To find two straight lines incommensurable in square which make the sum of the squares on them rational but the rectangle contained by them medial.

Εὑρεῖν δύο εὐθείας δυνάμει ἀσυμμέτρους ποιούσας τὸ μὲν συγκείμενον ἐκ τῶν ἀπ' αὐτῶν τετραγώνων ῥητόν, τὸ δ' ὑπ' αὐτῶν μέσον. Ἐκκείσθωσαν δύο ῥηταὶ δυνάμει μόνον σύμμετροι αἱ ΑΒ, ΒΓ, ὥστε τὴν μείζονα τὴν ΑΒ τῆς ἐλάσσονος τῆς ΒΓ μεῖζον δύνασθαι τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ, καὶ τετμήσθω ἡ ΒΓ δίχα κατὰ τὸ Δ, καὶ τῷ ἀφ' ὁποτέρας τῶν ΒΔ, ΔΓ ἴσον παρὰ τὴν ΑΒ παραβεβλήσθω παραλληλόγραμμον ἐλλεῖπον εἴδει τετραγώνῳ, καὶ ἔστω τὸ ὑπὸ τῶν ΑΕΒ, καὶ γεγράφθω ἐπὶ τῆς ΑΒ ἡμικύκλιον τὸ ΑΖΒ, καὶ ἤχθω τῇ ΑΒ πρὸς ὀρθὰς ἡ ΕΖ, καὶ ἐπεζεύχθωσαν αἱ ΑΖ, ΖΒ. Καὶ ἐπεὶ [ δύο ] εὐθεῖαι ἄνισοί εἰσιν αἱ ΑΒ, ΒΓ, καὶ ἡ ΑΒ τῆς ΒΓ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ, τῷ δὲ τετάρτῳ τοῦ ἀπὸ τῆς ΒΓ, τουτέστι τῷ ἀπὸ τῆς ἡμισείας αὐτῆς, ἴσον παρὰ τὴν ΑΒ παραβέβληται παραλληλόγραμμον ἐλλεῖπον εἴδει τετραγώνῳ καὶ ποιεῖ τὸ ὑπὸ τῶν ΑΕΒ, ἀσύμμετρος ἄρα ἐστὶν ἡ ΑΕ τῇ ΕΒ. καί ἐστιν ὡς ἡ ΑΕ πρὸς ΕΒ, οὕτως τὸ ὑπὸ τῶν ΒΑ, ΑΕ πρὸς τὸ ὑπὸ τῶν ΑΒ, ΒΕ, ἴσον δὲ τὸ μὲν ὑπὸ τῶν ΒΑ, ΑΕ τῷ ἀπὸ τῆς ΑΖ, τὸ δὲ ὑπὸ τῶν ΑΒ, ΒΕ τῷ ἀπὸ τῆς ΒΖ: ἀσύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΑΖ τῷ ἀπὸ τῆς ΖΒ: αἱ ΑΖ, ΖΒ ἄρα δυνάμει εἰσὶν ἀσύμμετροι. καὶ ἐπεὶ ἡ ΑΒ ῥητή ἐστιν, ῥητὸν ἄρα ἐστὶ καὶ τὸ ἀπὸ τῆς ΑΒ: ὥστε καὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΖ, ΖΒ ῥητόν ἐστιν. καὶ ἐπεὶ πάλιν τὸ ὑπὸ τῶν ΑΕ, ΕΒ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΕΖ, ὑπόκειται δὲ τὸ ὑπὸ τῶν ΑΕ, ΕΒ καὶ τῷ ἀπὸ τῆς ΒΔ ἴσον, ἴση ἄρα ἐστὶν ἡ ΖΕ τῇ ΒΔ: διπλῆ ἄρα ἡ ΒΓ τῆς ΖΕ: ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ, ΒΓ σύμμετρόν ἐστι τῷ ὑπὸ τῶν ΑΒ, ΕΖ. μέσον δὲ τὸ ὑπὸ τῶν ΑΒ, ΒΓ: μέσον ἄρα καὶ τὸ ὑπὸ τῶν ΑΒ, ΕΖ. ἴσον δὲ τὸ ὑπὸ τῶν ΑΒ, ΕΖ τῷ ὑπὸ τῶν ΑΖ, ΖΒ: μέσον ἄρα καὶ τὸ ὑπὸ τῶν ΑΖ, ΖΒ. ἐδείχθη δὲ καὶ ῥητὸν τὸ συγκείμενον ἐκ τῶν ἀπ' αὐτῶν τετραγώνων. Εὕρηνται ἄρα δύο εὐθεῖαι δυνάμει ἀσύμμετροι αἱ ΑΖ, ΖΒ ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ' αὐτῶν τετραγώνων ῥητόν, τὸ δὲ ὑπ' αὐτῶν μέσον: ὅπερ ἔδει δεῖξαι. | To find two straight lines incommensurable in square which make the sum of the squares on them rational but the rectangle contained by them medial. Let there be set out two rational straight lines AB, BC commensurable in square only and such that the square on the greater AB is greater than the square on the less BC by the square on a straight line incommensurable with AB, [X. 30] let BC be bisected at D, let there be applied to AB a parallelogram equal to the square on either of the straight lines BD, DC and deficient by a square figure, and let it be the rectangle AE, EB; [VI. 28] let the semicircle AFB be described on AB, let EF be drawn at right angles to AB, and let AF, FB be joined. Then, since AB, BC are unequal straight lines, and the square on AB is greater than the square on BC by the square on a straight line incommensurable with AB, while there has been applied to AB a parallelogram equal to the fourth part of the square on BC, that is, to the square on half of it, and deficient by a square figure, making the rectangle AE, EB, therefore AE is incommensurable with EB. [X. 18] And, as AE is to EB, so is the rectangle BA, AE to the rectangle AB, BE, while the rectangle BA, AE is equal to the square on AF, and the rectangle AB, BE to the square on BF; therefore the square on AF is incommensurable with the square on FB; therefore AF, FB are incommensurable in square. And, since AB is rational, therefore the square on AB is also rational; so that the sum of the squares on AF, FB is also rational. [I. 47] And since, again, the rectangle AE, EB is equal to the square on EF, and, by hypothesis, the rectangle AE, EB is also equal to the square on BD, therefore FE is equal to BD; therefore BC is double of FE, so that the rectangle AB, BC is also commensurable with the rectangle AB, EF. But the rectangle AB, BC is medial; [X. 21] therefore the rectangle AB, EF is also medial. [X. 23, Por.] But the rectangle AB, EF is equal to the rectangle AF, FB; [Lemma] therefore the rectangle AF, FB is also medial. But it was also proved that the sum of the squares on these straight lines is rational. |