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Abstract

We discuss elements of a social history of the theory of projective modules over com-
mutative rings. We attempt to study the question: how did the theory of projective modules
become one of “mainstream” focus in mathematics? To do this, we begin in what one might
call the pre-history of projective modules, describing the mathematical culture into which
the notion of projective module was released. These recollections involve four pieces: (a)
analyzing aspects of the theory of fiber bundles, as it impinges on algebraic geometry, (b)
understanding the rise of homological techniques in algebraic topology, (c) describing the
influence of category-theoretic ideas in topology and algebra and (d) revisiting the story of
the percolation of sheaf-theoretic ideas through algebraic geometry.

We will then argue that it was this unique confluence of mathematical events that al-
lowed projective modules to emerge as objects of central mathematical importance. More
precisely, we will first argue that, in the context of social currents of the time, projective
modules initially were isolated as objects of purely technical convenience reflecting the
aesthetic sensibilities of the creators of the fledgling theory of homological algebra. Only
later did they transcend this limited role to become objects of “mainstream importance” due
to influence from the theory of algebraic fiber bundles and the theory of sheaves. Along
the way, we aim to show how strong personal ties emanating from the Bourbaki move-
ment and its connections in mathematical centers including Paris, Princeton and Chicago
were essential to the entrance, propagation and mainstream mathematical acceptance of the
theory.
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1 Prolegomena
This text grew from my attempt first to justify, but then to simply analyze, the phrase:

“projective modules are important objects of study”.

Initially, this justification was intended to be a small detour before a detailed presentation of
the true content: applications of the Morel–Voevodsky motivic homotopy theory [MV99] to the
problem of constructing projective modules over smooth affine algebras. However, the more
I analyzed the phrase above, the more it left me with a profound sense of unease: what did I
mean by “important”?1

My first attempts attacked this question like I might in any mathematics article I might write.
I aimed to justify the word “important” by writing a “historical” introduction, informed by the
treatments of history that I had seen. Typically, this involves highlighting “important” papers
and “ideas”–stripping away one story from the meta-narrative of mathematics–but that approach
seemed circular and left me with the feeling that I was just dancing around the real question.

While it is perhaps unsurprising to a mathematician, most of the “historical” treatments of
mathematics I’d read were written by practicing mathematicians. These treatments frequently
seemed to just push the question further back, suggesting a long-forgotten primordial source of
“importance”. Simultaneously, it started to seem like these treatments purposefully smoothed

1I use quotation marks throughout the text in several different ways, which are potentially confusing. Of course,
I use them for direct quotes. However, I also use quotation marks in the style in which they are sometimes referred
to as scare quotes; this practice serves several independent purposes: I use it to, alternatively, draw attention to
the words, to indicate that I want to question standard usage, but also to indicate that the words are potentially
controversial or possibly ambiguous.
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over many cracks, both minor and major. In brief, these “historical” treatments were problem-
atic for many reasons, some of which I will discuss later. However, to start the discussion, let
me counterpoise two statements; the tension should be evident.

1.1 Knowledge production in mathematics; from certainty to confusion
As a working mathematician my view of projective modules, and the context in which they
are analyzed, reflects something of what David Mumford writes in his Foreword for non-
mathematicians to Carol Parikh’s biography of Oscar Zariski [Par09]:

To be a mathematician is to be an out-and-out Platonist. The more you study math-
ematical constructions, the more you come to believe in their objective and prior
existence. Mathematicians view themselves as explorers of a unique sort, explorers
who seek to discover not just one accidental world into which they happen to be
born, but the universal and unalterable truths of all worlds.

I write “something of” to highlight the sentiment of Mumford’s description: the mathematical
objects that we study and the ways in which we reason with them seem to have some kind of
special nature. The more we interact with them, the more they seem to take on a universal
or transcendental character. This seems especially true if one considers only “elementary”
results like the Pythagorean theorem or the quadratic formula.i On the other hand, historian of
mathematics David Rowe in his review [Row13] of Jeremy Gray’s book Plato’s Ghost [Gra08]
writes:

For while mathematicians generally presume the universal validity of their work,
some even ascribing to it an eternal, transcendent quality, historians are bound to
the opposite prejudice: for us, mathematics is a highly stable, yet contingent body
of knowledge that remains tied to its producers and practitioners. Studying the
history of modern mathematics therefore requires scrutiny of the social and cultural
conditions under which mathematics was made.

Here, I draw attention to Rowe’s qualifying use of the word modern, which, to my mathematical
ears, evokes considerable distance from the elementary results described above.ii What does
Rowe mean by modern? I suspect that an answer is provided by the amorphous characterization
of modernism given by Jeremy Gray himself [Gra08, p. 1]:

Here, modernism is defined as an autonomous body of ideas, having little or no
outward reference, placing considerable emphasis on formal aspects of the work
and maintaining a complicated—indeed, anxious—rather than a naı̈ve relationship
with the day-to-day world...

Mathematics, especially of the pure sort, was undoubtedly in the process of moving away from
the experiences and phenomena of the everyday world. The mathematical ideas that appeared
were interwoven in a meta-narrative of universality that provided meaning and gave birth to
internal-to-mathematics notions of “importance.”
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In any event, placing Mumford and Rowe’s statements side-by-side demonstrates a stark
contrast in points of view.iii I will admit that when I started doing mathematics, I would have
strongly endorsed something like Mumford’s mathematical Platonism and I probably did ex-
plicitly do so, even if I could not have formulated it precisely. But many years and many
interactions later, I have a much harder time agreeing with Mumford’s point of view, or even
the sentimental version of it that I suggested. Undoubtedly, I am not alone in this belief, and it
strikes me as methodologically naive to assume that all or even most mathematicians believe in
this kind of mathematical Platonism. Thus, I mention Mumford’s stated view as one of many,
but one that, I aim to demonstrate, plays a considerable role in the development of projective
modules.iv

Describing mathematical knowledge as “highly stable, yet contingent” places mathemati-
cal knowledge squarely within the domain of what is typically called “situated knowledge” in
philosophy or sociology of science.v However, practicing mathematicians routinely claim not
to care about the nature of mathematical knowledgevi while simultaneously speaking of true
statements or beautiful concepts. Reuben Hersch summarized this as: “the typical “working
mathematician” is a Platonist on weekdays and a formalist on Sundays” [Her79, p. 32]. In
the background, we should remember that debates about the nature of mathematical knowledge
have been going on for centuries, so why should I as a modern mathematician secretly bristle at
the idea that mathematical knowledge is situated?

What of the assertion that mathematical knowledge “remains tied to its producers and prac-
titioners”? As a student, I learned mathematics from books written by people and from lectures
given by people; I ended up in algebraic geometry/algebraic topology because the styles of
argument and the types of objects considered in these subjects aligned with my tastes. My
graduate student cohort and I were fascinated by figures such as Évariste Galois and Alexander
Grothendieck; to us, they were romantic/tragic heroes and we regaled each other with our dis-
tilled understandings of their lives. Who could not read Grothendieck’s Récoltes et Semailles
[Gro21] as an entirely human text? We told each other stories about the crystalline purity of the
writings of Bourbaki, while simultaneously discussing the “right” way to think about proofs,
the “canonicality” of constructions, or “correctness” of definitions. It seems self-evident now
that speaking and writing like this are a choice, though one that I was perhaps unconsciously
making.vii

Likewise, as professional mathematicians, we routinely talk about who or what influenced
us to think about particular problems or to move in a particular research direction. What we
actually write in a paper might make no mention of numerous false starts or partial answers to
questions that were later deemed unrelated to our framing of a narrative. The entire content of
the conversations influencing our approach and presentation in a paper might be summarized
in brief and cryptic acknowledgments. All these parts of the practice of doing mathematics are
relegated to the cutting room floor. How did this become the way we write? To what end? Does
it make the presentation seem more “objective” or “rational”? If we do not forget all of these
things, it seems impossible that personalities do not influence the transmission and perception
of mathematics.

How are we to square this with the unspoken truth that social factors should be divorced
from the discussion of “actual” mathematics? Sal Restivo attributes to Jean Dieudonné [Res92,
p. 140] the statement:
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Celui qui m’expliquera pourquoi le milieu social des petites cours allemandes du
XVIIIe siecle ou vivait Gauss devait inevitablement le conduire a s’occuper de la
construction du polygone regulier a 17 cotes, eh bien, je lui donnerai une medaille
ou chocolat.

This statement reads to me as a veritable sneer in the direction of the idea that social factors
could affect mathematics; but I highlight the use of the word inevitablement, which I want to
analyze in more detail.viii In an oft-quoted eassy, William Thurston was willing to admit social
factors played a role in the evolution of mathematics, writing [Thu94]:

but no matter how the process of verification plays out, it helps illustrate how math-
ematics evolves by rather organic psychological and social processes.

But the phrase “no matter how the process of verification plays out” seems to downplay the
importance of these features, which are rarely present in final products.2 Why is the suggestion
that social processes might direct “pure mathematical thought” anathema to so many mathe-
maticians?ix

To this discussion of “inevitability” and “universality” let me interpose the “anxiety” sug-
gested by Gray. Consider Arthur Jaffe’s article [Jaf97] entitled Proof and the evolution of math-
ematics, which arose in the wake of fears that standards of rigor in mathematics were changing
because of influence from (among other things) theoretical physics.3 Jaffe starts by assert-
ing that the “nature of what one accepts as a complete account of an argument changes over
time” and the factors affecting this change are “human”: “mathematics is a subject done by
real people, with our own interests, our personal perspectives, our own ways of working, our
pressures of life, our strengths and our shortcomings.” Later, he writes: “I would propose that
these subtleties suggest the answer that mathematical proof is the manifestation of the highest
form of human intelligence. Moreover, mathematics is different from science because it lasts
an eternity.” Thus, social factors influence the process of mathematics, standards of proof can
vary with time, but nevertheless the finished product is “eternal”. From the extreme phrasing
of “highest form of human intelligence”, or “A mathematical proof has the highest degree of
certainty possible for man” one gets the sense that “universality” of mathematics is more tied to
our self-worth as mathematicians than to mathematics itself.

2Exposition of inspiration is rare enough that it is usually memorable. Famously, in one of the landmark papers
in algebraic K-theory, R. Thomason wrote [TT90]:

The first author must state that his coauthor and close friend, Tom Trobaugh, quite intelligent, sin-
gularly original, and inordinately generous, killed himself consequent to endogenous depression.
Ninety-four days later, in my dream, Tom’s simulacrum remarked, ”The direct limit characteriza-
tion of perfect complexes shows that they extend, just as one extends a coherent sheaf.” Awaking
with a start, I knew this idea had to be wrong, since some perfect complexes have a non-vanishing
K0 obstruction to extension. I had worked on this problem for 3 years, and saw this approach to be
hopeless. But Tom’s simulacrum had been so insistent, I knew he wouldn’t let me sleep undisturbed
until I had worked out the argument and could point to the gap. This work quickly led to the key
results of this paper. To Tom, I could have explained why he must be listed as a coauthor.

3This episode begins with the article by Jaffe and Frank Quinn [JQ93], to which numerous mathematicians,
physicists and historians responded [ABC+94]; the text [Thu94] was also partial response to the Jaffe–Quinn
argument.
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In conjunction with the difficulties that many of us regularly encounter in explaining to
students how to construct “rigorous proofs” it starts to feel like our standards of “rigor” and
“correctness” are baked into our training as mathematicians.4 I then found myself shaking my
head in affirmation while reading:

mathematical concepts and rules become self-evident only if and when they turn
into “institutions”—when they are inserted in a network of concepts and practices
supported by the collective interests of a social group;

a summary by Massimo Mazzotti in his book Reactionary Mathematics [Maz23, p. 7] of the
point of view of David Bloor [Blo76], one of the prime movers of the “strong programme” of
sociology of scientific knowledge. Imagine my surprise.

OK, so suppose you’re now willing to consider that social factors might have an effect
on the content and direction of mathematics. How might we tease out the influence of social
factors from a literature that has been effectively scrubbed of its traces? To answer that ques-
tion, I started reading everything I could find that seemed, even vaguely, related to the theory
of projective modules, beginning by rereading parts of Cartan–Eilenberg’s classic Homologi-
cal algebra [CE99] where the notion of projective module appears to be put in print for the
first time. At the same time I started writing to all of original historical figures I could, and
reading the treasure trove of letters, autobiographies, and reviews that have now been collected
that were unavailable years ago, e.g., [CW11], [CS01]. Placed side-by-side, one confronts
an immediate disjunction between the dry mathematical prose of the Cartan–Eilenberg text
and the frankly human prose, alternatively exasperated, joking, hyperbolic,...of the correspon-
dence/reviews/autobiographies/interviews.

Simultaneously, I followed the references from Gray, Rowe, Mazzotti, etc. As I kept read-
ing, I found myself agreeing with so many things I would have found surprising twenty years
ago. What part of my early acceptance of naive mathematical Platonism was due to my social-
ization as a mathematician, i.e., learning to take part in the professional duties of mathematics,
and what part of my understanding of those professional duties depended on the time and place
where I learned those ideals? What part of this acceptance stems from a purely psychological
anxiety growing from the necessity to view my direction of study and objects of fascination as
worthwhile in the first place? In the words of the critic John Guillory: “professional training
produces a certain bias of perspective, a way of seeing the world from within an occupational
enclosure” [Gui22, p. 3-4], forming a part of what he calls a déformation professionelle, a turn
of phrase that very much appeals to my mathematical tastes.

In the end, I gave up on writing a “history” of the theory of projective modules in the initial
“mathematical” sense. My original conception seemed problematic. Furthermore, it seemed
dishonest to write anything without considering the social, cultural and professional factors that
surrounded the development of the ideas.

4I have overheard or myself participated in the lionizing of “clear thinking” and “elegant proofs”. We talk about
the “damage to professional reputation” incurred by writing proofs with gaps or mistakes. As a provocation: is this
anything but reinforcing the social norms around proofs?
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1.2 What happens here or an outline of the argument
I imagine that any mathematician reading my title would envision that I was about to give
the reader tools for building projective modules over commutative rings. If this is what you
thought, and you haven’t already steered away, then it must appear that I have veered wildly
off course. I can now confess that my title pays homage to both Andrew Pickering’s fantastic
book Constructing Quarks [Pic84] subtitled “a sociological history of particle physics” and a
chapter from John Milnor’s treatise Introduction to Algebraic K-theory [Mil71, §2] which bears
the same name.

Pickering’s book is nominally about the developments related to the standard model in par-
ticle physics, focusing on “practice” in high energy physics. Pickering later studied “practice”
in a more purely mathematical context with his analysis of Hamilton’s invention of quaternions
in [Pic95, Chapter 4]. To a mathematician, this notion of practice likely requires comment.
Pickering differentiates two notions of practice; I will summarize them here as I will use them
in mathematics: a “generic” one, in this context, the work of the production of mathematical
knowledge so to speak and a “specific” one, the specific (sequences of) activities that mathe-
maticians rely on in their work. Regarding the latter, Pickering underscores that it “falls into the
sphere of culture” or, said differently, practice is grounded in culture. In Constructing Quarks,
Pickering writes about high energy physics that “the emphasis is on practice, and the practice
is irredeemably esoteric”. These words strike me as applying equally well to the practice of
mathematics, as I hope some of the comments above have suggested.

By contrast, Milnor’s name is routinely trotted out when discussion turns to examples of
great mathematical exposition. What supports this opinion? I, for example, routinely recom-
mend these books to students as primary texts for directed reading courses. Just as routinely,
they find them difficult and not enlightening in the way that I have internalized they should
expect. Are they doing something wrong, perhaps simply “reading” the text instead of “actively
reconstructing” it?5 Writing style is a matter of making choices. I can now confess that even if
the mathematics is presented in a way that I appreciate now, these style of these texts left me
with the ineffable sense that “this is not mathematics I can or will make”. I am thus led to ask:
why do Milnor’s stylistic choices reflect the values of contemporary mathematicians?

The year 1950 will become something of a focal point in our discussion for a few reasons:
it was marked by two events that represent themes I’d like to explore further. The International
Congress of Mathematicians (ICM) was held in Cambridge, MA and, simultaneously, the Na-
tional Science Foundation was established. These two events can be viewed as lenses refracting
the changing nature of mathematical practice. The first aligns with what I feel is a turning point
in the professionalization of mathematics, a topic that I will explore during the text in many

5In the off chance you are not a mathematician, let me add a word about what I mean. One of the first things I
tell people taking advanced mathematics courses is that mathematics textbooks are not meant to be read linearly,
even if they are constructed to reflect a particular progression of ideas. Instead, one has to develop a feeling for the
notions involved by a process akin to experimentation. Outside of doing exercises laid out in a text, here are some
possible strategies. Read a definition, then shut the book and try to deduce logical consequences. Pick a “key”
example, and understand how features of a definition are abstracted from the example or, understand how features
of a theorem are reflected in the example. Pick a theorem and then try to “break” the proof: understand how the
hypotheses of the theorem are used in the proof and what happens if they are dropped. This process is very active
and involves engaging with a great many ideas lying around the text.
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ways. The second, which will appear only tangentially throughout the text, but looms large in
the background, is the role of research funding in charting the course of mathematics.

At the 1950 ICM, Raymond Wilder, a topologist at the University of Michigan of some
repute, trained in the E.H. Moore school, delivered a plenary lecture on The cultural basis of
mathematics, which eventually became [Wil52], a short note which he describes as growing out
of his interactions with anthropologists. For Wilder, “culture” was “the collection of customs,
rituals, beliefs, tools, mores, etc., which we may call cultural elements, possessed by a group of
people”. Granting this, he wrote

As mathematicians, we share a certain portion of our cultures which is called
“mathematical.” We are influenced by it, and in turn we influence it. As individu-
als we assimilate parts of it, our contacts with it being through teachers, journals,
books, meetings such as this, and our colleagues. We contribute to its growth the
results of our individual syntheses of the portions that we have assimilated.

Even though Wilder is writing about mathematics in general, it is to me telling that he speaks
about a plurality of cultures.

In light of my assertion of the collective avoidance of discussion of socio-cultural factors
in contemporary mathematics, a mainstream mathematician talking about mathematical culture
in a prominent international setting seems extremely noteworthy to me. Moreover, in this era,
Wilder was not even alone among mainstream mathematicians in considering the importance of
ideas of social science on the development of mathematics: Dirk Struik had written a call for
a sociology of mathematics by 1942 [Str42]. I have already parenthetically noted some of the
enmities that have arisen between sociologists of mathematics and mathematicians, but I think
it’s worthwhile to ask: what has changed since then?

More recently, Mazzotti describes “mathematical cultures” in the following terms [Maz23,
p. 7]:

There is a long tradition of identifying styles in mathematics, a notion that has
been variously understood as having to do with individual temperament, national
character, the Zeitgeist, or the direct expression of a culture in a Spenglerian sense.

Mazzotti refers to work of Rowe [Row96] for a view of “mathematical culture” that echoes
Wilder: “the set of resources available to a specific group of mathematicians”.6 Bearing this in
mind, it seems imperative to describe the mathematical cultures in which those involved with
the theory of projective modules at its inception were enmeshed.x

This all leads me to return to the question of the meaning of the word “important” in my
initial premise. I aim to argue that “important” mathematics is a dynamic and emergent concept
within given mathematical cultures. On the one hand, historically, mathematicians have aimed

6My hope is that “culture” used in this latter sense is uncontroversial. For example, I think most professional
mathematicians of some level of seniority would agree that any given field of mathematics has a culture, at least
in the following limited professional sense: practitioners are familiar with major results, commonly used tools,
standard methods of argument, etc., even if it is difficult to demarcate the boundaries of a field. Whether or not two
or more mathematicians, even in the same field, would agree precisely on what constitutes the “culture of a field”
naturally leads to a pluralistic notion of culture.



9 1.2 What happens here or an outline of the argument

to do “important” mathematics.7 For pre-modern mathematics, in the sense of Gray, external
validation made it easier to describe importance, but the modernist turn gave rise to a subtextual
anxiety. Unsurprisingly, mathematicians have even made efforts to characterize this and related
concepts, for instance one can look at Saunders MacLane’s article [Mac86] or Terry Tao’s article
[Tao07]. More recently, Akshay Venkatesh [Ven24, §3] spent some time analyzing this concept
in relation to the potential impact of general artificial intelligence on the course of mathematical
research.

For a long time I believed that importance of mathematical ideas had some “intrinsic” na-
ture. I had internalized a narrative that the universality of mathematics we work with was even
inevitable in a certain sense.xi My feeling is that some kind of universality is a widely held
belief among mathematicians,xii perhaps stemming from the way in which we interact with
modern mathematics itself. To state things in a strong way: if history were to repeat itself, we
would eventually come up with the same definitions and “important” definitions/theorems.xiii

Reliance on intrinsic importance is still present in sociologically-inflected treatments from as
late as the 1970s, e.g., Wilder, writing in [Wil74] highlights capacity as contributing to what he
calls hereditary stress, and capacity is defined as “The quantity and intrinsic interest of the re-
sults that the basic theory and methodology of a field are capable of yielding.” There are echoes
of this “intrinsic importance” also, for example, in Wigner’s unreasonable effectiveness essay
[Wig85]. As we will see, however, this sense of inevitability seems also to be an a posteriori
construction, perhaps due to the ways in which we expose mathematics, and is largely invisible
in mathematical practice.

