ἔτι διελόντι οἱ ἀπὸ τῶν ΔΕ, ΕΖ ἄρα πρὸς τὸν ὑπὸ ΔΕ, ΕΖ πρῶτοί εἰσιν. καί ἐστιν ὁ μὲν ἀπὸ τοῦ ΔΕ ὁ Α, ὁ δὲ ὑπὸ τῶν ΔΕ, ΕΖ ὁ Β, ὁ δὲ ἀπὸ τοῦ ΕΖ ὁ Γ. οἱ Α, Γ ἄρα συντεθέντες πρὸς τὸν Β πρῶτοί εἰσιν: ὅπερ ἔδει δεῖξαι. If three numbers in continued proportion be the least of those which have the same ratio with them, any two whatever added together will be prime to the remaining number. Let A, B, C, three numbers in continued proportion, be the least of those which have the same ratio with them; I say that any two of the numbers A, B, C whatever added together are prime to the remaining number, namely A, B to C; B, C to A; and further A, C to B. For let two numbers DE, EF, the least of those which have the same ratio with A, B, C, be taken. [VIII. 2] It is then manifest that DE by multiplying itself has made A, and by multiplying EF has made B, and, further, EF by multiplying itself has made C. [VIII. 2] Now, since DE, EF are least, they are prime to one another. [VII. 22] But, if two numbers be prime to one another, their sum is also prime to each; [VII. 28] therefore DF is also prime to each of the numbers DE, EF. But further DE is also prime to EF; therefore DF, DE are prime to EF. But, if two numbers be prime to any number, their product is also prime to the other; [VII. 24] so that the product of FD, DE is prime to EF; hence the product of FD, DE is also prime to the square on EF. [VII. 25] But the product of FD, DE is the square on DE together with the product of DE, EF; [II. 3] therefore the square on DE together with the product of DE, EF is prime to the square on EF. And the square on DE is A, the product of DE, EF is B, and the square on EF is C; therefore A, B added together are prime to C. Similarly we can prove that B, C added together are prime to A. I say next that A, C added together are also prime to B. For, since DF is prime to each of the numbers DE, EF, the square on DF is also prime to the product of DE, EF. [VII. 24, 25] But the squares on DE, EF together with twice the product of DE, EF are equal to the square on DF; [II. 4] therefore the squares on DE, EF together with twice the product of DE, EF are prime to the product of DE, EF. Separando, the squares on DE, EF together with once the product of DE, EF are prime to the product of DE, EF. Therefore, separando again, the squares on DE, EF are prime to the product of DE, EF. And the square on DE is A, the product of DE, EF is B, and the square on EF is C.