Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

Book 1 Proposition 1



Ἐπὶ τῆς δοθείσης εὐθείας πεπερασμένης τρίγωνον ἰσόπλευρον συστήσασθαι. Ἔστω ἡ δοθεῖσα εὐθεῖα πεπερασμένη ἡ ΑΒ. Δεῖ δὴ ἐπὶ τῆς ΑΒ εὐθείας τρίγωνον ἰσόπλευρον συστήσασθαι. Κέντρῳ μὲν τῷ Α διαστήματι δὲ τῷ ΑΒ κύκλος γεγράφθω ὁ ΒΓΔ, καὶ πάλιν κέντρῳ μὲν τῷ Β διαστήματι δὲ τῷ ΒΑ κύκλος γεγράφθω ὁ ΑΓΕ, καὶ ἀπὸ τοῦ Γ σημείου, καθ' ὃ τέμνουσιν ἀλλήλους οἱ κύκλοι, ἐπὶ τὰ Α, Β σημεῖα ἐπεζεύχθωσαν εὐθεῖαι αἱ ΓΑ, ΓΒ. Καὶ ἐπεὶ τὸ Α σημεῖον κέντρον ἐστὶ τοῦ ΓΔΒ κύκλου, ἴση ἐστὶν ἡ ΑΓ τῇ ΑΒ: πάλιν, ἐπεὶ τὸ Β σημεῖον κέντρον ἐστὶ τοῦ ΓΑΕ κύκλου, ἴση ἐστὶν ἡ ΒΓ τῇ ΒΑ. ἐδείχθη δὲ καὶ ἡ ΓΑ τῇ ΑΒ ἴση: ἑκατέρα ἄρα τῶν ΓΑ, ΓΒ τῇ ΑΒ ἐστὶν ἴση. τὰ δὲ τῷ αὐτῷ ἴσα καὶ ἀλλήλοις ἐστὶν ἴσα: καὶ ἡ ΓΑ ἄρα τῇ ΓΒ ἐστὶν ἴση: αἱ τρεῖς ἄρα αἱ ΓΑ, ΑΒ, ΒΓ ἴσαι ἀλλήλαις εἰσίν. Ἰσόπλευρον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον, καὶ συνέσταται ἐπὶ τῆς δοθείσης εὐθείας πεπερασμένης τῆς ΑΒ. [Ἐπὶ τῆς δοθείσης ἄρα εὐθείας πεπερασμένης τρίγωνον ἰσόπλευρον συνέσταται]: ὅπερ ἔδει ποιῆσαι.

On a given finite straight line to construct an equilateral triangle. Let AB be the given finite straight line. Thus it is required to construct an equilateral triangle on the straight line AB. With centre A and distance AB let the circle BCD be described; [Post. 3] again, with centre B and distance BA let the circle ACE be described; [Post. 3] and from the point C, in which the circles cut one another, to the points A, B let the straight lines CA, CB be joined. [Post. 1] Now, since the point A is the centre of the circle CDB, AC is equal to AB. [Def. 15] Again, since the point B is the centre of the circle CAE, BC is equal to BA. [Def. 15] But CA was also proved equal to AB; therefore each of the straight lines CA, CB is equal to AB. And things which are equal to the same thing are also equal to one another; [C.N. 1] therefore CA is also equal to CB. Therefore the three straight lines CA, AB, BC are equal to one another. Therefore the triangle ABC is equilateral; and it has been constructed on the given finite straight line AB.