At the Fields Medal symposium held in 2022, Tim Gowers studied a related question in his
lecture entitled Is mathematical interest just a matter of taste? [Gow]. In particular, Gowers
claims that “the extent to which a statement is interesting is related to objective features of how
it fits into the corpus of mathematical knowledge.” However, as pure mathematics has evolved
away from its sources of inspiration, my point of view of importance has shifted and echoes
Herrnstein-Smith [HS88, p. 30] who argues:

All value is radically contingent, being neither a fixed attribute, an inherent quality,
or an objective property of things but, rather, an effect of multiple, continuously
changing, and continuously interacting variables.

In my conception, “important mathematics” does not have any kind of objective or universal
characterization. Instead, it arises organically from the ideas upon which mathematical cultures
choose their focus: we don’t know it until after we see it, so to speak. Moreover, this choice
of focus evolves subject to myriad mechanisms including random chance, status hierarchies,
personal aesthetics, historical narratives, etc. (some of which we’ll highlight in our analy-
sis proper). How this choice plays out in real-time seems reflective of Pickering’s “mangle”
[Pic95], which I will try to illustrate by way of a case-study.

7Readers who have just been reminded of Gauss’s construction of the 17gon will now turn back to Dieudonné
and ask how Gauss was trying to do “important” mathematics in this construction. Here, I enquote “important”
because it is being used vaguely for a constellation of valuative judgements for which a number of other words
might be suitable, e.g., “interesting”, “good”, etc. One might try to distinguish “important” from “interesting” by
suggesting “important” has an outward focus, e.g., it makes sense within a culture, whereas “interesting” has an
inward perhaps more individual focus. However, the social nature of the process of demarcating “important” or
“interesting” ideas I propose to use blurs the distinction.
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To make this case, I will first discuss the “mathematical cultures” in which the notion of
projective module emerged, which will involve several interdependent narratives. I will try to
do this in a way that pays heed to Herbert Mehrtens’s characterization of mathematical histori-
ography [Meh81, pp. 258-259]:

The mathematician’s understanding of the history of his subject is frequently sharply
anti-sociological. But as frequently it is a ’rational reconstruction’ of a development
governed by universal laws - those of mathematics itself. In the unfolding of eter-
nal mathematical laws through time there is no room for stories. They are only
secondary flavouring, anecdotes of the lives of great men.8

Merhtens’s comment does appear appropriate for the episodes that we will access.
A precise definition of the notion of projective module first appears in the landmark treatise

of Henri Cartan and Samuel Eilenberg entitled Homological Algebra [CE99], which retrospec-
tively created the field of homological algebra out of whole cloth. I aim to recreate some aspects
of the mathematical scene prefiguring the emergence of the Cartan–Eilenberg text. Why was
this text written? Who was thinking about what?

I will focus my attention around several key developments, all originating in roughly the
period 1920-1950.

• Fiber bundles (See Section 2.1), initially appearing as special examples of the then new
notion of topological space studied by Seifert, penetrated into complex analysis and alge-
braic geometry through the efforts of André Weil and Henri Cartan; these ideas percolated
through and were internalized by many members of the famous Cartan seminar. Their use
appeared, to Weil at least, as a unifying theme.

• Homological algebra (See Section 2.2) evolved from Poincaré’s work on homology. A
proliferation of different approaches to homology were a challenge for the modernist
mathematician in the 1940s leading to the axiomatic turn in the work of Eilenberg and
Steenrod. The transplant of the “homological” to other algebraic contexts, e.g., groups,
associative algebras and Lie algebras presented yet another challenge for modernism.

• Category theory (See Section 2.3) was a tool developed to understand the relations be-
tween formal structures appearing in topology and algebra. Describing it as “abstract
nonsense” betrays anxiety in the explicit use of its concepts, but the “functorial point
of view” as invented by Eilenberg and Mac Lane created a framework for, among other
things, transplanting analogies.

8I wonder if Mehrtens has André Weil’s famous letter to his sister [Wei79, p. 244] in mind:

Je t’avertis que tout ce qui concerne l’histoire des mathématiques, dans ce qui suit, repose sur une
érudition tout à fait insuffisante, que e’est pour une bonne part une reconstitution a priori, et que,
même si e’est ainsi que les choses ont dû être (ce qui n’est pas prouvé), je ne saurais affirmer que
e’est ainsi qu’elles ont été. En mathématiques, d’ailleurs, presque autant qu’en toute autre chose, la
ligne de l’histoire a des tournants.

Moreover, as we will discuss, this view of history does seem to prevalent among we might call Bourbaki-aligned
historical treatments.
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• Sheaf theory (See Section 2.4), invented by Leray, encapsulates the passage from “local”
information to “global” information in topology. Sheaf theory also emerged from ho-
mological investigations, this time taking inspiration from the work of Georges de Rham
and presented an approach that wasn’t easily amenable to the Eilenberg–Steenrod ax-
iomatization. Reconciling these two approaches to homology led beyond the work of
Cartan–Eilenberg.

This selection may seem somewhat arbitrary and idiosyncratic, but I believe this cultural
background presents a solid cross-section of the mathematics to which people in the Cartan–
Eilenberg circle were exposed and serves to demarcate the “mathematical mainstream” of the
era. Granted this cultural background, I revisit the development of the notion of a projective
module. After describing the general reception of Bourbaki’s algebra in Section 3.1, which aims
to situate how the Cartan–Eilenberg text may have been received by those just outside of their
circle. Then, Section 3.2 aims to demonstrate that, in their initial conception, projective mod-
ules were mainly of “technical” interest within homological algebra. More precisely, their very
definition is motivated by what I will call a category-theoretic (or just categorical) aesthetic,
as opposed to more mundane reasons for making definitions in mathematics. More strongly,
I argue that without the other influences mentioned above, projective modules would have re-
mained an isolated “technical” tool, and likely would not become “important”, in at least the
limited sense that they were a topic of frequent consideration by influential mainstream mathe-
maticians.

Section 3.3 then argues, in the context of the ideas circulating in the Cartan seminar, that
the influence of the theory of fiber bundles and sheaf theory breathed new life into the no-
tion of projective module: work of J.-P. Serre laid the groundwork for analogical use of the
topological theory of fiber bundles, which he developed somewhat, but was taken up by many
mathematicians shortly thereafter. Section 3.4 argues that with some additional influences, e.g.,
from algebraic geometry via Grothendieck’s proof of the Riemann–Roch theorem, the theory
stood, near the end of the 1950s as a rich source of problems and questions giving rise to a more
self-sustaining domain of mathematics. This choice of end point is somewhat arbitrary, but I
hope sufficient to make my point.

The reader not interested in the influence of social factors in mathematics has probably long
ago stopped reading this introduction. However, for those that remain, the main body of the text
aims to develop the narrative just expounded with an aim toward social context surrounding
the invention of various mathematical notions making up “mathematical cultures”.9 Having
highlighted the arbitrary choices made in isolating the definition of projective module, I hope
to emphasize that the modern notion was in no sense inevitable. Rather, it was contingent upon
interactions of specific mathematicians with particular styles of doing mathematics. It depended
on the particular climate of mathematics around the Cartan seminar, in conjunction with the
general, “modernist/axiomatic” influence of Bourbaki ideology on French mathematics at the
time, as well as more specifically the influence of André Weil and Jean-Pierre Serre. The initial
definition would not have grown to be “important” without constant influx of interest from

9At this point, the reader probably cannot help but to have observed that I have used the word invented rather
than discovered several times; see the introduction to [Had45] for a discussion of the difference between these two
notions written around the time period under discussion.
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what I call “high-status” mathematicians and mathematical domains, which themselves were
sustained and elevated by the mathematical culture of the time, encompassing mathematics
outside of Europe, but especially in the United States and centered at institutions including
Princeton, Columbia and the University of Chicago.

1.3 Why now? On self-reflection in contemporary mathematics
But why now? Is it simply reaching middle-age in mathematics that leads one to grapple with
“historical” concerns (is this the mathematical equivalent of a mid-life crisis?). Grappling with
the sources of progress in mathematics (or science more generally) seemed a more common
activity several generations ago. Indeed, one need only look at the works of Poincaré, Hilbert,
or Weyl who wrote at length on questions of value in science.

Einstein, in his obituary for Mach, famously wrote (this translation is taken from [Hol88])

Concepts which have proved useful for ordering things easily assume so great an
authority over us, that we forget their terrestrial origin and accept them as unalter-
able facts. They then become labeled as ‘conceptual necessities,’ ’a priori situa-
tions,’ etc. The road of scientific progress is frequently blocked for long periods by
such errors.

This leads into the oft quoted “not an idle game” motif, but also from our point of view to the
question: where has modernist mathematics left us as regards progress in mathematics?xiv As
regards this text, I hope that a mathematician will find in Section 2 an exegesis10 of some ideas
that have become, in fact, “conceptual necessities” in modern algebraic geometry/algebraic
topology.

Looking back at the era of Poincaré, Hilbert, Weyl, or Einstein, my feeling is that of a
time that was extremely turbulent, but marked by an (Enlightenment?) ethos of universality
and unification in science. The current era seems, by contrast, to be marked by rising walls of
disciplinary boundaries, increasing professional specialization, compartmentalization and ex-
hortations to not overextend one’s domain of expertise. In contrast, the era which I approach in
this text seems to be marked by forgetting and increasing fragmentation. Here, I mean forget-
ting in the positive sense of Lewis Hyde’s memoir A primer of forgetting, xv which I will come
back to momentarily.

However one wants to characterize the contemporary era of mathematics, it is my feeling
that self-reflection about questions of value and progress in mathematics has been pushed to the
background, and is (arguably) even scorned. For an indication of the latter, one look no further
than Hardy’s A mathematician’s apology [Har12]. In response to this, Hermann Weyl writes
[Wey09, p. 163]:

If I view the situation in which I find myself tonight a little less melancholically, it
is not because I disagree with Hardy in that “mathematics is a young man’s game,”
but because I do not quite share his scorn “of the man who makes for the man who

10This word seems to me particularly apt in the context of algebraic geometry in light of the recurring use
of religious terminology and references. One need look no further than the introduction to [SGA70] where the
Séminaire Chevalley is literally referred to as [Bible].
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explains.” It seems to me that in mathematics, as in all intellectual endeavors, both
things are essential: the deed, the actual construction, on the one side; the reflection
on what it means on the other. Creative construction unguarded by reflection is
in danger of losing its way, while unbridled reflection is in danger of losing its
substance.

Weyl’s statement also seems to reflect the sentiment contained in my epigraph from Paul Feyer-
abend’s Tyranny of Science [Fey11] though focuses less on who will do the reflecting. Another
answer to the “why now?” question, for which this text might serve as background is an attempt
to answer the question: what, if anything, has changed from the Poincaré era to the present day
about the nature of self-reflection in mathematics?

That being said, it is clear that reflection in general does exist, and I have discussed some
examples in the preceding section. To my mind, modern examples, especially as related to my
field of interest, seem to have a methodological focus, e.g., concerns around the nature of proof.
This focus has some hallmarks of what is called “boundary work” in the sociology or history of
science: how does one demarcate science from non-science? Clear from the discussions above
is that our conception of proof is involved in the process of demarcating mathematics from
non-mathematics. Thinking of the “map” of mathematics, one can take up Thomas Gieryn’s
cartographic analogy [Gie99]: where is the boundary between proof and non-proof and how
do we draw the line? Perhaps it was more widely believed 50 years ago that this line was
easy to draw. However, the complexity of modern proofs, sometimes distributed among thou-
sands of pages written by many different authors makes finding the borders of the mathematical
continents murkier.xvi Moreover, proofs for a paper written in a given domain frequently rely
on expected cultural knowledge, leading to the idea, espoused by Andrew Granville that proof
itself is a social compact [Gra23].

Related directions include computer-aided proof, say around the four color theorem, or the
Kepler conjecture, the nature of proof in the wake of the influence of external factors, e.g.,
physics, say as discussed in the Jaffe–Quinn article and its responses, or the nature of proof
in the wake of large “programmatic” approaches to mathematics. In the latter category I place
the reflections of V. Voevodsky on proof-assistantsxvii and formalization and the discussions
of Kevin Buzzard. Of these discussions, only those of William Thurston and Michael Harris’
memoir [Har15] grapple with the nature of mathematical progress. These are important ques-
tions, and I think having a clearer sense of how social factors affect evolution of mathematical
ideas would be a useful tool in their analysis as well, but it is not my intention to address such
issues here.

A second reason for “why now” stems from a certain reflexivity of method. If we agree that
mathematics is a human activity, then exposing the human aspects explicitly simply makes a bet-
ter story, but then so too should analyzing the human aspects of my construction of the narrative.
Along the way I’d like to argue that this human aspect of mathematics has never really disap-
peared, but rather has been relegated to a background role. In this brand of algebra/algebraic
geometry/algebraic topology, the style of exposition that is highly valued, highlighted by, for
example, Milnor’s texts, the Cartan–Eilenberg text, or the numerous texts of Weil and Serre,
has only served to increased the socially dependent nature of those texts. The human and social
aspect of mathematics plays out in private, in common-room conversations, letters, e-mails,
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snide remarks at seminar talks, apocryphal stories, but has been faithfully excised from much
mathematical exposition and “finished products”. I claim that bringing it to the fore enriches
our understanding.

To close, I want to highlight one final aspect of “why now” related to the notion of progress
in mathematical knowledge. To frame this discussion, let me recall what Yuri Manin writes
about the “modernist transformation” of mathematics in his review of Plato’s Ghost [Man10]:

...“the modernist transformation of mathematics”...was one such periodically oc-
curring refurbishing of basic vocabulary, grammar, and, yes, aesthetic requirements
for mathematical thought and mathematical texts.

Manin simultaneously asserts that “one remarkable feature of mathematical knowledge is this:
we learn more and more about the same objects that ancient mathematicians already started to
see with their mental eyes: integers and prime numbers, real numbers, polynomial equations in
one or many variables, space and various space forms...”

I’d like to propose a different view, somewhat antithetical to Manin’s point of view and the
cumulative view of mathematical knowledge. We don’t read mathematics so much as teach
ourselves to perform it; we don’t memorize proofs so much as teach ourselves to reconstruct
them; we reconstruct ideas in our brain. The “refurbishing of basic vocabulary and grammar”
means that, in a sense, each generation invents/constructs mathematics anew, with all of the
cultural change that portends. For notions that are near to lived experiences or that can be
shared by many people (say, integers and prime numbers), like some of the notions Manin
describes, the resulting changes can seem cumulative, but for notions that are further away (say,
our notion of space) the changes can be rather radical.xviii Concretely: what (if any!) of modern
arithmetic geometry would be recognizable to Dedekind?

Following Harold Bloom [Blo03, Blo97], I want to view Manin’s “refurbishing” as acts of
misprision or misreading. In a different direction, Paraphrasing Grothendieck, to do new and
creative mathematics frequently requires a certain naiveté [Gro21, p. 198]:11

The child discovers the world like he breathes - the ebb and flow of his breathing
make him inhale the world into his delicate being, and make him exhale into the
world that welcomes him. The adult also discovers, in those rare moments when he
forgets his fears and knowledge, when he looks at things or himself with wide-open
eyes, eager to know, with new eyes–like those of a child.

Putting these ideas together, doing mathematics, especially in the “structural” vein that has be-
come the dominant paradigm, certainly around the types of mathematics I will discuss, consists
of simultaneously focusing and forgetting, in the sense I mentioned earlier. Reformulations
made in the course of research emphasize some features, while deliberately obscuring or ignor-
ing others.xix We frequently do not remark upon that which has been forgotten, and it has to be
unearthed. I think it is important to pay attention to what has been forgotten: to understand that
we have made many arbitrary choices to get to the mathematics of today. Why did we make
these choices? Was it even conscious?

11“Le petit enfant découvre le monde comme il respire — le flux et le reflux de sa respiration lui font accueillir
le monde en son être délicat, et le font se projeter dans le monde qui l’accueille. L’adulte aussi découvre, en ces
rares instants où il a oublié ses peurs et son savoir, quand il regarde les choses ou lui-même avec des yeux grands
ouverts, avides de connaı̂tre, des yeux neufs — des yeux d’enfant.”
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Disclaimer

Several words of warning are in order. Evidently, I am not a professional sociologist (or philoso-
pher, or historian, or...).12 As such my use of the literature in these domains is bound to be at
best naive and at worst hopelessly wrong-headed. Perhaps this work should be considered as
a “fan-fiction” version of a sociological history of projective modules or maybe a first step to-
wards what one might call “mathematical criticism”. Better: please view it as an invitation to a
discussion.

My referencing practices are more informed by my mathematical training than the examples
I have seen in other literatures: I have attempted to give complete quotations when I use them,
and I take responsibility for all errors of translation when that has been necessary. As is perhaps
clear from the preceding text, I have used endnotes to enclose long parenthetical discussions
with additional references to literature that I think are relevant. It is my belief that most of these
comments are not essential to the argument contained in the main text, but I do use them to
suggest questions I find interesting.

This document has evolved rather organically, and in its current form is still somewhat
tentative; for this I can only apologize to the prospective reader. I prefer to view it thus as closer
to an alembic: I hope to eventually recast the collected distillate in a more definitive form.
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2 A survey of pre-1951 mathematical culture
The name “homological algebra” seems a pithy description of the collection of algebraic tools
originating from the various definitions of homology. The scope of this term has expanded
considerably from its conception in Cartan–Eilenberg’s Homological algebra with time; to see
this, one need only open a more recent treatment like [GM03]. Consequently, we attempt to
reconstruct the mathematical cultures into which Cartan and Eilenberg’s text was released.

As we will recall in Section 2.2, chronologically our story could begin with Poincaré’s con-
ception of homology, which gave generalizations of Betti numbers for “suitably nice” spaces.
However, the story of the proliferation of homology, and its numerous variants will take us
through various groups in the mathematical landscape. By the time the work of Cartan–Eilenberg
had appeared, homology had moved away from its original source, interacting fruitfully with,
among other notions, group theory (initially the work of Eilenberg–Mac Lane), the theory of
associative algebras (Hochschild), and the theory of Lie algebras (E. Cartan, G. de Rham and
later Chevalley–Eilenberg). The list of mathematical terms mentioned here serves only to in-
dicate in modern terms the domains to which people interacting with homological ideas were
exposed: algebra, topology, rounded out by complex and functional analysis. While I indicate
these distinctions here to serve as guideposts, disciplinary boundaries strike me as more porous
then than now, so drawing precise lines is difficult.

Instead, we choose to orient our discussion around people, rather than chronologically or by
situating it around arbitrary mathematical domains. Cartan and Eilenberg were both members
of the Bourbaki collective, with Cartan a founding member. Cartan ran a vibrant and very in-
fluential seminar in Paris, in the tradition of the Séminaire Hadamard and Séminaire Bourbaki;
he was situated at the center of French academic hierarchy. Simultaneously, Eilenberg was
a Jewish European emigrant, invariably enmeshed in the associated politics of refugee math-
ematicians in the United States. He had a center of mathematical activity around himself at
Columbia as well as numerous collaborators including Saunders Mac Lane (at Chicago) and
Norman Steenrod (at Princeton at the time).

The ideas that led to up to the Cartan–Eilenberg book were developed over many years, by
many people, interested in many kinds of problems. Sections 2.1-2.4 are devoted to sketching
the “mathematical cultures” around the initial release of the Cartan–Eilenberg book. What did
people know, and what were people interested in? To answer this question, I will describe sev-
eral scenes of mathematical activity before roughly 1951, focusing on ideas that, in my opinion,
eventually informed that which was to give vital force to the theory of projective modules. My
aim is to describe, a cross-section of the mathematics under consideration that was viewed to
be important by those around Cartan and Eilenberg.

2.1 A bundle-theoretic unification theology
By 1948, Henri Cartan was a well-established and extremely influential figure in the French
mathematical community in particular and, more generally, in the international mathematical
community. He became a professor at the École Normale Supérieure (ENS) in 1940, following
in his father Elie’s footsteps. While ENS initially was viewed as an institution to train teachers,
it had slowly acquired the status of the place for training French academics and was invariably
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an elite institution by this point.xx

While there is much to be said about the cachet of the International Congress of Mathemati-
cians (ICM) during the period 1930-1950, say by comparison to the status it currently enjoys
within the mathematical community, Cartan’s participation in this event serves as some measure
of his international reputation: he had given a sectional lecture at the 1932 ICM held in Zurich,
Switzerland and a plenary lecture in the 1950 ICM held in Cambridge, USA.13

Cartan was a student of Paul Montel and, perhaps following Montel’s interests, his early
work was in complex analysis, specifically analysis of functions of one complex variable. Com-
plex function theory had deep historical roots in French mathematics stemming from the work
of E. Borel and C. Picard. The themes of Cartan’s seminar seem a reasonable reflection of his
research interests and the transcripts of the talks starting in 1948 provide a convenient starting
point for our analysis.

After the first world war, the mathematical enterprise in France was considerably dimin-
ished.xxi Cartan explains that his interest was turned to higher-dimensional complex analysis
[Car99]:

A little earlier, toward 1930, it is he who had oriented me toward the study of ana-
lytic functions of several variables by pointing out to me the work of Carathéodory
on circled domains. One cannot overestimate what I owe to André Weil.

Cartan and Weil were students together at the ENS in the 1920s.xxii They were colleagues
later in Strasbourg, and regular correspondents for many years; a number of the letters they
exchanged may be found in [CW11]. With the above comment about Weil’s influence on Cartan
as a jumping-off point, we want to describe André Weil’s point of view and its influence more
generally.

My goal in this section is describe and explore ideas of unification and analogy in mathemat-
ics and how they influenced the diffusion of ideas of the topological theory of fiber bundles into
algebraic geometry. I begin by exploring some aspects of André Weil’s biography, providing
some background for his position in the mathematical community more generally, and high-
lighting some incidents that seem to bear on the nature of Bourbaki’s mathematical practice. I
then recall some facts about the Bourbaki movement and its associated ideological convictions.
With this background in place, I review some aspects of the theory of fiber bundles in topology,
then passing to André Weil’s efforts to transplant these topological ideas into algebraic geom-
etry. I argue that Weil’s efforts were not valued in the broader algebro-geometric community.
Nevertheless Weil’s point of view is important: I mention briefly in conclusion that it is this
point of view that vitalized and broadened the conception of projective modules; this theme will
be explored in greater detail in Section 3.3.

2.1.1 (André Weil). Undoubtedly, Weil was held in high esteem by Cartan, but Cartan suggests
this was an opinion shared by many [Car99]: “I knew that Weil was considered as a rather
exceptional being, but I did not know that during his first year he had read Riemann and finished
all his examinations.” Weil spoke English, and German at home, had taught himself Greek,

13There is much to be said about the history of the ICM, I give only a few references here. The 1932 ICM took
place in the wake of the world-wide financial crisis, and we will have more to say about it momentarily. Discussion
of the 1950 ICM in the context of American Mathematics can be found in [Par22, p. 496–509].
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Latin and Sanskrit by the age of 16 [Wei92, Chapter 1].14 Undoubtedly he was viewed as
a consummate scholar by those of his generation, but was well-respected by members of the
previous generation as well.

After finishing at the ENS in 1925, Weil writes

almost all of my classmates left to do their military service as second lieutenants.
Our class was the last one entitled to this rank without having to pass any examina-
tions. I was still too young to do likewise.

Unable to enter military service on account of his age, Weil applied for and received a modest
scholarship, which while initially intended to be used to stay in Paris, he managed to modify
to allow him to travel to Rome. Weil arrived in Rome in October 1925 to a gracious welcome
extended by Vito Volterra.xxiii By his own admission, this trip had considerable effect on Weil’s
life. After being pointed to work by Louis Mordell during this trip, which would eventually
lead to his thesis (i.e., the theorem that is now known as the Mordell–Weil theorem), Volterra
organized a Rockefeller grant for Weil to travel to Germany, where he visited Göttingen, Berlin
and Frankfurt as well as to Sweden, where he visited Djursholm and Stockholm. In this period,
he met Richard Courant, Hans Lewy (Courant’s assistant), David Hilbert, Emmy Noether, Bar-
tel van der Waerden, Luitzen E.J. Brouwer, Paul Alexandroff, Gosta Mittag–Leffler and Max
Dehn. Cartan writes of this period that Weil “became friends with the great mathematicians of
the time, despite his being younger than they” [Car99, p. 633] undoubtedly served by his ability
to perform the role of a scholar.

Weil writes quite a bit about time in Frankfurt in 1926, especially discussions with Max
Dehn and brief overlap with C.L. Siegel both of whom he held in extremely high regard (he
refers to the latter as “already a legend”.) Reflecting attitudes about publication, Dehn already
worried that “mathematics was in danger of drowning in the endless streams of publications”, a
worry still, nearly 100 years later. Dehn professed a solution:

...but this flood had its source in a small number of original ideas, each of which
could be exploited only up to a certain point. If the originators of such ideas stopped
publishing them, the streams would run dry; then a fresh start could be made.

But mathematicians kept producing work

at a time when the attitude reflected in the American motto “Publish or perish” had
invaded German universities and increasingly filled Siegel and others like him with
disgust.

Weil also alludes to a text of Siegel’s on transcendental numbers in Dehn’s possession that the
latter would only allow him to see in his home; he gives the sense of a world of mathematical
secrets, literally kept under lock and key, revealed only to those in the “know”.

As the 1930s opened, Weil took up a position in India that would last two years. He returned
to Europe in the summers, traveling widely, including back to Germany and England and then
to a position in Marseilles in 1932. He briefly mentions the International Congress in Zurich in

14One can also find discussion in the breathless treatment of Weil in Aczel’s biography of Bourbaki [Acz06].
This popular account of Bourbaki seemingly contributes to the mythology of Bourbaki.
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September, glossing over the “crisis” then unfolding in Germany (the Nazis gained a plurality
of seats in Germany and many communists came to power).

In November 1933, Weil moved to a position in Strasbourg, soon after Cartan had arrived
there (Weil makes no mention of this fact in his autobiography, but we learn from Cartan that
they had initially competed for a position that was won by Cartan in 1932). In this period, in
discussion with Cartan, the Bourbaki project was conceived, and that conception will play a
background role in much of what I say below.15 After a tumultuous period in the late 1930s
and early 1940s, Weil arrived in the United States in March 1941 [Wei92, Chapter VII]. To
call this period “formative” for him is perhaps an understatement as it makes up the bulk of his
autobiography. After a period in São Paolo beginning in 1945, that is marked equally by social
isolation and a flurry of correspondence, which I will discuss at greater length in Section 2.4,
Weil eventually settled at the University of Chicago in 1947, where he remained until he moved
to the Institute for Advanced Study in 1958.

2.1.2 (Interlude: Bourbaki and “structuralist mathematics”). Since I have mentioned Nicholas
Bourbaki several times so far, before I go any further, I want to disentangle some things. I
have already mentioned “modernism” in the introduction, but for the forthcoming discussion
the reader should be familiar with Hilbert’s “axiomatic method” and have some ideas of the
associated “structuralism” in mathematics.

As discussed in Section 1, Jeremy Gray’s book Plato’s Ghost [Gra08], presents an analysis
of the transition from “pre-structural” mathematics to “structural” mathematics in the period
1870 to 1930. This might be viewed as a first stage in the structural transition; the end of this
period, which we mark roughly by the appearance van der Waerden’s text “Moderne algebra”
sees axiomatic approaches to mathematics appear as the dominant paradigm [Cor04, §1.3] in
mathematics; This shift will be discussed in Paragraph 2.2.3.

The Bourbaki project provides a lens through which to view the next period, roughly 1930-
1950. As regards structuralism in mathematics: from a naive mathematical point of view, struc-
turalist mathematics is the idea that mathematics is the study of structures. This view, concor-
dant with views espoused by Hilbert perhaps first crystallized in algebra, leaves a glaring hole:
what is a structure? One answer is that it is an attempt to axiomatize the numerous classes of
objects that were being studied in algebra: groups, rings, fields, vector spaces, etc. Bourbaki
spent considerable time trying to come up with a precise definition of structure, encompassing
all of these examples. Structuralism in this sense is part of a style that Alma Steingart identfies
in her beautiful book Axiomatics [Ste23, p. 18] as “high modernism” :

Starting in the 1930s and expanding in the postwar period, axiomatics came to be
associated with universalizing theories and an emphasis on structure.

But Steingart emphasizes that “high modernism” is broader than Bourbaki.
Bourbaki was (and is) what I think is best described as a mathematical secret society.

Though retrospectively it was not so secret and much has been written about the group and
its early members.xxiv Traces of Dehn’s attitude toward mathematical production and the gifting
of mathematics seem visible in Bourbaki’s practices and early distribution methods. Initially,

15Harry Paul [Pau85, Chapter 9] gives some discussion of scientific research infrastructure in France, say around
funding in the 1930s that is helpful in understanding what kind of national resources were devoted to research.
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Bourbaki was conceived by Weil and Cartan (around the time of their joint stay in Strasbourg),
purportedly to write a new textbook treatise on analysis. The group consisted largely (entirely?)
of Normaliens who had the lofty goal of lifting French mathematics back up to their retrospec-
tive view of its pre-WWI heights.xxv This initial project expanded to an effectively encyclopedic
scope: Bourbaki aimed to write a definitive treatment of all of modern mathematics. The Bour-
baki attitude was unabashedly dogmatic, and there were many reactions to their approach. The
mathematicians involved in the Bourbaki project would grow to have tremendous influence
within the mathematical establishment, especially around the fields we aim to discuss.

Leo Corry describes [Cor92, p. 320] the Bourbaki project as follows.

Like van der Waerden had done for thitherto disparate disciplines, which since then
were included under the heading of “modern algebra”, Bourbaki undertook the task
of presenting the whole picture of mathematical knowledge in a systematic and uni-
fied fashion, within a standard system of notation, addressing similar questions, and
using similar conceptual tools and methods in the different branches. But Bourbaki
went a step beyond van der Waerden and attempted to provide a formal theory of
structures affording a common foundation for all the other theories considered in
his treatise. Bourbaki’s work was originally motivated by the idea that the whole
of mathematics may be presented in a comprehensive treatise from a unified, sin-
gle best point of view the concept of structure was to play a pivotal role within it.
This conception, however, proved overconfident and Bourbaki soon realized that he
must limit himself to include in his treatise only a portion of mathematics.

By 1950, Bourbaki had different members and aims, summarized in their “Architecture
of mathematics”, an ideological manifesto of sorts [Bou50]. The Bourbaki ideology included
various features that I will rely upon later, spelled out here. First and foremost, Bourbaki “shall
not undertake to examine the relations of mathematics to reality or to the great categories of
thought”. Bourbaki thus isolates some core of mathematics from perceived external features
reflecting, in part, the pure/applied dualism.

Today, we believe however that the internal evolution of mathematical science has,
in spite of appearance, brought about a closer unity among its different parts, so
as to create something like a central nucleus that is more coherent than it has ever
been.

Bourbaki intends “to remain within the field of mathematics” and to proceed by analyzing “the
procedures of mathematics” itself.

The “procedures of mathematics” to which they refer are the axiomatic method, which “has
its cornerstone in the conviction that, not only is mathematics not a randomly developing con-
catenation of syllogisms, but neither is it a collection of more or less “astute” tricks, arrived at
by lucky combinations, in which purely technical cleverness wins the day”. One sees in this
a quest to isolate something like natural laws of mathematical evolution. Inessential ingredi-
ents should be stripped away, so there is a “minimalist” sensibility to the approach. But chiefly
Bourbaki symbolizes unification and structure.

Of course, this summary itself of Bourbaki’s ideology was written at near the end of the
period I will consider in my discussion of “mathematical cultures” and evolved from perhaps
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less strongly-worded convictions present in group members themselves at the inception of the
project. Thus, I will try to be careful to distinguish the attitudes of members of Bourbaki
from the collective: temperaments of individual members reflected the “unification and struc-
ture” paradigm to greater or lesser extents. Another complication swept under the rug in the
above description is posed by the Bourbaki seminars, which were organized to expose “cur-
rent” mathematics of central interest (to those in the Bourbaki group). This pursuit was ar-
guably independent of the knowledge re-organization projects described above, but reflected
similar expositional goals and thus its status would rise alongside Bourbaki.

In 1948, the University of Chicago, was teeming with new life: the newly arrived Weil
was organizing/participating in a seminar that included several notable and also newly arrived
mathematicians: the differential geometer Shing-Shen Chern had just returned from a stay in
China to take up a position, and the topologist Edwin Spanier had just finished his degree with
Norman Steenrod at the University of Michigan and taken up a position. Hans Samelson, then a
professor at Michigan also participated [CW11, p. 259]. Weil was already friends with Chern,
having met him earlier in the 1940s when they overlapped during a stay in Princeton. In a
“Topology caucus” held in Madison, WI on Sep. 8, 1948, Weil, Samuel Eilenberg and Norman
Steenrod drafted a plan for Nicolas Bourbaki to approach algebraic topology [CW11, p. 260]:
the first topic on the list was fiber bundles. How did the Bourbaki vision interact with the
forefront of mathematical research?

2.1.3 (Fiber bundles). The preface of Norman Steenrod’s 1951 text The topology of fiber bundles
[Ste99] opens with the claim:

The recognition of the domain of mathematics called fibre bundles took place in
the period 1935-1940.

Steenrod singles out Hassler Whitney as having given the first “general” definitions and the
work of H. Hopf and E. Stiefel for applications to differential geometry. Here, Steenrod is
referring to [Whi35] where Whitney introduces the notion of sphere-space, eventually renamed
“sphere bundles”.

After asserting that sphere spaces occur in nature, Whitney’s stated goal is to define in-
variants to distinguish sphere spaces. Particular examples highlighted in this paper arise from
differentiable manifolds (the “tangent” sphere space) and embeddings of manifolds (the “nor-
mal” sphere space). Whitney sketches the construction of homology classes playing the role of
invariants. Whitney makes no claim of originality here, mentioning precursors in the work of
Seifert-Threlfall [ST34] and simultaneously mentions that examples of his sphere-spaces have
been constructed by Hotelling [Hot25]. Why was Whitney interested in sphere spaces?

To modern eyes, these sources might seem rather disparate: Hotelling was interested in
dynamical problems proposed by Birkhoff, while the discussion of “fiber spaces” in Seifert–
Threlfall is relegated to some remarks in an appendix, which themselves reference earlier work
of Seifert [Sei33]. Tracing through the latter we find a common source. In modern terminology,
Seifert was interested in construction of three-dimensional manifolds, and was focused on the
homeomorphism classification problem; already by this point the Poincaré conjecture was a fo-
cal question of the field then called combinatorial topology. Of course, one source of Poincaré’s
interest in topology in general and three-manifolds in particular arose from his investigations
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of the dynamical three-body problem. Seifert gives a long discussion [Sei33, §3] of an explicit
continuous map S3 → S2 with fibers that are circles, parenthetically remarking that the exam-
ple he is describing is nothing other than Hopf’s now eponymous map. In modern terminology,
Seifert is interested in locally trivial fibrations with closed curve fibers, especially circle fibers.

Stiefel’s thesis, written under the direction of Hopf, simultaneously introduced the Stiefel
“manifold of frames” and, extending work of Hopf on the index theorem, homology classes
bearing obstructing existence of linearly independent vector fields. In coordination, the work
of Stiefel and Whitney formed a link between the problem of existence of linearly independent
vector fields on manifolds and homology theory. Thus, one sees fiber bundles can be used to
systematically build manifolds, but simultaneously fiber bundles are used to build invariants;
both conceptions are related to the homeomorphism classification problem. Furthermore, these
characteristic (co)homology classes are themselves becoming objects of independent interest.

A more detailed account of the pre-1948 development of fiber bundles can be found in a note
of McCleary [McC04]. By this point, Steenrod had given lectures at the University of Michigan
and Princeton on fiber bundles in 1947-1948 (see the introduction to [Ste99]). Progressively
more general notions of fiber bundle were considered in this period because of applications (we
will touch on some of these notions in the sequel), but Steenrod summarized the situation in
1951 thus:

The subject has attracted general interest, for it contains some of the finest appli-
cations of topology to other fields, and gives promise of many more. It also marks
a return of algebraic topology to its origin; and, after many years of introspective
development, a revitalization of the subject from its roots in the study of classical
manifolds.

Eilenberg and Weil prepared a report on the theory of fiber bundles for Bourbaki [Bor99,
p. 425] based on their interactions with Steenrod, but this document, as well as much of the
material that Bourbaki discussed around algebraic topology never saw the light of day. John
McCleary has argued [McC11], that Bourbaki’s leaving discussion of the theory of fiber bun-
dles unwritten was a result of the rapid pace of advance of algebraic topology at the time:
presentation of this area was better suited to a more fleet-footed medium, such as a seminar.

Weil was intimately familiar with theory of characteristic classes. He wrote to Cartan in
1944:16

What will interest your father, and all of you, is that Chern (the same Chinese
who worked with your father in 1937) is at Princeton for this year, and is doing
very brilliant work on the relationships between topology (particularly fiber spaces)

16From [CW11, p. 94]

Ce qui interessera ton père, et vous tous, c’est que Chern (le même chinois qui a travaillé avec
ton père in 1937) est à Princeton pour cette année, et fait du très brillant travail sur les rap-
ports entre topologie (particulièrement espaces fibrés) et géométrie différentielle. Il a débuté par
une démonstration intrinsèque, par les méthodes de ton père, du théorème du Gauss–Bonnet pour
polyèdres riemanniens de dimension quelconque, que j’avais obtenu en collaboration avec un cer-
tain Allendoerfer en 1941, et publiée aux Transactions. Il est maintenant allé beaucoup plus loin, et
on peut dire qu’il a une methode generale pour traiter tous les questions de ce genre.
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and differential geometry. It began with an intrinsic demonstration, using your
father’s methods, of the Gauss–Bonnet theorem for Riemannian polyhedra of any
dimension, which I had obtained in collaboration with a certain Allendoerfer in
1941, and published in the Transactions. He has now gone much further, and it
may be said that he has a general method for dealing with all questions of this kind.

Weil internalized and developed Chern’s work going on to formulate what eventually be-
came known as Chern–Weil theory [Wei79, 1947b, p. 374] (submitted 8 Nov 1946 and ap-
pearing in 1947).17 Chern–Weil theory provides a link between, on the one hand differential
geometric ideas including the theory of connections and curvature, studied in great detail by E.
Cartan, and G. de Rham’s differential approach to cohomology and, on the other hand, the topo-
logical approach to bundle theory. In brief, Chern–Weil theory describes characteristic classes
of Hermitian vector bundles on complex manifolds in terms of E. Cartan’s theory of curva-
ture and connections. Already by 1948, students around H. Cartan were learning this approach
to characteristic classes and fiber bundles. For example, Borel remarks about his attempts to
understand the proofs of Weil’s approach to Chern classes to Cartan [Bor99].18

2.1.4 (Foundations of algebraic geometry revisited). Weil’s “Foundations of Algebraic geom-
etry” was published in 1946 [Wei62], roughly the same time period as just discussed, and I
would like to investigate its reception in the algebro-geometric community. To understand
Weil’s viewpoint in this text, it will be useful to have a sense of how the notion of “mani-
fold” was understood in this era; a slightly more detailed discussion of manifolds according to
Poincaré can be found in Paragraph 2.2.2. Nowadays, I think it is standard to frame a dichotomy
between “embedded” and “abstract” points of view on manifolds. Briefly, the embedded point
of view is that manifolds can be cut out of Euclidean space by equations (and inequalities). In
the “abstract” conception, one prescribes “local models” for manifolds, say open subsets of Eu-
clidean space, that are glued together in a controlled fashion. I think it is also now standard to
view the “embedded” point of view as “classical”, or at the very least older, and the “abstract”
point of view as modern, the latter being codified by Veblen and Whitehead.

It probably comes as no surprise that this distinction is an oversimplification of matters. To
the extent that people thought about “spaces” in general, both conceptions seem present in the
literature essentially from the start. Erhard Scholz argues that Riemann was one of the first peo-
ple to expound the concept of manifold. Riemann’s ideas about analytic continuation certainly
influenced his conception of space, and Scholz [Sch99, p. 26] writes “the distinction between
local simplicity of manifolds, because of the presupposition of local coordinate systems, and
globally involved behaviour was indicated by Riemann” but only emphasized in some of his
works.19 It is nevertheless embedded in modern ideas about analytic continuation of analytic

17Chern’s famous paper [Che46] on characteristic classes of Hermitian manifolds appeared in 1946 and explic-
itly mentions complex analytic fiber bundles. As Weil remarked in his letter, it in part generalizes some results of
Allendoerfer–Weil on the Gauss–Bonnet theorem in the Riemannian setting, but the final paper does much more
than Weil advertises.

18It’s worth pointing out here that Weil also interacted with the anthropologist Levi-Strauss, and around this
time he solved a combinatorial problem posed by Levi-Strauss [Wei79, p. ?]. Levi-Strauss and Weil were class-
mates at the ENS and it’s perhaps not surprising given the breadth of his interests that he had some awareness of
anthropology.

19Riemann in his habilitation also placed Gauss alongside the psychologist/philosopher J. Hebrart in providing
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functions. A related discussion of Riemann’s ideas about space and, in particular, the classifi-
cation of surfaces, can be found in [Vol02, 2.1]. Poincaré also rather explicitly uses both the
“embedded” and “abstract” conceptions of manifold: he introduces the former in [Poi95, §1],
but then describes the latter in [Poi95, §3], before attempting to reconcile the two points of
view. In fact, in his constructions of manifolds, say via identification spaces, Poincaré certainly
used both points of view.

In a sense, Weil’s Foundations of algebraic geometry puts this dichotomy between “ab-
stract” and “embedded” for manifolds at the forefront. Algebraic varieties in the 19th century
were also primarily thought of in “embedded terms”, either as subsets of affine or projective
space. Bowdlerizing some aspects of Hodge’s description of algebraic geometry [Hod86] in
that period, there were several schools broken down along roughly national lines: a German
school of Abel, Riemann and Weierstrass.20 A more geometric point of view was envisioned by
Noether, and eventually taken up by Castelnuovo and Enriques. A French school, directed by
Picard and Simart introduced a third function-theoretic school. The algebraic point of view was
further developed by Dedekind and Krull.

None of these authors tried to introduce any sort of “abstract” point of view on algebraic
varieties and Weil was one of the first to do so; he was rather explicitly inspired by the notion
of abstract manifold: one would like to describe algebraic varieties by “gluing or patching
together” suitable local models. In Weil’s words: “this idea, inspired by the usual definition
of a topological manifold by means of overlapping neighborhoods, leads to the definition of an
“abstract variety” [Wei62, p. xi]. Transplanting the “abstract” notion of manifold to algebraic
varieties was complicated by several factors.

First, while algebraic varieties over the complex numbers were frequently studied by classi-
cal topological techniques, what happens if one works over other fields? Owing to his interest
in finite fields and the Riemann hypothesis for curves over finite fields, Weil certainly had such
applications in mind (see Paragraph 2.1.6 for further discussion).

Second, what should one take as local models, i.e., what was a suitable analog in algebraic
geometry of an open subset of Euclidean space? In what to me seems a telling remark regarding
the primacy of topological thinking in his approach Weil writes [Wei62]:

Similarly, however grateful we algebraic geometers should be to the modern al-
gebraic school for lending us temporary accommodation, makeshift constructions
full of rings, ideals and valuations, in which some of us feel in constant danger of
getting lost, our wish and aim must be to return at the earliest possible moment to
the palaces which are ours by birthright, to consolidate shaky foundations, to pro-
vide roofs where they are missing, to finish, in harmony with the portions already
existing, what has been left undone.

Some sense of the value of Weil’s treatment and the value of this generalization of the
notion of variety can be gleaned from Zariski’s review of Weil’s book for the Bulletin of the
AMS [Zar48]. About Weil’s eschewing of algebra, Zariski writes:

the groundwork for his conception of manifold [Lau08, p. 288].
20My discussion of Riemann above indicates why I say “primarily”: certainly Riemann surfaces gave particu-

larly interesting examples of algebraic varieties, and the “abstract” point of view was useful here.
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It is a remarkable feature of the book that—with one exception (Chap. III)—no use
is made of the higher methods of modern algebra. The author has made up his mind
not to assume or use modern algebra “beyond the simplest facts about abstract fields
and their extensions and the bare rudiments of the theory of ideals.” Weil’s faithful
realization of this program of strict mathematical economy is an achievement in
itself. In some cases this leads to the “best possible” proofs. However, on the
whole one may question the wisdom of this self-imposed régime of austerity.

In “questioning the wisdom”, Zariski seems to be alluding to whether the resulting text is us-
able or rather an exercise in style. His opinion on this becomes clearer when one reads his
commentary on the presentation, which is in the axiomatic style:

As a result, the reader finds himself very much in the position of a man who must
collect a large amount of cash most of which is in pennies...Most readers will find it
difficult to follow the author through the seemingly endless series of propositions,
theorems, lemmas and corollaries (their total must be close to 300). A further
obstacle to continuous reading of the book are the numerous crossreferences in the
proofs...

Zariski’s complaint about this style of writing, which is a hallmark of Bourbaki texts and was
imitated later by others, applies equally well to more modern treatments of algebraic geometry.
I claim it increases the socially dependent nature of the text. Indeed, by simply reading such a
text one does not get a sense of which aspects of the arguments are “routine”, i.e., part of the
culture (in the sense I used it in Section 1.2), and which are “novel”, which is a complaint I
have heard repeated by many. One is thus led to seek out competent guides who can signpost
the text or, lacking that, to develop one’s own signposts, however idiosyncratic.

Finally, Zariski comments about the value of the “abstract” notion of variety:

The long Chap. VII is dedicated entirely to what Weil calls “abstract varieties,” or
Varieties with a capital V...We find it very difficult to estimate the necessity or the
permanence value of this new concept.

He highlights that Weil’s notion of “completeness” has no examples beyond classical “projec-
tive” examples. In his 1950 ICM address [Zar52], Zariski mentions Weil’s abstract varieties
only briefly, writing:

An even more radical revision of the concept of a variety has been offered by André
Weil. His so-called abstract varieties are not defined as subsets of the projective
space, but are built out of pieces of ordinary varieties, pieces that must hang to-
gether in some well-defined fashion. It is still an open question whether the vari-
eties of Weil can be embedded in the projective space.

Thus, while the distinction between “embedded” and “abstract” seems present in the theory of
manifolds essentially from the outset, it apparently strikes Zariski, even in 1950, as artifice,
and perhaps irrelevant to his conception of “mainstream” algebraic geometry. Weil was no
doubt aware of this possibility writing [Wei62, p. viii]: “Of course every mathematician has a
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right to his own language — at the risk of not being understood; and the use sometimes made
of this right by our contemporaries almost suggests that the same fate is being prepared for
mathematics as once befell, at Babel, another of man’s great achievements.”
2.1.5 (Weil to Cartan on fiber bundles). Weil apparently did not take Zariski’s criticism to heart.
In January 1949, Weil introduced, in a talk at the University of Chicago, a version of the theory
of fiber bundles in algebraic geometry [Wei79, p. 411-12]. By several accounts (see the auto-
critique later for further discussion of this), his was the first attempt to make such a definition.
Weil admits he was unsure about the use of the Zariski topology in his Foundations of Algebraic
geometry (a fact he elliptically remarks upon in the introduction) [Wei62], but remarks [Wei79,
p. 566]:21

It is, I believe, the theory of fiber spaces which definitively converted me to the use
of this topology, despite some initial hesitations.

Note that Zariski’s eponymous topology was introduced around 1944 [Zar44, p. 683], and
appears in [Zar52, §2].

Nevertheless, Weil gives a series of examples intended to demonstrate that theory of fiber
bundles in algebraic geometry was rich and allowed the unification of a number of disparate
strands of problems. He studies fiber spaces in algebraic geometry where the structure group is
the multiplicative group and observes that isomorphism classes of such bundles coincide with
divisor classes modulo linear equivalence, a notion that had long been studied in arithmetic sit-
uations, say going back to Dedekind–Weber. He mentions the case where the structure group is
the group PGL2 and observes that in this case the theory of fiber bundles is connected with the
theory of ruled surfaces, which he marks “as a problem of considerable difficulty and interest.”
He describes a theory of the tangent bundle and remarks on corresponding definitions of char-
acteristic classes of algebraic varieties and invariants of Stiefel–Whitney–Chern type. He then
goes on to speculate about definitions of fiber bundles in arithmetic contexts closing with the
bold assertion:

We thus stand at the threshold of a very promising new field of research, which it
will certainly take many years to develop fully.

2.1.6 (Interlude: Weil and analogy). At this point it is natural to wonder if there is anyone but
Weil who could have initiated a discussion like this: the unique collection of historical referents
he uses in his justification reads as a summary of his research interests and experiences. Weil’s
mathematical oeuvre, as well as his informal writings, demonstrates an intense fascination with
certain kinds of generalization and analogy.

For example, his 1938 paper [Wei79, p. 185] proposed a “matrix” generalization of theta
functions. Atiyah references this in [Ati55] as an early approach to the theory of fiber bundles
in algebraic geometry, which I will discuss more momentarily. Looking back much later, Weil
himself, in his commentaries on this paper [Wei79, p. 537] views it as this and more:22

21“C’est bien, je crois, la théorie des espaces fibrés qui me convertit définitivement à l’usage de cette topologie,
malgré quelques hésitations initiales.

22“Avec le recul dont on dispose à présent, on peut dire que l’essentiel dans [1938a] est d’avoir inauguré l’étude
des fibrés vectoriels sur une courbe algeb́rique, à fibres de dimension quelconque r > 1; subconsciemment je
m’efforçais de construire pour ceux-ci des “varietes de modules” que, faute de notions claires sur ce sujet, j’aurais
été bien en peine de définir.”
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With hindsight, we can say that the essential thing in [1938a] is to have inaugurated
the study of vector bundles on an algebraic curve, with fibers of any dimension
r > 1; subconsciously I tried to construct for these “moduli varieties” that, for lack
of clear notions on this subject, I would have been hard pressed to define.

The theory of moduli of vector bundles on curves was to become much more active in the 1960s.
Weil had been, one might say, obsessed about the analogy between number fields, function

fields, and complex function theory, a.k.a., the theory of Riemann surfaces for some time. While
this analogy itself goes back at least to Dedekind,23 Weil explicitly discussed meta-mathematics
of analogy in several places, but perhaps most famously in the “Rosetta Stone” that he laid out in
correspondence with his sister [Wei79, p. 236]. For the sake of the chronology, let me mention
that Weil gave a proof of the Riemann hypothesis for function fields of curves near this time
as well [Wei41], eventually leading, around the time of his note on fiber bundles, to the Weil
conjectures (cf [Wei49]).

I think it’s impossible not to view the transplant of the notion of fiber bundles from topology
to algebraic geometry from this context. All of these results justified Weil’s vaunted “intuition”.
However, the definition of fiber bundle in algebraic geometry was still at this stage extremely
ad hoc. Weil’s definition of abstract algebraic variety was conceived to imitate the definition of
abstract manifold. In contrast to the definition of an abstract manifold, where one only needed
to mention existence of covering charts, in Weil’s algebro-geometric setting the covering charts
were part of the data, complicating the presentation. The resulting complexity spilled over into
the theory of fiber bundles over algebraic varieties where once again covering charts were part
of the data.24

From the standpoint of aesthetics of the axiomatic approach in the hands of Bourbaki (espe-
cially in light of the “austerity” that we observed in Zariski’s characterization of Weil, though
one might also call it minimalism), these additional choices can be viewed as “inelegant”. As
regards this accusation, Weil characterizes as “subtle” the difference between his point of view
and the differential geometric point of view:25

For them, it is a question of defining a structure on a pre-existing set by covering
it with neighborhoods; for me this set only appears a posteriori by gluing together
pieces given individually in advance.

To me, another “subtle” difference can be described as follows: in the differential geometric
conception of manifolds, local models are open subsets of Euclidean space, and therefore “all

23See for example [Kri03, Chapter 5 IV p. 242] for another discussion of these points and, in particular, com-
mentary on F. Klein’s summary of the “dictionary” in 1926. See [OS16] for a discussion of points of history related
to the Riemann hypothesis in positive characteristic.

24Perhaps one inadvertent side-effect of the explicit nature of charts in Weil’s definition of algebraic fiber bundle,
which will reappear when we discuss cohomology and sheaves later, is that one may readily provide an interpre-
tation in terms of Čech cohomology. Cognizant of the fact that it may appear at this stage like I am projecting
contemporary biases onto old mathematics, our later discussion of the Cartan–Weil correspondence around this
period, especially as regards sheaf-theory will suggest that this interpretation seems plausible.

25Chez eux, il s’agit de définir une structure sur un ensemble preéxistant, en le recouvrant par des voisinages;
chez moi cet ensemble n’apparaı̂t qu’a posteriori par recollement de morceaux donnés individuellement à l’avance.
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of the same type”, whereas for Weil, local models were open subsets of affine varieties, so there
are different types of local models, giving Weil’s algebraic varieties a chimeric nature.

The resulting theory was, nevertheless, still rich enough to address Hilbert’s 15th problem
of putting enumerative algebraic geometry of Schubert on firm footing, so good enough for
“practical purposes” in some sense26 but it certainly does not appear to rise to the Bourbaki
standard then espoused. Indeed, Borel remarks [Bor99, p. 423] the state of the theory was
such “for lack of suitable concepts” and the resulting theory is “rather unwieldy and requires a
somewhat discouraging amount of algebra to be worked with. Weil himself writes [Wei79, p.
556] 27

Superficial as it may be, this difference has nevertheless contributed to unnecessar-
ily complicating the definitions relating to abstract varieties in Chap. VII of my
Foundations, and perhaps to putting off many readers. But at that time I had little
choice.

Presented by another mathematician, not enmeshed in a group like Bourbaki, one wonders
whether the resulting theory and its evident complexities would have been ignored. Instead,
the language of Weil’s Foundations was, eventually, widely used, and the inherent complexities
gave birth to a simplifying impulse; we will come back to this when we discuss [Ser55] which
serves as a partial response.

Undoubtedly the theory of fiber bundles was well-represented on both sides of the Atlantic.
By 1949-50, the Cartan seminar had focused on fiber bundles as well, but their interests ap-
pear rather different. The seminar was thinking about bundle theory and characteristic classes
in topology, and the Cartan–Serre method of killing homotopy was being developed. In con-
trast, Weil was taken with fiber bundles as a unifying theme, and a letter from Weil to Cartan
[CW11, p. 311] seemingly pushes for a shift away from thinking about fiber bundles only in
topological/differential-geometric contexts.

Weil opens the letter with an entreaty for Cartan to take its contents into account in his prepa-
rations for the 1950 ICM. Using a complex analytic theory of fiber bundles, Weil formulates the
Cousin problems in terms of fiber bundles, and observes that, following work of Oka, for “do-
mains of holomorphy” (later generalized by the notion of Stein manifold) the only obstructions
to holomorphic solutions are topological. In other words, he reformulates what would later be
called the Oka principle in terms of principal bundles under the group of non-zero complex
numbers C×. He closes the letter by writing:28

Once we get used to seeing fiber spaces in these questions, we quickly become
convinced that they appear everywhere (or at least “almost everywhere”) and that

26Weil highlights this in the introduction to [Wei62, p. viii], writing “Our results include all that is required for
a rigorous treatment of so-called “enumerative geometry”, thus providing a complete solution of Hilbert’s fifteenth
problem.”

27“Pour superficielle qu’elle soit, cette différence n’en a pas moins contribué à compliquer inutilement les
définitions relatives aux variétés abstraites au Chap. VII de mes Foundations, et peut-être à rebuter bien des
lecteurs. Mais en ce temps je n’avais guere le choix.”

28“ Une fois qu’on a pris l’habitude de voir les espaces fibrés dans ces questions, on ne tarde pas a se convaincre
qu’ils apparaisant partout (ou tout au moins ≪presque partout ≫) et qu’on gagn’e énormément... Il me paraı̂t certain
que presque tous les problèmes où il s’agit de recoller des données locales pour passes à du global sont de la nature
≪espace fibré ≫.”
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we gain enormously... It seems certain to me that almost all the problems where
it is a question of gluing together local data to produce global data are of “fiber
space” nature.

Borel cites part of this passage in [Bor99, p. 426] observing that only a fragment of the letter
was available to him, noting that this fragment alone “makes one strongly wish to see the rest”.
Cartan responds with interest, requesting clarifications and along the way notes:29

But I didn’t clearly see the link with fiber spaces.

In his collected works, Cartan discusses these ideas much less, writing only [Car15, p. XIV]:30

The first indications relating to the use of sheaf theory for the study of holomor-
phic bundles date back to a presentation that I gave in the BOURBAKI Seminar
(December 1950).

The Bourbaki talk to which Cartan refers [Car50] will be discussed much more later, but it
presents a nicely distilled version of the discussions of Cartan and Weil.

Auto-critique

When I began to write this narrative of fiber bundles, I couldn’t help but fall more and more
in the thrall of Weil. How magnificent his intuition! His vision was amazing! But Zariski’s
criticisms poked a hole in this idea suggesting that Weil’s conception might not have been
widely accepted. Zariski’s 1950 ICM address makes clear that, while algebraic geometers were
aware of Weil’s Foundations, many could proceed as if they effectively did not exist.

Nevertheless, I want to take a step back and try to investigate my point of view. Three
separate questions arise. First, “But why André Weil”? Second, am I just subscribing to another
“great-man” narrative of mathematics?xxvi Third: because historians of mathematics have been
very critical of Bourbaki’s historiography, and my only sources are largely Bourbaki members
themselves, is the treatment above just repeating a Bourbaki-approved version of the events?

2.1.7 (But why André Weil?). Maybe a more precise question here is: why did André Weil feel
compelled to introduce a definition fiber bundles in algebraic geometry, and would someone
else have done the same thing had he failed to do so? In asking a question like this about
“inevitability” I follow Mac Lane who asks precisely this question about category theory (see
the discussion of Paragraph 2.3.2).

To approach this question, I want to investigate at least one other mathematician interested in
applying ideas of topology to algebraic geometry: Solomon Lefschetz (though there are others;
we will very briefly touch on Hodge and what one might call the English school). Solomon
Lefschetz famously wrote [Lef68]:

As I see it at last it was my lot to plant the harpoon of algebraic topology into the
body of the whale of algebraic geometry. But I must not push the metaphor too far.

29“ Mais je n’avais pas vu clairement le lien avec les espaces fibres.”
30Les premières indications relatives à l’utilisation de la théorie des faisceaux pour l’étude des fibrés holomor-

phes remontent à une conférence que j’ai faite au Séminaire BOURBAKI (Décembre 1950).
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Indeed, many of the tools Lefschetz developed in algebraic topology (to which we will return
shortly) were created precisely to answer questions about topology of complex algebraic vari-
eties.

Lefschetz was also educated in France before emigrating to the United States. Like Weil, he
studied with Picard and was very interested in complex function theory. Eventually, Lefschetz
developed his fixed point formula about which Steenrod [Lef57, p. 24] writes:

The fixed-point problem seems to have dominated nearly all of Lefschetz’s work in
topology. Some dozen papers appearing during the period 1923-38 were concerned
directly with the problem.

But there is a related direction that later became important in algebraic geometry: Lefschetz
studied what is now known as the Picard–Lefschetz formula [Lef24]. Moreover, Lefschetz
was interested in even the foundations of algebraic geometry through the writing of his book
[Lef53], which appeared in 1953. Could Lefschetz have invented the theory of algebraic fiber
bundles?

In modern terminology, Picard–Lefschetz theory studies the following situation: one takes
a suitable proper holomorphic function on a complex manifold and aims to study the action of
the fundamental group of the complement of the critical locus on the homology of the fibers;
the situation of interest is now called a Lefschetz fibration. Once the concept of fiber bundle
was invented by Whitney, it is hard to imagine that Lefschetz would not have been immediately
aware that Lefschetz fibrations were examples of fiber bundles.

There are two distinctions to be made here. First, as I explained above, Weil seems to be
the person who really pushed studying algebraic varieties using the Zariski topology. In this
direction: “interesting” Lefschetz fibrations are essentially never locally trivial in the Zariski
topology and would have required an even more radical conception of “topology” in algebraic
geometry (a suitable such notion was invented later by Grothendieck, but was not seemingly
inspired by this analysis). Second, there is an issue of mathematical style. Given what is written
about Lefschetz’s mathematics, he was less concerned about “unifying structures” and themes
than he was about his own idea of “originality”. As such, it seems unlikely that he would have
focused attention on these kinds of structures in particular. In other words, it seems unlikely that
Lefschetz would have isolated “algebraic fiber bundles”. Instead, the Bourbaki conception of
“structure” and Weil’s romantic associated with analogy seem to conspire in Weil’s definition.
2.1.8 (Andŕe Weil and great-man narratives). As regards the second point, there have been many
histories of mathematics that paint mathematics as a sequence of events performed by “great
men.” Let’s try to be a little more precise about this: we need to admit that Weil’s status within
the mathematical community played an important role in acceptance of his ideas. Here, status
is used in the Weberian sense discussed in Economy and Society. In fact, use of these concepts
with regards to mathematical cultures is not original, for example, Michael Harris discusses
charisma in this context in [Har15]. Undoubtedly Weil possessed charisma in this sense.xxvii

To say it differently, if Weil had not actively pushed his point of view, it might have led to
completely different research priorities. I think it’s safe to say that we would not have had the
same perception of fiber bundles in algebraic geometry without Weil’s influence.

A related question is to whom was this influence directed? Cartan’s comments suggest that
Weil was esteemed among colleagues and older mathematicians. Furthermore, his sojourn in
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India undoubtedly left a mark on Indian mathematics, and a conduit by which Indian mathe-
maticians could begin to have contact with the undoubtedly more well-established European
mathematical scene. However, Weil, in contrast to Cartan, seems much less successful in an ad-
visorial capacity. If one believes the information at the mathematics genealogy project (which
is notoriously unreliable for older mathematicians), then Weil’s only students around this time
were Harley Flanders and Arnold Shapiro. Shapiro himself wrote a thesis on the cohomology
of fiber bundles [Sha50], but focused more on topological directions, perhaps in part due to
his close friendship with Raoul Bott. Bott refers to Shapiro [DM89, p. 532] as his “personal
remedial tutor”.31 What is certainly clear is that none in his academic lineage contributed to the
theory of algebraic fiber bundles. In other words, we have to assume that it was only through
his colleagues that theory of algebraic fiber bundles gained credence.

2.1.9 (Bourbaki self-mythologizing). Bourbaki as a group, and Weil and Dieudonné in partic-
ular, have been harshly criticized for their views on history of mathematics; see for example
[Cor04, pp. 329-338] and the references therein. In particular, Corry writes [Cor04, p. 331]:

Bourbaki’s historiography, as manifest in the Elements d’histoire as well as in the
individual writings of Dieudonné and of Weil, has been strongly connected with
their overall conception of mathematics. In particular, they have applied similar
criteria to differentiate important from unimportant ideas in both present mathe-
matical research and past mathematical theories.

Related discussion appears in [Ste23, Chapter 6]. The MathSciNet review of [Bou60] includes
the description

In their presentation the authors have been guided by their view of modern mathe-
matics. It is this retrospective view of the development of mathematics (outweigh-
ing the usual genetic description) which is probably the most important and unusual
feature of this torso. It also accounts for the heavy emphasis given to the mathe-
matics of the 19th and 20th century.

Note, however, that these descriptions seems to match many other (but not all!) historical
criticisms of histories of mathematics written by mathematicians themselves.xxviii

Later, Dieudonné wrote a “Panorama of mathematics” as seen by N. Bourbaki [Die82].
One aim of this book is to adumbrate the “major parts” of mathematics. Dieudonné begins by
pronouncing that “the history of mathematics shows that a theory almost always originates in
efforts to solve a specific problem” before going on to classify the kinds of problems that can
appear: stillborn problems, problems without issue, problems that beget a method, problems
that belong to an active and fertile general theory, theories in decline, and theories in a state
of dilution. His tone is unapologetically judgmental about the first pair and last pair in his

31Bott writes: “But these people — together with Kodaira and Spencer — and my more or less “personal
remedial tutor,” Arnold Shapiro, were the ones I had most mathematical contact with.” Bott also refers to his
“good friend” Shapiro in [Jac01, p. 378] where he details Shapiro’s contributions to the proof of Bott periodicity.
Later Shapiro gave a Bourbaki seminar about his joint work with Bott on Clifford algebras and the periodicity
theorem [Sha95]. Shapiro died in 1962, and the results exposed in the Bourbaki seminar became what is now
known as the Atiyah–Bott–Shapiro theorem [ABS64]
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classification, and situates Bourbaki’s interests among the third and fourth classes asserting
that “this is, I believe, as objective an opinion as I can form, and I shall abstain from further
comment.” Each chapter of the book contains at its end “a list of the mathematicians who
have made significant contributions to the theories described” [Die82, p. 3]. It is perhaps
unsurprising that Bourbaki-aligned mathematicians feature prominently in these lists, with Weil
appearing most regularly. Landsburg in his reminiscences on Weil [Lana] writes “with 11 major
contributions to his credit, Weil’s name appeared more often than any other.”32

Grattan-Guinness [GG90] writes more broadly of histories produced by mathematicians,
characterizing them as “an account of how a particular modern theory arose out of older theo-
ries instead of an account of those older theories in their own right”. Admittedly, my focus is
precisely on “how we got here” and where a particular mathematical idea arose from past math-
ematical theories.xxix There is undoubtedly a question of audience here and Rowe is slightly
more circumspect in his discussion:

No one, it seems to me, ought to dismiss the practical advantages of Weil’s approach
to history. True, it produces a highly rationalized picture of past achievements, not
to mention a contracted image of how mathematics developed, but it also addresses
the interests of the audience for which it is intended. Moreover, the historical stud-
ies of Weil, Dieudonné and others in the Bourbaki tradition represent serious and
very valuable contributions to scholarship.

Grattan–Guinness introduces a nice terminological difference between two styles that he calls
history and heritage [GG04]:

History addresses the question “what happened in the past?” and gives descrip-
tions; maybe it also attempts explanations of some kinds, in order to answer the
corresponding “why?” question...History should also address the dual questions
“what did not happen in the past?” and “why not?”; false starts, missed opportuni-
ties, sleepers, and repeats are noted and maybe explained...Heritage addresses the
question “how did we get here?,” and often the answer reads like “the royal road
to me.” The modern notions are inserted into N when appropriate, and thereby [a
notion] is unveiled (a nice word proposed to me by Henk Bos): similarities between
[a notion] and its more modern notions are likely to be emphasized; the present is
photocopied onto the past.”

He then states that: “Both kinds of activity are quite legitimate, and indeed important in their
own right; in particular, mathematical research often seems to be conducted in a heritage-like
way” (emphasis in the original), before asserting that “taking heritage to be history” is fre-
quently the mathematician’s view). This does seem an apt description of mathematical research:

32I do not begrudge Landsburg his evident reverence for Weil, about whom he writes: “Weil’s presence was
enhanced, as is the case with many great geniuses, by his personal eccentricities and the legends they inspired—
the strangely guttural French accent, the acerbic wit, the exacting standards, the complete inability to tolerate any
form of stupidity (quite a burden for a man compared to whom almost everyone else in the world was basically
a dunce), and the mischievous vanity. These traits live on in his writings and in the oral history that is lovingly
preserved by mathematicians worldwide.”
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we choose to read what we want into the mathematics of the past, sometimes simplifying, some-
times highlighting aspects we deem important before putting these notions to work in the sense
we need.

As an amusing sidenote, Corry also remarks that many glowing reviews of the Bourbaki
texts were written by members of Bourbaki themselves [Cor04, p. 299]. Pierre Samuel’s review
of Bourbaki’s algebra text, included the following line: “As Thucydides said about his History of
the Peloponnesian War, this is...a treasure valuable for all times (I.22).” Samuel was a member
of Bourbaki at the time of writing. One can only wonder if this is irony.xxx xxxi

To the extent that mathematicians read the history of their subject at all, I think this kind
of rational reconstruction is problematic even for mathematicians. Indeed, this view of history
retroactively legitimizes some points of view while de-legitimizing and circumscribing others.
Undoubtedly it is useful to contemporary mathematicians to have some organized form of the
knowledge of the past that is easily accessible to them, but having made those choices what are
to we make of using that organized knowledge for purposes of justification of current mathe-
matical work?

As regards Weil’s primacy in theory of algebraic fiber bundles, most of the historical sources
available to us seem like breadcrumbs laid out by Weil himself (or, perhaps, those who are
closely allied with his views).33 However, there are a few other leads we may chase: we can
start looking through MathSciNet or Zentralblatt for articles mentioning terms like analytic fiber
bundle, algebraic fiber bundle, algebraic bundle, or their French or German equivalents in the
period before 1955 or so. There are very few such papers. The first few I could find all appear in
the 1950s. Besides Chern’s theory of characteristic classes [Che46], the following papers seem
notable:

1. N. Hawley wrote [Haw52], a student of S. Bochner wrote an article entitled “Complex
fiber bundles” delivered to the National Academy in 1952; this paper mentions analytic
line bundles on Riemann surfaces and proposes an “analytic homotopy” classification
along the lines of Steenrod. He also mentions connections with some results of Hirze-
bruch on projective line bundles over the projective line on what are now called Hirze-
bruch surfaces. His analysis was mentioned in work of

2. Atiyah [Ati55], where it is remarked that these results are in error; this paper explicitly
mentions Weil’s work in its discussion of complex analytic bundles. Atiyah’s paper also
points back to the work of Weil, via the theory of non-abelian theta functions mentioned
above.

3. Kodaira and Spencer [KS53b] directly mention the Cartan seminar in their treatment of
complex analytic bundles in terms of sheaf cohomology and the work of Weil on Picard
varieties; these papers will be discussed in detail later.

4. Nakano [Nak55] discusses complex analytic fiber bundles as well, but he explicitly makes
mention of Weil’s 1949 Chicago colloquium presentation.

33Weil certainly viewed himself as a protagonist in mathematical history. For a discussion of Weil’s role in
shaping the history around the Riemann hypothesis for function fields of curves over finite fields, see “La guerre
de recensions” by [Aud12].
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Conclusion

Putting all this together, I think we can attribute the idea of studying fiber bundles in algebraic
geometry to Weil, and assert that Weil influenced the treatment of complex analytic fiber bun-
dles by means of his highlighting problems of interest to Cartan in this language. Weil was
very well-respected among mathematicians of his age and those of an older generation, but for
his ideas to gain a foothold, those ideas would have to be adopted by the next generation of
researchers; this distribution seems to have been achieved through the Cartan seminar.

By 1952, Weil had given a course on algebraic fiber bundles, notes from which were widely
cited [Wei55], the Cartan seminar had, after discussing cohomology in various contexts, moved
back to the theory of analytic spaces and had considered fiber spaces, in particular from a
cohomological point of view. The merged Cartan–Weil point of view on fiber bundles and fiber
spaces was thus internalized by the participants of the Séminaire Cartan. I think it’s safe to
say that Weil’s point of view on analytic and algebraic fiber bundles was an integral part of the
mathematical culture around the Cartan seminar by 1952/3, and by May of 1953, Serre gave
a summary of this work in a Séminaire Bourbaki talk [Ser54]. In the penultimate section of
this note, concerning examples, Serre explains that “the most important are vector bundles”34,
a point to which we will return.

2.2 The homological style in algebraic topology
Eilenberg grew up in the Polish school of mathematics centered in Warsaw where he was a
student of Karol Borsuk [BCF+98, p. 1346]. I’d like to spend a little bit of time tracing his role
through the foundations of algebraic topology leading up to Cartan–Eilenberg’s Homological
algebra. A great many things have been written about the history of homological algebra (for
example, see [Wei99, McC99] etc.) so I’d like to weave a path that avoids much that has been
written (or, at least those things of which I’m aware).

The Warsaw school, which flourished between the two World Wars, published in the journal
Fundamenta Mathematica founded in the 1920s. Led by Sierpiński, and including many notable
figures such as Kuratowski and Borsuk, the interests of the Warsaw school centered around
point-set topology, real analysis, logic and set theory. This school, which was firmly grounded
in axiomatic approach to mathematics, took inspiration from the work of Felix Hausdorff as
well as a “Russian modernist” tradition as argued by Corry [Cor24, p. 102]. Point-set topology
in style here was an undoubtedly modern field in the sense of the word used in the introduction,
growing from the work of P. Alexandroff and A. Urysohn who were interested in studying
“general” topological spaces and had analyzed various corresponding “classification” questions
(the list of these names brings to mind, e.g., separation axioms). Sierpiński was trained by Luzin
in Moscow, bringing these ideas to Poland and the Warsaw school and the Russian school had
close contact up until the 1930s.

In this section, we aim to situate the vast numbers of points of view that were introduced into
algebraic or combinatorial topology in the late 1930s and 1940s in response to Poincaré’s early
work. Of particular interest to us for our later discussion will be how this material is reflected in
Eilenberg’s aesthetics and mathematical methodology as this provides a frame for Cartan and

34Serre writes: “Les plus importants sont les espaces fibrés à fibre vectorielle.”
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Eilenberg’s text. Moreover, I aim to indicate in this section and partially the next one, how
certain algebraic ideas were adopted by the core of the group of combinatorial topologists.
2.2.1. Samuel Eilenberg, frequently referred to as Sammy, received his degree in 1936, but had
already published a number of papers about e.g., continuous maps to spheres (in the direction of
Borsuk’s cohomotopy), Lusternik–Schnirelmann category, etc. These papers show increasing
interest in the objects of combinatorial (now algebraic) topology, as opposed to the general
topology more stereotypically associated with the Polish school. Eilenberg came to the United
States in 1939, first to Princeton where Oswald Veblen and Solomon Lefschetz were welcoming
and helping to place refugee mathematicians fleeing WWII. He settled in 1940 at the University
of Michigan with its vibrant topology group built by R. Wilder (see [DEM89, p. 196-7] for
Wilder’s recollections of Eilenberg’s hiring). Eilenberg’s stay in Michigan overlapped with that
of Norman Steenrod who arrived in 1942. This period was very fertile, laying the groundwork
for Eilenberg’s work with Steenrod, as well as Mac Lane (note Wilder writes in [DEM89, p.
196] that this was around 1947, contradicting recollections of others including Mac Lane).

Much has been written about Eilenberg’s mathematical style, and aspects of this style will
play a significant role in the subsequent discussion. To frame this style we begin by looking at
Eilenberg’s early interaction with Solomon Lefschetz, especially around the foundations of sin-
gular homology; Mac Lane characterizes this interaction as an “argument”. According to Mac
Lane, Eilenberg found Lefschetz’s book [Lef42a] “obscure”. Others have been more explicit in
their description of the obscurity, characterizing it in terms of purported defects in Lefschetz’s
approach to singular homology (specifically, the chain groups defining the theory were not free).
Gian-Carlo Rota describes [Rot08, pp. 18-19] Lefschetz’s book in the following way:

This book, whose influence on the further development of the subject was decisive,
hardly contains one completely correct proof. It was rumored that it had been writ-
ten during one of Lefschetz’s sabbaticals away from Princeton, when his students
did not have the opportunity to revise it and eliminate the numerous errors, as they
did with all of their teacher’s other writings.

Whitney’s review of [Lef42a] for Math Reviews includes the phrase: “In each proof the neces-
sary elements are brought in, but sometimes in a somewhat displaced order, making the logical
structure of the proof more difficult to ascertain.”

Eilenberg’s style contrasts rather starkly with that of Lefschetz who is frequently described
as a “purely intuitive mathematician.” Perhaps Mac Lane’s characterization of this interaction
as an argument stems from another description of Lefschetz: “He despised mathematicians who
spent their time giving rigorous or elegant proofs for arguments which he considered obvious”
[Rot08, p. 19]. Eilenberg, cognizant of deficiencies in Lefschetz’s treatment of singular homol-
ogy prepared his own, appearing as [Eil44]. Even if this paper was initially not well received,
the appearance of this paper in Annals of Mathematics can be viewed as Lefschetz’s tacit en-
dorsement (see the discussion in Section 2.3 for further explanation).

According to Mac Lane [BCF+98, p. p. 1346] Eilenberg operated under a general principle
to “dig deep and deeper till he got to the bottom of each issue”. Hyman Bass made more explicit
comparisons [BCF+98, p. 1352] about Eilenberg’s methodology:

He fit squarely into the tradition of Hilbert, E. Artin, E. Noether, and Bourbaki; he
was a champion of the axiomatic unification that so dominated the early postwar
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mathematics. His philosophy was that the aims of mathematics are to find and artic-
ulate with clarity and economy the underlying principles that govern mathematical
phenomena.

To explore the principles that informed the above “clarity” (clear to whom and in what
sense?), let us visit the preface of [ES52, p. ix-x] where one finds:

We were faced with the problem of presenting two parallel lines of thought. One
was the rigorous and abstract development of the homology groups of a space in
the manner of Lefschetz or Čech, a procedure which lacks apparent motivation,
and is noneffective so far as calculation is concerned. The other was the non-
rigorous, partly intuitive, and computable method of assigning homology groups
which marked the early historical development of the subject. In addition the two
lines had to be merged eventually so as to justify the various computations. These
difficulties made clear the need of an axiomatic approach.

Axiomatics are justified as a way to tame the plethora of different approaches to (co)homology
at the time, a topic which we will revisit shortly. They describe their approach to axiomatization
in the following way:

No motivation is offered for the axioms themselves. The beginning student is asked
to take these on faith until the completion of the first three chapters. This should
not be difficult, for most of the axioms are quite natural, and their totality possesses
sufficient internal beauty to inspire trust in the least credulous.

Here “clear” seems to be used in opposition to “non-rigorous” but, more importantly, also in
partial opposition to “intuitive”. The axioms are asserted to be “natural”, but “natural” with
respect to what assumed background? This is a thoroughly modernist position in the sense used
by Corry [Cor04].

André Weil first met Eilenberg in 1944, around the time of the publication of the singular
homology treatise, but apparently after Eilenberg and Steenrod had worked out part of their
axiomatic approach to homology. Weil writes [Wei14, p. 526]:35 “for example Eilenberg told
me in 1944 of the axiomatic theory that he had just built with Steenrod...” Weil was already
familiar with some of Eilenberg’s work of this period as he writes to Cartan about Eilenberg
[CW11, p. 93]:36

Volume III of the topology seems fine, but we have written an appendix on the
topology of the plane according to the methods of Eilenberg, which would find its
place there and which we will send to you soon.

Later in the same letter [CW11, p. 94] he writes, alluding to Eilenberg’s treatment of singular
homology:37

35par exemple Eilenberg me fit part en 1944 de la theorie axiomatique qu’il venait de batir avec Steenrod...
36“Le volume III de la topologie nous paraı̂t bon, mais nous avons rédigé un appendice sur la topologie du plan,

d’après les méthodes d’Eilenberg, qui y trouverait bien sa place et que nous vous ferons parvenir bientôt.”
37Eilenberg a aussi une théorie de l’homologie que nous sera bien utile pour nos volumes de topologie combi-

natoire.
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Eilenberg also has a theory of homology which will be very useful for our volumes
on combinatorial topology.

Weil and Cartan would eventually recruit Eilenberg to the Bourbaki fold, but Weil makes first
mention of a disjunction that would play an important role in the development of homology: his
disappointment that the Eilenberg–Steenrod axiomatization does not apply to de Rham theory.

(Co)homology from Poincaré to Eilenberg–Steenrod

To put ourselves in the right frame of mind, let’s look at the state of (co)homology in 1942. I
would like to visit the story as it is presented by Eilenberg–Steenrod, highlighting aspects of the
outline they provide [ES52, p. viii]. This treatment will, I think, look rather different from many
treatments in the mathematical literature, e.g., those appearing in [Jam99] or [Die09] since my
goal will be to highlight how mathematical historical presentations can depend on dogmatic
views. The same structure is employed by Steingart [Ste23, p. 44].38

2.2.2 (Poincaré: from manifolds to homology). By his admission, Poincaré was interested in
“manifolds” [Poi95]. Because it will be useful to situate our discussion, let us recall some ways
in which Poincaré thought about manifolds; some points discussed here were already mentioned
in Paragraph 2.1.3. We refer the reader to [Sch99] for more general history on the evolution of
the manifold concept and [Lef99, §3.2] specifically of Poincaré’s treatment.

Poincaré used at least two different conceptions of manifolds within Analysis Situs: the de-
scription from [Poi95, §1] corresponds, in modern terminology, to something like an embedded
C1-manifold, possibly with boundary, but the examples he gives are all specified in terms of
equations and inequalities. Later in the paper, he uses a version in terms of something like
an open covering by overlapping parametric n-cells. He asserts that the second definition is
equivalent to the first one, but frequently falls back upon the first; the treatment of the second
definition is undoubtedly influenced by Poincaré’s understanding of analytic continuation of
functions in the complex plane as this point of view is prominent in Riemann’s conception of
surface.

Poincaré also gave various constructions of manifolds, say in terms of “identification spaces
(think of the torus as built from the square by identifying opposing edges). The word home-
omorphism is also introduced for the first time in [Poi95, §2]; unlike the modern use of the
word which relies only continuity properties, Poincaré’s version implicitly contains some dif-
ferentiablity hypotheses. Generalizing what is now called the genus of a compact orientable
surface, Poincaré first defined numbers along the lines of Betti. These numbers were them-
selves extracted from suitable “incidence” matrices that were themselves built out of some kind
of “combinatorialization” of a manifold. Poincaré’s combinatorializations were obtained by de-
composing his manifolds into something like cells homeomorphic to simplices while keeping
track of orientations of some sort. The incidence matrices Poincaré wrote down corresponded
to linear equations from whose solution sets Betti numbers could be extracted. By introducing
and considering the “dual” of a given decomposition, Poincaré established a duality result: “the

38Steingart refers to the outline presented in the Introduction to [ES52] as a “historical development” of algebraic
topology (emphasis in the original). I quibble with this assessment as they make no such claim, which raises the
question: who gets to determine what is and is not history or a historical development?
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Betti numbers equally distant from the extremes are equal”, this is the primordial version of
what is now called Poincaré duality.

If the description given sounds vague to a modern reader, perhaps it strikes the right tone
as the “combinatorialization” seems baroque to modern eyes. The “pieces” into which one
decomposes a manifold were themselves manifolds: Poincaré writes [Poi10, §5]

Consider a manifold V of p dimensions; now let W be a manifold of q dimensions
(q ≤ p) which is a part of V . We suppose that the boundary of W is composed of
λ manifolds of q − 1 dimensions..

He is thus not constructing implicitly or explicitly, what we might call a triangulation or sim-
plicial approximation.

Poincaré’s description reads (to me) somewhat like a cookbook, or perhaps more gener-
ously, an algorithm. Readers at the time found it vague as well. Heegard, in his thesis, observed
some mistakes in Poincaré’s discussion of orientations leading to an error in his proof of the du-
ality theorem. To respond to this and subsequent concerns about his treatment, Poincaré would
eventually publish five supplements to his initial treatise. In [Poi00], Poincaré’s linear equations
were formulated in terms of integer-valued “incidence matrices”, with better treatment of orien-
tations. Extracting normal forms for these matrices, e.g., Smith normal form, Poincaré’s second
formulation led to two types of numbers: Betti numbers and so-called torsion numbers.39

Nevertheless, Poincaré’s analysis leads to many questions. The discussion of “combinato-
rialization” given by Poincaré demonstrates that it was something of an art. Looking back one
can see a number of questions. For identification spaces that Poincaré considered the procedure
for extracting Betti numbers was intuitive. But even for spaces defined by equations, how could
one know that a given “combinatorialization” was fine enough to reflect the geometry of the
space under consideration? If one chose a different combinatorialization, why didn’t the Betti
or torsion numbers change? As notions of “space” evolved and became more general, could
one still attach Betti numbers and torsion numbers?

Because it has some bearing on the timeline, we mention that Poincaré was specifically in-
terested in three-manifolds and his interest here came from analysis of differential equations; it
was investigations of closed curves in the context of differential equations that led to Poincaré’s
introduction of the fundamental group. In Poincaré’s conception: Betti numbers and funda-
mental groups were of secondary importance to what we would now call the homeomorphism
problem for three manifolds. Poincaré’s treatment of homology is roughly the state of the art
for the next 20-25 years.

Instead, this period sees intense development of notions of space: bridging metric concep-
tions of geometry and the manifold conception, the notion of general topological space is for-
mulated in this period. Brouwer introduces the notion of homotopy around 1912 in the course
of his analysis of classification of continuous maps. There is a slow refinement of the process of
combinatorialization as can be seen by consulting Veblen’s treatment of Analysis Situs [Veb31].
Indeed, even in 1923/24 Künneth published his famous formulas for the homology of product

39My treatment here has been informed by [Poi10] and [Sti12]. This translation of the computational problem
to one of normal forms of matrices remains in modern computational approaches to homology.
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spaces essentially using Poincaré’s formulations [K2̈3, K2̈4] and Lefschetz was still using these
formulations in 1925.

Volkert has described the importance of the homeomorphism classification problem for 3-
manifolds in particular, beginning in the mid 1880s [Vol02, §2.3.1]. Indeed, Betti numbers and
fundamental groups, and later torsion numbers were secondary and built arguably in service to
the classification problem. Volkert goes on to argue that beginning in the 1920s the invariants
themselves became the focus.

2.2.3 (Enter abstract algebra). Around 1925, the character of the discussion of homology changes
and much of the subsequent discussion centers around the following note of E. Noether [Noe25]
establishing that “elementary divisor theory” could be interpreted in terms of group theory.
Noether wrote:40

As is well known, elementary divisor theory gives modules of integer linear forms
a normal basis of the form (e1y1, e2y2, ... , eryr), where each e is divisible by the
following; The e are thus uniquely defined up to the sign. Since every Abelian
group with a finite number of generators is isomorphic in the residue class system
to such a module, the decomposition theorem of these groups is thereby proven as a
direct sum of cyclic ones. Conversely, the decomposition theorem is now obtained
directly using purely group theory, in a generalization of the usual proof for finite
groups, the elementary divisor theory is derived from it by moving from the residue
class system to the module itself. The group theorem turns out to be the simpler
theorem; in the applications of the group theorem - e.g. Betti numbers and torsion
numbers in topology - it is therefore not necessary to go back to elementary divisor
theory.

This comment has served as a turning point in the discussion of group theory in topology, and
its significance is perhaps generational in a sense that I will now explain.

Several authors have pointed to Noether as the source for the use of group theory in ho-
mology.41 Lefschetz, writing in [Lef99, §3.1] qualifies this by writing that group theory was
introduced “by Emmy Noether (through Alexandroff).” This period is also marked by the ap-
pearance of the first edition of van der Waerden’s text [vdW30, VdW31]. The preface of van
der Waerden’s text cites a number of sources attesting to the prevalence of algebraic ideas;
these ideas are fleshed out in van der Waerden’s own recollections of the writing of his text-
book [vdW75]. Indeed, van der Waerden cites E. Steinitz’s work from 1910, augmented by a

40“Die Elementarteilertheorie gibt bekanntlich fur Moduln aus ganzzahligen Linearformen eine Normalbasis
von der Form (e1y1, e2y2, ... , eryr), wo jedes e durch das folgende teilbar ist; die e sind dadurch bis aufs Vorze-
ichen eindeutig festgelegt. Da jede Abelsche Gruppe mit endlich vielen Erzeugenden dem Restklassensystem nach
einem Solchen Modul isomorph ist, ist dadurch der Zerlegungssatz dieser Gruppen als direkte Summe gro.Bter
zyklischer mitbewiesen. Es wird nun umgekehrt der Zerlegungssatz rein gruppentheoretisch direkt gewonnen, in
Verallgemeinerung des fur endliche Gruppen iiblichen Beweises, und daraus durch Ubergang vom Restklassen-
system zum Modul selbst die Elementarteilertheorie abgeleitet. Der Gruppensatz erweist sich so als der einfachere
Satz; in den Anwendungen des Gruppensatzes - z. B. Bettische und Torsionszahlen in der Topologie - ist somit ein
Zuriickgehen auf die Elementarteilertheorie nicht erforderlich.”

41Perhaps we should be even more precise here and discuss the use of group theory in homology in Germany.
Indeed Tucker writes in his review of Seifert and Threlfall’s famous topology book [Tuc35a]: “The influence of
the German algebraic school is reflected in a frank use of group theory.”
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treatise written with R. Baer and H. Hasse, as well as lectures of Emil Artin in Hamburg on
Algebra, a seminar by Artin, W. Blaschke, O. Schreier and himself on the theory of ideals, and
lectures of Emmy Noether in Göttingen in 1924/25 on group theory and hypercomplex num-
bers as key sources used in the preparation of his landmark treatise. All of this is a testament to
the prevalence of group-theoretic and, more generally, algebraic ideas in Germany during this
period.

Dieudonné [Die84] wrote that Noether had persuaded Hopf to use group theory in his dis-
cussion of homology using the above ideas and thus credits the transition from matrices to group
theory to Noether. This version of events is repeated in other “histories” including [Wei99,
§1.3]. However, the situation appears more complicated. Mac Lane argues that by 1926 Vi-
etoris [ML86] was already using groups in homology, independently of Noether’s influence.42

We won’t quibble over dates, but the remarks of Vietoris on Mac Lane’s manuscript seem
rather more important in this discussion. Vietoris writes (in Mac Lane’s translation)

Without doubt H. Poincaré and his contemporaries knew that the Betti numbers and
the torsion coefficients were invariants of groups, whose elements were (classes
of) cycles under the operation of addition...Then one worked with the numerical
invariants rather than with the invariant groups. That was a matter of ‘taste’.

Dieudonné’s MathSciNet review of Mac Lane’s paper contains this response:

The author quotes a letter from Vietoris, who attributes to Poincaré the knowledge
of the relation of his “incidence matrices” with abelian groups. The reviewer has
never seen any statement from Poincaré which would support this idea; Poincaré
was dealing with groups in almost every part of mathematics; if he had seen groups
in homology, he certainly would have said so.

Even though authors of the time only used the terminology abelian groups, Dieudonné insists
in [Die09, p. 38] on calling them Z-modules...certainly non-standard.43 He furthermore writes
that Noether was: “engaged in the process of liberating linear algebra from matrices and deter-
minants.” Noether’s approach was undoubtedly spiritually closer to Dieudonné’s aesthetics, and
arguably the Bourbaki abstraction aesthetic than Poincaré’s approach, which we might now-a-
days call “down to earth.” Certainly the lack of rigor which we now associate with Poincaré
seems antithetical to the Bourbakiste ideal.

One can see in this discussion something of a generational difference about acceptance of
new mathematical terminology or ideas. Indeed, Vietoris finished his degree in 1920, while
Hopf finished his degree in 1925. One might argue that Hopf “grew up” with the new kinds of
abstraction and accepted and internalized the inclusion of abstract groups, making little mention

42Mac Lane qualifies this slightly. He first notes that Dieudonné’s history makes the claim that “Mathematical
ideas originated in Göttingen and then spread to lesser places. It was not always that simple.” After discussing the
work of Vietoris in more detail he writes: “Probably ideas passed back and forth in both directions between Vienna
and Göttingen (and Berlin, Moscow and Paris).” Granted the frequent interactions and letters that passed back and
forth and the general interconnectedness of the era, this seems more plausible to me than unidirectionality.

43The systematic adoption of module-theoretic terminology was definitely part of Bourbaki’s approach to alge-
bra and sped up by the influence of these texts.
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of its use going forward.44 In contrast, Vietoris explicitly refers to the use of abstract groups as
a matter of taste.45

Werner Mayer (the same Mayer of the Mayer–Vietoris sequence) seems to be first person to
take the next leap in two senses: (i) he wrote down the notion of a (chain) complex [May29b,
May29a], though note that at this stage the notion was still viewed as provisional, and (ii)
provided an axiom system for defining homology [May29b, I. Abschnitt].46 Mayer explicitly
thanks Vietoris for help with topology. Dieudonné writes [Die84] that Mayer “did not mention
Emmy Noether at all in this paper. However, by that time the spirit of ‘modern algebra’ had
spread to many German universities..”” Mac Lane argues [ML86], contra the view espoused
by Dieudonné, that Mayer’s conception of group theory arose from interactions with Vietoris.
Once again, Mayer’s Ph.D. (granted in 1912) predates 1925, and this seems to support the view
stated by Vietoris that “groups were in the air” and their use was “a matter of taste.”

By the end of the 1920s, something about language seems to have shifted: most papers using
homology are phrased in terms of groups. Moreover, this change was not viewed as inevitable
even by practitioners; Noether’s point of view comes out the winner, and it seems that as one
of the most prominent practitioners, retrospectively she is identified with the theory. The name
complex itself seems to crystallize from the various combinatorial approximations used to build
spaces.

2.2.4 (Mathematical dead-ends). Somewhat later, Mayer analyzed variants of what would be-
come our modern definition of chain complex. In a chain complex, the differential squares to
zero, and Mayer considers situations where these might not be the case [May42]. Instead, he
considers sequences of abelian groups together with sequences of maps between them having
the property that the composite of p sequential terms is zero, as opposed to just 2. Eventu-
ally, Spanier showed [Spa49] that this notion did not give “new invariants” relative to the old
method, and not much is said about the theory subsequently. This gives an example of what one
might call a mathematical dead-end. I have a vague recollection that in the years since, Mayer’s
definition has been “reinvented” several times, though I can no longer recall precise sources.

2.2.5 (A mangle of theories). Another strand of development after the general acceptance of
group theory arose from the various studies of “combinatorialization” of spaces. I will not try
to give any precedence to ideas here, but I want to highlight some points of discussion that will
be useful later.

Poincaré’s own procedure for computing homology gave rise to what one might call primor-
dial cell-decompositions, and first developments of combinatorialization followed this avenue
of thought exploring variants of this notion leading to various notions of what one would even-
tually call a “cell complex”. As regards the word “complex” Dieudonné writes [Die09, p. 37]:

44Mac Lane reports [ML86] that Hopf explicitly comments that Noether’s ideas provide a “simplification” of the
proof. As usual, this simplification comes at the cost: that of familiarity with and facility with use of a mathematical
structure, i.e., the notion of group.

45See [Vol02, §6] for a more detailed timeline and much additional discussion of the algebraisation of topology
in this period.

46V. Katz points out in [Kat99, p. 120] that this kind of axiomatic development of homology long predates that
of Eilenberg–Steenrod, whose axiomatic treatment of homology wasn’t published until February 1945 [ES45].
Certainly the use of “Axioms” was “in the air” and “a matter of taste”. Nevertheless, Dieudonné’s treatment in
[Die09, IV §6 B p. 107] makes no mention of Mayer’s paper.
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Unfortunately that word is given different meanings by the mathematicians who
use it; for the sake of clarity we shall use a terminology that distinguishes these
meanings, even if it does not coincide with the one used in the papers we describe.

Dieudonné frames the development differently: he begins with “decompositions of manifolds”
into what we might now call finite cell complexes via “triangulations”. Note that Poincaré
himself never mentions “triangulations”, which to a modern reader mean something else, but
instead speaks of “polyhedra”. The notion of polyhedral subdivision changes as one can see in
[Veb31]. All of these constructions were finite in nature.

In his 1932 thesis, Albert W. Tucker had created a combinatorialization of a manifold
[Tuc33] with the goal of more clearly formulating Poincaré’s duality theory. Later, he intro-
duced a more general notion of cell space in [Tuc36b] which greatly expanded the kinds of
topological spaces to which homological techniques could be applied: these developments per-
mitted analysis of complexes that were not necessarily finite.47

Another variant of Poincaré’s approach led to simplicial complexes as studied by Lefschetz
[Lef30]. This led eventually to the concept of singular simplices and singular cohomology, one
treatment of which appears in [Lef42a]; Lefschetz’s particular presentation of singular homol-
ogy will be revisited in Section 2.3.

Around the same time, Alexandroff and Čech introduce another combinatorialization by
way of coverings and their intersections: this leads to the notion of the “nerve” [Čec32b] and
to yet other forms of homology. The sense we want to give is of an explosion of activity and
a huge number of different approaches to homology and later cohomology; we will revisit this
discussion in Paragraph 2.4.1.

By 1935, Alexandroff and Hopf had published their famous topology book [AH72]. In the
introduction, it is explained that preliminary versions benefited immensely from, among a whole
list of mathematicians, discussions with the Princeton topology group consisting of Alexander,
Lefschetz and Veblen.

2.2.6 (Points of view). The year 1935 was also marked by the first international conference
devoted to topology, held in Moscow. Whitney writes [DM88, p. 97] that the conference was
notable in several ways:

To start, it was the first truly international conference in a specialized part of mathe-
matics, on a broad scale. Next, there were three major breakthroughs toward future
methods in topology of great import for the future of the subject. And, more strik-
ing yet, in each of these the first presenter turned out not to be alone: At least one
other had been working up the same material.

47Since he has already been mentioned once and especially since his writings will reappear at numerous points
throughout the narrative, let us mention that Albert W. Tucker was a student of Solomon Lefschetz who after
his thesis joined the Princeton Mathematics Faculty in 1933 and remained there until 1974. He was department
chairman during the 1950s and 1960s and was described as the “intellectual soul of Princeton’s mathematics
department” [Nas]. While his initial work was in topology, Tucker later laid the foundations for the theory of
linear programming and analyzed game theory; it is these later results that are more widely known. For example
the Kuhn–Tucker conditions frequently make their way into multi-variable calculus textbooks. Later in life, he
organized an oral history project focusing on the Princeton Mathematics department which was an extremely
useful resource.
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The activities of the conference were summarized as well by Tucker [Tuc35b] thus:

The papers showed a broad conception of topology and its relations with other
subjects. The discussions which followed the papers were keen and informal; they
revealed many instances of overlapping investigations, and led to an invaluable
exchange of ideas. In fact one could hardly conceive of a more successful scientific
gathering.

The mention of the fact that a number of people were thinking about similar ideas seems notable,
as does the fact that the “successfulness” of the conference is characterized in terms of the
exchange of ideas, not, for example, in terms of what we might call a “deliverable” (say the
solution to a problem).

Whitney frames some aspects of the conference around the book of Alexandroff–Hopf
[AH72] that was about to appear. The book is famously titled “Topologie I”, with the idea
that it would be the first of a three part series on the state of algebraic topology. But [DM88, p.
97]:

the conference was so explosive in character that the authors soon realized that their
volume was already badly out of date; and with the impossibility of doing a very
great revision, the last two volumes were abandoned.

Tucker reviewed the book of Alexandroff and Hopf for the AMS [Tuc36a] in 1936, writing:

Topology is not a young subject; this year may be described as the two hundredth
anniversary of its birth if we agree that it had its beginning in the problem of the
seven bridges of Königsberg settled by Euler in 1736. But the systematic devel-
opment of topology is new; it has only come since the work of Poincaré at the
turn of the century. The International Topological Conference held at Moscow last
September showed that the subject has attained a definite measure of maturity and a
wide range of influence on other branches of mathematics, but that it is still under-
going rapid growth and flux. Just when topological activity seems to be slackening
some new point of view sets it seething again; in the past year we have had an
example of this in the “dual cycles” of Alexander and Kolmogoroff.

The “dual cycles” of Alexander and Kolmogoroff are now viewed as the beginning of coho-
mology as a notion to be investigated systematically and distinct from homology (Poincaré had
investigated “dual cycles” in his duality investigations, but this was within the confines of ho-
mology). Striking to me about this paragraph is Tucker’s phrase “some new point of view sets
it seething again”. More explicitly: it is not problems, conjectures or theorems that are funda-
mental in this new “systematic development of topology”, but “points of view.” Could anything
sound more social than a mixing pot of ideas, where “points of view” are the most important
thing?xxxii What informed these “points of view”? Why were some more readily accepted than
others? Certainly, concrete developments contributed to the conception of importance, but as I
hope I have illustrated with Mayer’s work, that does not appear to me to be the only factor.

Formulations of Poincaré duality also led to the concept of homology or cohomology with
coefficients. But this development had other sources also. Hopf had shown, extending ideas
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of Poincaré, that an orientable manifold admits a nowhere vanishing tangent vector field if and
only if its Euler characteristic is 0. Stiefel had extended this result to a finite number of (linearly
independent) tangent vector fields using (characteristic) cohomology classes. In an initially
parallel direction, Whitney had reformulated [Whi37a] the Hopf classification theorem of maps
from an n-complex to an n-sphere in cohomological terms, inventing the notion of cohomol-
ogy with coefficients in a homotopy group along the way. Eilenberg had extended Whitney’s
analysis studying obstructions to extensions of maps (up to homotopy) using cohomology with
coefficients in a homotopy group [Eil40]. By 1941, Steenrod extended some of Eilenberg’s
results and used cohomology with coefficients to analyze Stiefel’s problem about linearly in-
dependent vector fields [Ste42]. Eventually, Steenrod took another step and studied homology
with local coefficients [Ste43] more generally.

Conclusion

We have already seen that “points of view” were driving forces in the early development of
combinatorial/algebraic topology and it appears that problems and conjectures were important,
but perhaps served more as touchstones of progress than driving factors. Indeed, the problems
of the era seem like a string of evolutions/refinements, depending on the terminology in vogue.
One begins with the Euler characteristic and its interpretations/computations: Hopf’s theorem
about zeros of vector fields and Euler characteristics is eventually subsumed by characteristic
cohomology classes in several ways, e.g., the Gauss–Bonnet theorem in terms of curvature.

Riemann’s genus, also connected to the Euler characteristic, led in different directions: first
to Betti numbers, homology groups and eventually problems around classification of manifolds
(see, e.g., [VA13]). The classification of surfaces was “known” to Riemann, though see [Vol02,
§2] for further clarification regarding the use of the word “known” here. We remarked earlier
on the importance of the manifold classification problem in Poincaré’s work on three mani-
folds, and subsequent work. Problems such as the Poincaré conjecture were undoubtedly of
great interest and topologists such as J.H.C. Whitehead were quite interested in such problems
(Whitehead’s purported, but false, proof of the Poincaré conjecture appearing in 1934 [Whi34]
attests to this).

Links between combinatorial group theory and topology were developed significantly in this
period. General discussion of these ideas of these links can be found in [CM82, Chapter II];
particularly interesting is the work of the German school, e.g., Artin as related to fundamental
groups of knot complements. Volkert describes [Vol02, Chapter 6] the gradual shift in the period
1920-1950 away from the classification problem and toward general invariant computations; in
a sense Steenrod’s discussion of fiber bundles from Paragraph 2.1.3 shows the pendulum starting
to swing backwards.

It’s difficult, with modern prejudices, to look upon the “mood” of the times as regards the
manifold classification problem, but it’s important to note that insolubility of the word problem
for finitely generated groups was still many years in the future, and the concept of algorithmic
unsolvability didn’t exist in any formal sense yet. Volkert argues that the idea of classifica-
tion of three manifolds was an important precursor to the development of topological ideas
[Vol02, Chapter 3]. In the 1920s and 1930s it perhaps seemed likely that a classification of
“all” manifolds, mirroring the case of surfaces where some small collection of topological in-
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variants could be used to enumerate all homeomorphism types, was plausible and perhaps even
eventually possible.

At the same time, higher dimensional Riemannian geometry was “in the air” because of Ein-
stein’s relativity theory, with which Hilbert and Poincaré were conversant (and Weil discusses
his learning special relativity in his autobiography). Mayer was a privatdozent with Einstein
in Vienna in the 1920s before his work in topology, so people walked back and forth between
these worlds: some higher dimensional notions were in the popular academic conscious at the
time.

Each of these ideas appears to follow a historical arc, but changing “points of view” lead
the development in different directions. On the other hand, the work of Mayer on modifications
of chain complexes seems to fall outside this pattern, It appears to be generalization for its
own sake: an idea is developed with the potential of giving new invariants, but eventually does
not succeed, even on its own terms.xxxiii The most successful branches described above seem
central in the sociological sense. A clear case is Chern’s work as it linked characteristic classes,
interests of Stiefel, Whitney, Steenrod, with differential-geometric ideas of Cartan.

The “axiomatic” approach of Eilenberg–Steenrod to homology thus hardly seems inevitable.
Its appearance is predicated on the vast number of different homology theories that had arisen.
By the time of its appearance, homology and cohomology had been, in some form, contained in
the mathematical literature for almost 50 years. It was also certainly not a foregone conclusion
that this method would be widely accepted. Indeed, the fact that “combinatorial topology” was
amenable to different points of view seems to be one feature of the subject that allowed it to be
receptive to the axiomatic approach in the first place. In the next section, we will explore the
limits of this receptivity.

2.3 A cartographic view of functoriality in the mathematical landscape
By 1942 Eilenberg and Mac Lane were investigating homology of infinite complexes having
moved away from manifolds to more purely “combinatorial” geometries and using Tucker’s
theory of complexes (see the references in [EM41]). In this paper, Eilenberg and Mac Lane
analyze infinite complexes by successive “finite” approximations via limiting constructions:
one sees the notion of direct limits appear, as well as the beginnings of universal coefficient
theorems. This paper rested on a fortuitous accident that Mac Lane has recounted with slightly
varying details in several places, e.g., [BCF+98, ML02]; this version is from [BCF+98].xxxiv

I had calculated an example of the group of group extensions for an interesting
factor group involving a prime number p. When I told Sammy this result, he im-
mediately saw that it answered a question of Steenrod about the regular cycles of
the p-adic solenoid (inside a solid torus, wrap another one p times around, and so
on, ad infinitum). So Sammy and I stayed up all night to find out the reason for
this unexpected appearance of group extensions. We found out more: it rested on a
“universal coefficient theorem” which gave cohomology with any coefficient group
G in terms of homology and an exact sequence involving Ext, the group of group
extensions.
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Mac Lane writes that this bit of serendipity had tremendous mathematical consequences. While
others, e.g., Steenrod could likely have made the “homological” observation (though Steenrod
was not yet at Michigan when this happened), Eilenberg’s specific aesthetic tastes undoubtedly
shaped the form of the final product.

In his autobiography, Mac Lane explains the role Lefschetz played in the immediate product
of the above computation [ML05]: “Of course, we told Lefschetz about it; he at once asked us
to write it up as an appendix (of five pages) to his 1942 book Topology.” The final version of
this paper appeared in Annals of Mathematics in 1942 [EML42], whose transformation in the
hands of Lefschetz we will explore momentarily.

The systematic analysis of properties of Ext groups and limiting constructions used above,
together with conceptions from homotopy, e.g., homology and homotopy groups led to another
invention: the theory of categories and functors [EM42]. This observation is underscored by
Weil in his review of [EM42]

A vague idea of covariance and contravariance is often met with in group-theory,
topology, etc.; that is, one feels that the character-group is contravariant to the
group, that the homology and co-homology groups of a complex are, respectively,
covariant and contravariant to the complex. This is of special importance in the
building up of limits of direct and inverse systems (“projective” and “inductive”
limits) of groups, spaces, etc. The authors have succeeded in finding for this a
precise definition, which is likely to be helpful in classifying and systematizing
known results and also in looking for new relations between groups.

Mac Lane in his review of Cartan and Eilenberg [Mac56, p. 622] gives a rather more prosaic
view:

The authors’ approach in this book can best be described in philosophical terms
and as monistic: everything is unified.xxxv

Granted everything else that has been written about Eilenberg’s point of view, and Cartan’s
admission that Cartan–Eilenberg was largely (entirely?) written by “Sammy”, this description
seems an apt summary.xxxvi

In the previous section we saw that algebraic/combinatorial topology was receptive to many
different “points of view”. But how does a subject draw the lines that determine what work
should be “promoted” and what should be “ignored”? In other words, what were the boundaries
of receptivity? Were there ideas that should be ignored? Such question seems to have some
features in common with what is usually called boundary work [Gie99], and is the source of my
use of cartography in the section heading.

I proceed to investigate the question of drawing boundaries of mathematical disciplines; my
analysis focuses on two confluent streams: the reception of Eilenberg and Mac Lane’s ideas
about category theory within mathematics, and mathematical publication practices in the late
1940s and early 1950s. Among other things, I aim to argue that the propagation of category-
theoretic ideas was far from inevitable. Moreover, just as the scientific idea of mapmaking
reveals evidence of social and political influence under scrutiny,48 I aim to illustrate how social

48J.B. Hartley writes in [HAR89]: “...the scientific rules of mapping are, in any case, influenced by a quite
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and political factors contributed to the visibility of category theory, not the least of which is the
insistence of Eilenberg and Mac Lane and their place within American mathematical society in
particular, and on the international mathematical scene more generally.

2.3.1 (Adopting categories and functors). The introduction to [EM42] reflects the key themes
in the above discussion by beginning with a philosophical point:

Frequently in modern mathematics there occur phenomena of “naturality”: a “nat-
ural” isomorphism between two groups or between two complexes, a “natural”
homeomorphism of two spaces and the like. We here propose a precise definition
of the “naturality” of such correspondences, as a basis for an appropriate general
theory. In this preliminary report we restrict ourselves to the natural isomorphisms
of group theory; with this limitation we can present the basic concepts of our the-
ory without developing the axiomatic approach necessary for a general treatment
applicable to various branches of mathematics.

And the philosophical was evidently in the air as regards category theory. Mac Lane writes in
[ML98] that the name category was taken from Aristotle and Kant, while the notion of functor
was adapted from Carnap.

While the notion of tensor product of vector spaces was older, Whitney had only recently
invented the tensor product of abelian groups [Whi38] (see the beginning of Section 3.1 for a
much more involved treatment of the evolution of the notion of tensor product). Weil closes his
review by mentioning:

In particular, the authors use it to derive some interesting relations concerning Whit-
ney’s “tensor-product” of groups, and clarify the nature of the latter.

It’s worth pointing out that while the tensor product of abelian groups was invented here, it
was Bourbaki that led the shift to usage of modules (as opposed to the notion of groups with
operators used in van der Waerden), and the tensor product of modules did not appear in print
until roughly 1948 (though once again, was known and used by members of Bourbaki).

By 1944, Mac Lane had moved to Columbia as part of the US War effort to study problems
in applied mathematics. He writes: “I took the occasion to hire a number of mathematicians
well-known to me, including Samuel Eilenberg, Paul Smith, and Hassler Whitney.” While
Smith was already at Columbia in the 1940s, this seems to be the occasion upon which Eilenberg
moved there.

The more general treatment promised in the above announcement appeared in 1945 as
[EML45]. Eckmann argues [Eck98, 7.5] that the development of the theory of fiber bundles
played a decisive role in the creation of the theory of categories and functors. While the PNAS
note of Eilenberg and Mac Lane focuses on group theory, given Eilenberg’s extensive work in
homotopy theory before, this seems plausible.xxxvii

different set of rules, those governing the cultural production of the map. To discover these rules, we have to read
between the lines of technical procedures or of the map’s topographic content. They are related to values, such as
those of ethnicity, politics, religion or social class, and they are also embedded in the map producing society at
large.”
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The story of the publication of Eilenberg–Mac Lane’s category theory treatise is particularly
fascinating, and versions of the anecdote that follows have been recorded in various places with
varying details. Mac Lane recalls [ML97]:

The first of these papers is a more striking case; it introduced the very abstract idea
of a “category”—a subject then called “general abstract nonsense”! When Eilen-
berg and I submitted a full presentation in 1945 (to the Transactions of the American
Mathematical Society), we feared that the editor would turn it down as too “far out,”
not really mathematics. So Eilenberg, who knew the editor well, persuaded him to
choose as referee a young mathematician—one whom we could influence because
he was then a junior member of the Applied Mathematics Group at Columbia Uni-
versity (war research), where Eilenberg and I were then also members, and I was
Director.

Writing in [ML96, p. 130] Mac Lane adds: “the editor of the Journal (The Transactions, AMS)
was quite skeptical of its content.” The names of both the editor and referee are revealed in
[ML05, p. 125]: the editor was none other than Paul Smith, though the “persuasion” aspect de-
scribed above is toned down to “discussion”, while the referee was a young student of Marshall
Stone by the name of George Mackey.49

I want to reflect briefly on this episode. Evidently Mac Lane has mentioned this statement
in numerous, rather public, venues. Mac Lane thus appears unashamed of the act of editorial
intervention. Perhaps this is accounted for by a certain sheepishness around the theory (“the
material is trivial” as we saw mentioned above) counteracted by a desire to publish what has
since been argued to be perspective masquerading as mathematics (for example the refrain that
category theory is “abstraction for abstraction’s sake”).50 In support of this viewpoint, I offer
Mac Lane’s discussion of the importance of publishing an announcement in PNAS:

So in this case publication in the Proceedings was perhaps vital at the start; Cate-
gory Theory is now accepted. In other words, without the Proceedings, this idea
might well have been buried, unpublished.

At the time of its invention, category theory was a sidelight to Mac Lane’s mathematical work
around the war effort. In any case, I leave it to the reader to determine the comparative ethics of
this episode, but the mathematical community was small and plausible readers of such cutting
edge mathematics were probably hard to find.

2.3.2 (Categorical inevitability). Mac Lane’s specific choice of language also deserves com-
ment; he writes in [ML98, p. 30]:

Categories, functors, and natural transformations themselves were discovered by
Eilenberg-Mac Lane [1942a] in their study of limits (via natural transformations)
for universal coefficient theorems in tech cohomology. In this paper commutative
diagrams appeared in print (probably for the first time).

49This claim is contradicted in [Krö07, p. 62 2.3.2.1] where it is asserted that Smith was not an editor of
Transactions at the time.

50Mac Lane writes [ML98, p. 30-31] “Now the discovery of ideas as general as these is chiefly the willingness
to make a brash or speculative abstraction...”
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Mac Lane was a trained philosopher; he for example reviewed Carnap’s work for the Bulletin
[Mac38] and goes on to mention the philosophical pedigree of the word choices in category
theory51, so I highlight his use of the word discovered rather than invented.

Mac Lane elsewhere supports his use of the word discovered by arguing for the inevitability
of category theory [ML96, p. 131].52 Explicitly: “If Eilenberg and Mac Lane had not formulated
category theory, who would have done so - or might it never have appeared?” He goes on
to mention Chevalley, Hopf, Steenrod, Cartan, Ehresmann, von Neumann and Ulam before
discussing each of these figures.

The one sentence justifications given by Mac Lane as to why this list of people could have
invented category theory seem at best tenuous to me. Undoubtedly, Chevalley made a number of
category-theoretic contributions later, and I believe one can argue that category theory fits firmly
within his mathematical aesthetic, about which I will have more to say later, but Chevalley’s
early interactions with Eilenberg, both as a member of Bourbaki and as a collaborator, call into
question the source of his interest. Moreover, as discussed amply in [Cor04, §8.5 p. 372], while
some members of Bourbaki used category theory, there were others who were significantly less
so-inclined, e.g., Weil. Bourbaki itself never adopted this formalism for its own foundational
projects.

Steenrod remarks about the paper of Eilenberg and Mac Lane that “no paper had ever in-
fluenced his thinking more”, so it seems difficult at best and impossible at worst to disentangle
Eilenberg’s influence on Steenrod’s papers. However, if we look at Steenrod’s published works
only his joint work with Eilenberg comes close to the level of abstraction of the Eilenberg–Mac
Lane category theory. I think one can make similar arguments about Cartan and Ehresmann.
MacLane himself appears to dismiss Ulam as a plausible inventor, and as regards von Neumann,
it’s worth remembering that he wrote in 1947 [vN47]: “at a great distance from its empirical
source, or after much “abstract” inbreeding, a mathematical subject is in danger of degenera-
tion”, which seems quite far from the aesthetic that other authors (even at the time) associated
with category theory. Curiously, Mac Lane leaves Grothendieck off his list, but that is perhaps
another discussion.

On the politics of academic publishing

The episode involving Eilenberg–MacLane’s category theory paper just recounted brings to
mind another public discussion of academic publishing. Writing in “A beautiful mind” Sylvia
Nasar narrates [Nas98, p. 58-59] the following about the status of the journal Annals of Math-
ematics under the direction of Lefschetz.

Entrepreneurial and energetic, Lefschetz was the supercharged human locomotive

51In [ML98, p. 30] he writes “in this case supported by the pleasure of purloining words from the philosophers...”
52Here, he remarks further on the philosophical pedigree of the words “category and functor” writing:

Since the philosopher Kant had made ample use of general categories, the term was borrowed
from him for its present mathematical use, while Carnap, in his book on Die Logische Syntax
der Sprachen had talked of functors in a different sense and made some corresponding mistakes. It
seemed in order to take over that word for a better and less philosophical purpose.

In his use of the word “better”, he seems to betray his view of the respective status of philosophy vs. mathematics.
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that ... pulled the Princeton department out of genteel mediocrity right to the
top. He recruited mathematicians with only one criterion in mind: research. His
high-handed and idiosyncratic editorial policies made the Annals of Mathematics,
Princeton’s once-tired monthly, into the most revered mathematical journal in the
world. He was sometimes accused of caving in to anti-Antisemitism for refusing to
admit many Jewish students (his rationale being that nobody would hire them when
they completed their degrees), but no one denies that he had brilliant snap judg-
ment. He exhorted, bossed, and bullied, but with the aim of making the department
great and turning his students into real mathematicians, tough like himself.

This discussion is relevant to us because Cartan and Eilenberg’s homological algebra treatise
appeared in “Annals of Mathematical Studies” which is viewed as the sister “monograph” series
to Annals of Math.xxxviii

Undoubtedly, now Annals of Mathematics is widely viewed as one of the most high-status
mathematical journals (though one’s view of its relative rank among the most high-status jour-
nals is colored by nationality and field). Nasar’s comment suggests this was not always the
case, a point which is fleshed out in Karen Parshall’s book [Par22, pp. 241-246] so let’s take
this at face value and discuss the evolution of prestige around Annals of math from the 1920s
through the 1950s, which is also tied to the rise of the United States and Princeton in particular
as a center of international mathematical power.

Both Nasar and Parshall center their discussion of the rise of prestige around Lefschetz and
there are several episodes that we commingle to demonstrate Lefschetz’s editorial hand.53 Many
of the papers we have discussed, e.g., the work of Lefschetz himself, Mayer, Tucker, Eilenberg,
Steenrod, as well as the work of Serre (both in algebraic topology and later algebraic geometry)
that we will discuss soon, all appeared in Annals of Math. Exploring the sociology of publishing
in Annals specifically and broader questions about academic publishing therefore seem natural
topics for our understanding of the evolution of the theory of projective modules.

2.3.3 (On the proliferation of mathematical journals). Before moving forward, let us briefly
recall a few things about the evolution of the culture of mathematical publication, following
the discussion of Bartle [Bar95], but especially to highlight differences from present-day pub-
lication practices. By the mid 19th century, mathematical publication had become specialized
enough and there were so many journals publishing mathematics that bibliographic journals
were created to organize, say thematically, what was being written, but also sometimes to crit-
ically review the contents. Bartle suggests the most important such journal at the time was
the Jahrbuch uber die Fortschritte der Mathematik (henceforth, Jahrbuch). By the turn of the
century, these review journals were already around 1000 pages themselves. Over the next 20
years, due to numerous factors including journal delivery lag times, slowness of reviewers and
external political factors such as World War I, there was increasing lag time in publication of
reviews, which led to dissatisfaction on the part of users.

In the late 1920s, to rectify the problems with Jahrbuch mentioned above, Otto Neugebauer
in collaboration with the Springer publishing house conceived ZentralBlatt, the first issue of

53Nasar’s analysis of Lefschetz comes from various biographical sources, as well as first-hand interviews with
various mathematicians who knew Lefschetz.
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which appeared in April 1931. By 1934, Neugebauer had emigrated to Denmark and he re-
signed from the editorial board of Zentralblatt in 1938. Problems with Zentralblatt around the
War, including the mass emigration of mathematicians to the United States, led to the desire
to recreate a reviewing publication in the US. Neugebauer helped found Math Reviews in con-
junction with the efforts of a number of mathematicians, including Veblen and Warren Weaver,
who at that time was the director of the division of Natural Sciences at the Rockefeller foun-
dation. The fascinating history of the formation of Math Reviews is documented in [Pit88, pp.
69-89], but it’s worth remarking that amount of mathematics research being done increased
considerably during the period 1920-1950.

All of this mathematical production led to further proliferation of journals and, by the time
of the Cold War, further influence from commercial publishing houses on mathematical publi-
cation. Organically, status hierarchies formed among the journals, and in the wake of the two
World Wars, journals themselves sometimes reflected nationalistic sentiments. Much has been
written about changes in academic publishing post Cold War, but I will largely not discuss this
period. Even with the proliferation of journals, mathematical publishing was (and still is) a
relatively slow procedure.

2.3.4 (The size of the mathematical establishment). The proliferation of papers just described
might lead to the impression that the academic establishment was huge. Indeed, this is true by
comparison to the size of the establishment in the preceding century, but the role of Colleges
and Universities in this period was certainly not established in the way it is now (see, e.g.,
[Rie17, p. 21]). Already by the 1940s and 1950s, the vast majority of people working in what
we might call today “pure mathematics research” were housed in universities. In order to obtain
teaching positions at an American university, already by this stage having a Ph.D. or equivalent
qualification was expected. From that point of view, it is useful to compare the number of
Ph.D.s being produced in this era with the modern era.

The first thing that to observe is that Academia was almost incomparably smaller than today.
From [TGH06, p. 79] one learns that of the 39, 806 doctoral degrees granted by U.S. universities
between 1920 and 1999, 35, 592 were granted after 1960. This document provides subject-
specific information, but it is unclear from the provided data whether this information is useful
for 1920-1960 mathematics as the grouping “Other mathematics” accounts for almost 2000 of
the 4214 stated doctorates.

To get more refined information about the period 1930-1960, we turn to [Cou78, p. 12].
The number of mathematical doctorates conferred in 5 year blocks in this period is summarized

5-year block 1930-34 1935-39 1940-44 1945-49 1950-54 1955-59
# Math Ph.D.s 398 380 362 470 1056 1265

What should be clear is that academic mathematics was considerably smaller than it is now. I
venture that mathematical centers such as Princeton had less diluted influence than they do now.

2.3.5 (Peer-review and academic judgment). Histories of peer-review in science make it clear
that publishing in journals was an important part of the legitimation of discoveries: while ideas
could be communicated in talks and seminars, written treatments were still essential. The cul-
ture of academic publishing, more specifically in science and even more specifically in math-
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ematics during the period 1920-1950 bears little resemblance to system that a modern reader
might know, so I take some time to highlight differences.54

To set the stage, we recall a now famous episode as regards a paper of Einstein–Rosen on
gravitation waves sent to Physical review around 1935; this episode is analyzed by Kennefick
[Ken05]. In what from a modern point of view seems like standard procedure, the editor sent
the paper to a reviewer (identified as H.P. Robertson at Princeton in the paper just referenced).
The reviewer returned ten pages of comments which cast doubts on many claims made in the
paper, to which Einstein replied:

We (Mr. Rosen and I) had sent you our manuscript for publication and had not
authorised you to show it to specialists before it is printed. I see no reason to
address the – in any case erroneous – comments of your anonymous expert. On the
basis of this incident I prefer to publish the paper elsewhere.

Kennefick argues that editorial practices in German journals in the early 20th century were
considerably less fastidious. He goes on to discuss publication in the Prussian academy of
sciences of which Einstein was a member. From 1914 onward, Einstein was regularly called
on to review submissions for this journal, and he frequently used the word “worthless” in his
reviews. More importantly for our discussion here, as a member of the academy, Einstein’s
papers were published here without question or revision. In the US where practices were slightly
different, professional status played a role in the review process. Editors didn’t want to slow the
publication of work they deemed important, and frequently relied on their own instincts rather
than careful review.

There are various places where one can find histories of peer review devoted to the period we
are considering here, I refer the reader to [Gou12, Chapter 3]. The discussion of Einstein’s work
and journal publication sketched above seems relatively common through at least roughly 1950:
“peer review” as such was simply a gatekeeper, and correctness of results was of secondary
interest. Editors of journals had considerable power and latitude in judgment. Depending on
the editor, peer review might consist of the editor themselves determining a paper was suitable
for a journal, or it might consist of consulting other individuals for opinions.

With this background in place, we returning to the case of Lefschetz and Annals of Math-
ematics. To start, we will analyze the dynamics of the editorial board of Annals of Mathemat-
ics.55

2.3.6 (Dynamics of mathematical editorial boards). Lefschetz began to edit Annals of Math-
ematics in 1927 and continued to do so until 1958. One can see that the composition of the
editorial board changed rather significantly over the next few years, with Lefschetz as one of

54The interested reader can find further discussion regarding peer-review in science in [CHH90] or academia
more generally, e.g., [Lam09]. I aim to focus the discussion here on peer-review in mathematical journals.

55There were ideas of “top journals”: Acta Mathematica, Mathematische Annalen, and Crelle’s Journal had
strong reputations reflecting some of the Swedish and German schools. In France, CRAS published many an-
nouncements, ASENS had existed for some time. In the United states, PNAS was a venue for publishing an-
nouncements, and the AMS journals including Transactions and the Bulletin reflected some level of quality. At
the top, I believe were Annals of Math and American Journal of Math. I am unsure what status was afforded to
Duke Mathematical journal, but Whitney had published a number of papers in Duke as well. In this landscape,
Inventiones, PMIHES, JAMS didn’t exist yet.
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the few constants. Table 2.3.6 describes the editorial board for Annals of Mathematics from just
before Lefschetz became an editor to the year before the submission of Cartan–Eilenberg. In
the table, I use the following abbreviations: OSt = Ormond Stone, Ale = J.W. Alexander, Be =
A.A. Bennett, Bl = H. Blumberg, Ei = L.P. Eisenhart, Hi = Einer Hille, Gr = T.H.Gronwall,
Pf = G.H. Pfeiffer, Ve = Oswald Veblen, Wh = J.K. Whitemore, Fo = W.B. Ford, Gi = D.C.
Gillespie, Ha = W.L. Hart, He = E.R. Hedrick, La = R.E. Langer, P-W = A. Pell-Wheeler, Ta
= J.D. Tamarkin, Ri = J.F. Ritt, Ba = H. Bateman, Va = H.S. Vandiver, Bi = G.D. Birkhoff,
We = J.M.H. Wedderburn, Or = O. Ore, Wi = N. Wiener, Alb = A.A. Albert, Mo = M. Morse,
MSt = M. Stone, Za = O. Zariski, Ar = E. Artin, Hi = T.H. Hildebrandt, Ja = N. Jacobson,
Mac = S. Mac Lane, Why = G.T. Whyburn, He = M.R. Hestenes, Ste = N. Steenrod, Wh =
H. Whitney, Bo = F. Bohnenblust, Ch = S.S. Chern, McS = E. J. McShane, Eil = S. Eilenberg,
Smi = P.A. Smith, Fr = K.O. Friedrichs, Le = N. Levinson, Sz = O. Szasz, Wil = R.L. Wilder,
Mon = D. Montgomery, Spe = D.C. Spencer, Do = J.L. Doob, Che = C. Chevalley, Sze = G.
Szego, GWM = G. W. Mackey, Kak = S. Kakutani, Sch = M. M. Schiffer, Zyg = A. Zygmund,
JHC = J.H.C. Whitehead, Wei = A. Weil.

Of course, we can look back and see that there are many historically excellent mathemati-
cians present on the editorial board. However, I want to highlight two things. First, the com-
position of an editorial board is a socio-political choice: managing editors appoint subsequent
managing editors and associate editors. Second, an editor’s mathematical tastes are reflected in
a journal, and from this point of view we should compare the size of the editorial board to the
size of the mathematical establishment. Regarding the second point, observe that the editorial
board does in fact grow somewhat as the size of the mathematical establishment grows.

Let us try to analyze these choices through what one might call the submission life-cycle of
a paper. A paper is submitted and received by a editor. The editor looks at the paper and might
make an initial value judgment: is the paper “good” or “interesting” by whatever metrics the
editor uses? Of course, reasonable people can disagree at this stage, especially when making a
quick judgment, as we will see in a case involving Lefschetz below. Perhaps the editor is already
familiar with the paper from a talk given by the author (or authors) or has already had detailed
correspondence about the topic of the paper, or perhaps not. Perhaps, as we have already seen
can happen, the editor has solicited the paper.

If the editor deems the paper of sufficient value, then they can send it to be refereed. We
discussed the historical standards of peer-review earlier, but checking correctness is something
that has only evolved recently. Instead, even if a paper was refereed, the editor was likely only
seeking an opinion as to whether the paper is “suitable”. As we have seen above, the shape of a
referee report can also itself be influenced by social pressures. How does the editor weigh the
opinion of the report: is it written by a high-status individual or someone young and untested?
Is it produced pro forma only to be dismissed?

It is important to remember that the status of a journal reflects reciprocally the status both
of the editors and the authors whose papers appear in the journal. The composition of the
editorial board has a huge impact on the selection of papers that appear in the journal. In the
case of Annals of Math, the editorial board composition moves toward strong representation by
“abstract” algebraists/topologists of the modernist stripe: many of the names mentioned by the
late 1940s and 1950s are precisely the people whose papers we have been discussing.
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Annals of Math: editorial board
Year Managing Editors Assistant editors

1925-26 Wedderburn OSt, Ale, Be, Bl, Ei, Hi, Gr, Pf, Ve, Wh
1926-27 Wedderburn OSt, Ale, Be, Bl, Ei, Hi, Gr, Pf, Ve, Wh
1927-28 Lefschetz, Wedderburn OSt, Fo, Gi, Ha, He, Hi, La, P-W
1928-29 Lefschetz, Wedderburn OSt, Fo, Gi, Ha, He, Hi, La, Ta, P-W

1930 Hille, Lefschetz OSt, Ri, Al, Ta, Ba, Va, Bi, Ve, Ei, We, Or, P-W, Wi
1931 Hille, Lefschetz OSt, Ri, Al, Ta, Ba, Va, Bi, Ve, Ei, We, Or, P-W, Wi
1932 Hille, Lefschetz OSt, Ri, Ba, Ta, Bi, Va, Or, P-W, Wi
1933 Couldn’t find –
1934 Lefschetz, von Neumann Alb, Bi, Hi, Mo, Or, Ri, MSt, Ta, Wi, Va, Za
1935 Lefschetz, von Neumann Alb, Mo, Va, Ba, Or, P-W, Bi, Ri, Wi, Hi, MSt, Za, Ta
1936 Lefschetz, von Neumann Alb, Or, Va, Ba, Ri, P-W, Bi, MSt, Wi, Hi, Ta, Za
1937 Lefschetz, von Neumann, Alb, Mo, Va, Ba, Or, P-W, Bi, Ri, Wi, Hi, MSt, Za, Ta

Bohnenblust
1938 Lefschetz, von Neumann, Alb, Mo, Va, Ba, Or, P-W, Bi, Ri, Wi, Hi, MSt, Za, Ta

Bohnenblust
1939 Lefschetz, von Neumann, Alb, Mo, Va, Ba, Or, P-W, Bi, Ri, Wi, Hi, MSt, Za, Ta

Bohnenblust
1940 Lefschetz, von Neumann, Alb, Ar, Hi, MSt, Ja, P-W, Bi, Mac, Why, He, Ste, Za

Bohnenblust
1941 Lefschetz, von Neumann, Alb, Hi, MSt, Ar, Ja, P-W, Bi, Mac, Why, He, Ste, Za

Bohnenblust
1942 Lefschetz, von Neumann, Alb, Hi, MSt, Ar, Ja, P-W, Bi, Mac*, Why, Hes, Ste, Za

Bohnenblust
1943 Lefschetz, von Neumann, Alb, Hi, P-W, Ar, Ja, Wh, Bi, Ste, Why, He, MSt, Za

Bohnenblust
1944 Lefschetz, von Neumann, Alb, Hi, P-W, Ar, Ja, Wh, Bi, Ste, Why, He, MSt, Za

Bohnenblust
1945 Lefschetz, von Neumann Ar, He, Ste, Bi, Hi, Ta, Bo, Ja, P-W*, Ch, McS, Wh, Eil, Smi, Why
1946 Lefschetz, von Neumann Ar, Fr, Smi, Bi, Ja, Ste, Bo, Le**, Sz, Ch, Mac, Wil, Eil, McS
1947 Lefschetz, von Neumann Bo, Hi, Sz, Ch, Le, Wh, Eil, Mac, Wil, Fr, McS, Za, Mon, Smi
1948 Lefschetz, von Neumann Bo, Le, Spe, Ch, Mac, Sz, Eil, McS, Whi, Fr, Mon, Wil, Hi, Smi, Za
1949 Lefschetz, von Neumann, Hi, Bo, Le, Sz, Ch, Mac, Whi, Do, McS, Wil, Eil, Smi, Za, Spe

Montgomery, Steenrod
1950 Lefschetz, von Neumann, Hi, Bo, Le, Sz, Ch, Mac, Whi, Do, McS, Wil, Eil, Smi, Za, Spe

Montgomery, Steenrod
1951 Lefscehtz, von Neumann, Che, Le, Sze, Do, GWM, Whi, Hi, Mac, Wil, Kak, Sch, Za, Sz

Montgomery, Steenrod
1952(1) Lefschetz, von Neumann, Che, Le, Whi, Do, GWM, Wil, hi, Sch, Za, Kak, Sze, Zyg, JHC

Montgomery, Steenrod
1952(2) Lefschetz, von Neumann, Che, GWM, JHC, Do, Sch, Whi, Hi, Sze, Wil, Kak, Wei, Za, Le, Zyg

Montgomery, Steenrod
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With this in mind, let us explore Lefschetz’s influence more directly in two episodes. First,
Parshall frames Lefschetz’s early interventions at Annals in terms of the style of topology that
was prioritized. Alma Steingart, in her book “Axiomatics” [Ste23] makes a number of remarks
about Lefschetz’s personality based on correspondence between N. Steenrod and R.L. Wilder.
Steenrod reported to Wilder “He discussed the matter of young mathematicians acquiring the
habit of publishing numerous papers on trivial problems. It appears that the true Princetonian
method is to work only on general problems and to publish only when some step in the theory
has been accomplished” [Ste23, p. 35]. Lefschetz also ridiculed the Polish and R.L. Moore
school of point-set topology, both of which had axiomatic leanings. The Moore school was,
in particular, lambasted as the “concerning school” [Ste23, p. 36] because so many papers
appeared to be titled “Concerning X” for some topic X .

Gordon Whyburn was a student of R.L. Moore and Whyburn’s student Beatrice Aitchison
published an abstract of a forthcoming paper “Concerning regular accessibility” in the Bulletin
of the AMS [Ait31]. A more complete treatment of this work was submitted to the Annals
of Math. Having just presented a characterization of Lefschetz’s view of the Moore school,
the outcome was predictable: Aitchison’s paper was rejected. Parshall argues [Par22, p. 242]
that Whyburn did not take this rejection lightly: he viewed it as a tacit rejection of his own
mathematics by Annals. Einar Hille delivered the news of rejection to Whyburn, framing it
in terms of lack of sufficient enthusiasm and constraints imposed by the fiscal situation of the
journal. Whyburn was not content with this rejection responding: why not send the paper “to
someone thoroughly familiar with and active in our field such as Moore, Kline, Wilder, Ayres
and ask them to referee it before passing final judgment.” Evidently Whyburn did not feel
the paper was given fair trial, but his third-party appeal to reverse the political rejection was,
unsurprisingly ignored. Aitchison’s paper never appeared in Annals, and instead only appeared
in 1933 in the journal of the Polish school Fundamenta Mathematica [Ait33]. Even though we
have described the Polish school of mathematics as a modernist school (see the discussion near
the beginning of Section 2.2), we see that modernist mathematics is not a monolith. Whyburn
did eventually become an editor at Annals of Mathematics in the 1940s as a representative of
the AMS, but by this point combinatorial topology dominated the mathematical landscape and
“general” topology as a pursuit in itself had receded somewhat (or its development had been
absorbed within other subfields of mathematics).

To set the stage for our second episode, we describe comments by W.V.D. Hodge on Lef-
schetz. Hodge writes:

But possibly his main contribution to mathematics during the thirties lay in his
powerful influence on others: he worked very hard to keep himself informed on
what his students and associates were doing, and was a vigorous critic of anything
he did not approve of. He asserted (with much truth) that “he made up his mind in
a flash, and then found his reasons”. Naturally he made mistakes this way, but once
he was really convinced that he was wrong he could be extremely generous.

As regards the consequences of his actions, Hodge writes of Lefschetz:

In this he was so successful that it is no surprise to find so many of his pupils in
leading positions in the mathematical world.
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Putting these statements side-by-side, it hard not to draw the conclusion that Lefschetz con-
sciously remade the landscape of mathematics in the way he wanted. His student Albert Tucker
was chair at Princeton for almost 20 years. Other students included Ralph Fox, Paul Smith,
Felix Browder, Norman Steenrod, John Tukey, Shaun Wylie and also people like C. Ehresmann
who was a joint student with E. Cartan. Many of these people also served on the editorial board
of Annals of Math. But there are only a few positions available. What happened to the people
that Lefschetz did not support?

Hodge reminisced about his interactions with Lefschetz [Hod86, p. 30] around a theorem
he proved (likely [Hod30]) using ideas of Lefschetz from [Lef27].

I wrote a short paper....When this appeared Lefschetz “made up his mind in a flash”-
I was wrong and I must withdraw the paper. A correspondence lasting for several
months took place, and during this period Lefschetz was travelling round Europe
visiting mathematicians in various countries to whom he voiced his criticisms of my
paper. Eventually we reached a state of armed neutrality, and he extended an invi-
tation to me to visit Princeton. When I arrived there I was immediately instructed
to conduct a seminar on my paper (owing to his characteristic the seminar actually
lasted for six sessions), at the end of which he stood up and publicly retracted all his
criticisms, and then, despite his handicap, wrote to all his European correspondents
admitting that I was right and he was wrong.

At the time when this paper was written, Hodge was a young mathematician: he gained his MA
degree at Cambridge in 1930. However, the competitive aspects of mathematics at Cambridge
have been discussed in [War03], and likely Hodge dealt well with Lefschetz’s insistence. In the
1930s, algebraic geometry was still in thrall to the Italian school, while Lefschetz’s arguments
were famously impenetrable; one wonders how the actual exchange went.

Undoubtedly such behavior and the concomitant editorial decisions have consequences. One
sample consequence: Mac Lane reminisces in his autobiography about his effect on a mathe-
matician [ML05, p. 155]

He was remarkably cheerful as he reported that the critical reviews of his papers I
had written in the Journal of Symbolic Logic had been used by French officials to
block his promotion. This left me at a loss.

It is telling that the mathematician remains unnamed.
Hodge continues with discussion of Lefschetz’s influence at Annals.

He employed equally drastic methods in his capacity as editor of the Annals of
Mathematics over a period of 25 years. No leniency was shown towards any pa-
per submitted to the journal which was not up to his standards, and anyone who
disagreed with his judgment had to work very hard to make him change his mind.
But once he had decided that man was worth helping there was no limit to the aid
he would give him. By these methods he made the Annals one of the top math-
ematical journals in the world, and he and his colleagues made Princeton a world
centre of mathematics. In the course of this vigorous programme he made very few
enemies indeed: one felt that there was no personal animosity in his bark, and no
self-seeking: he just wanted to serve mathematics as best he could.
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The treatment of papers whose authors Lefschetz did support could be rather different.
Tucker recounts in [Tuc] the case of a note that Tucker hoped would appear in PNAS:

I sent this paper off to Lefschetz asking him to submit it to the Proceedings of the
National Academy of Sciences. I assumed that that had been done, but when I
returned to Princeton in September 1941 from the year’s leave of absence I discov-
ered that Lefschetz had not submitted the paper to the Proceedings of the National
Academy of Sciences because he was having a fight at that time with the editor of
the Proceedings. Instead, he had submitted the paper to the Annals of Mathematics
of which he was editor. I was very upset because the paper did not have complete
details in it. It was merely an outline, a projection of what I intended to do, and it
seemed to me that that was not an appropriate paper to be published in the Annals
of Mathematics. So I withdrew the paper, and the paper has never been published.

Rota recalls [Rot08, p. 19]:

He liked to repeat, as an example of mathematical pedantry, the story of one of E.
H. Moore’s visits to Princeton, when Moore started a lecture by saying, “Let a be
a point and let b be a point.” “But why don’t you just say, ’Let a and b be points!”’
asked Lefschetz. “Because a may equal b,” answered Moore. Lefschetz got up and
left the lecture room.

Recalling Lefschetz’s view of “general problems” while simultaneously eschewing “pedantry”
seems a striking distinction from a modern point of view.

These opinions give some idea of how Lefschetz defined the “mathematical mainstream”
for himself in the 1930s. Gone were the papers on classification of groups of a particular
order or type that had proliferated during the Wedderburn era, or the papers on “point-set” style
topology. The emphasis was fully directed to “combinatorial topology”. Gone was the space for
“expository” articles exemplified by Wedderburn’s exposition of the theory of fields [Wed23],
replaced only by pure “research articles.”

From this point of view, one could imagine that Eilenberg was initially dismissive of Eilen-
berg’s complaints about his singular cohomology theory, but eventually Lefschetz became a
great supporter of Eilenberg (and as we see, eventually Eilenberg was an editor of Annals of
Math).56

56In a letter to R. Brauer from Feb 13, 1958, Weil writes [Wei, p. 13] admiringly of Lefschetz’s editorial work,
giving at the same time his impression of the American Journal of Math:

Of the existing journals in the U.S.A., the American Journal of Mathematics has the longest and
most impressive tradition. For many years, largely because of Lefschetz’s superb editorship, the
Annals of Mathematics have held the first place, while the American Journal was gradually sinking
into mediocrity.

He continues admiringly of Transactions of the AMS under Tamarkin’s editorial guidance. He closes with the
statement “For a number of reasons, scientific and sociological, it is unavoidable that a good deal of comparatively
inferior material should get into print.” To me, this reads as a reference to the fact that in the creation of sta-
tus hierarchies, the presence of low-status individuals is necessary to enforce/support the high-status individuals.
[Rid19].
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While publication is essential to mathematical production, it is worth analyzing the question:
exactly what is the task of a “good journal”? Certainly it is supposed to make judgments about
“quality” of mathematics. One point of view was spelled out by Weil in [Wei, p. 13]:

It is not necessary, but it seems clearly desirable and convenient, that the greater
part of the best mathematical work done in each country should be concentrated in
one or more first-class journals rather than diluted with inferior material.

It is reflective of the volume of mathematical publication of the day that such an opinion was
even plausible, but Weil’s use of the word “best” makes it sound as if the “best” mathematics is
self-evident. However, he makes a number of supporting comments that give us some sense of
how one determines “best” mathematics: anyone who wants to judge good mathematics must
be “broadly mathematically cultured” and one shouldn’t try to involve too many people because
“consensus” editing leads to a weakest link problem.57 While “universal” mathematicians, in the
vein of Hilbert were already a thing of the past due to increasing production and specialization,
Weil’s view is again reflective of the scope of the mathematical establishment; it seems even
harder to square with the concomitant size of the establishment today.

Weil in [Wei, p. 14] explains his principle as follows:

rejecting many papers which, by the usual standards, were perfectly publishable.
We took the view that, by doing so, we did little harm to the authors, provided it
was done quickly; for such papers would get into print anyway. This applied par-
ticularly to the case of well-established authors; we thought that promising young
beginners should receive a more considerate treatment and should at times be mea-
sured by less exacting standards. We could not hope to be exempt from errors;
whether or not quick decisions imply a higher percentage of errors than a slower
procedure is a debatable point. Had we been dictators over the whole field of math-
ematical publications, the weight of our responsibility would have been crushing;
since, however, opportunities for publication of even moderately deserving papers
remained plentiful even after rejection from the Journal, we found that we could
carry it lightly.

Unrealistically high standards would have stifled the Journal altogether; this had
to be avoided. On the other hand, our policy made it possible to reduce to a bare
minimum the backlog which is the curse of most journals. We found that we had
no difficulty in publishing quickly whatever we thought worth publishing at all.

Implicitly here, Weil and his coeditors get to decide who the “promising young beginners” and
“well-established authors” are. The community was small, so perhaps there was even something
approaching a consensus, but once again, “promising” is a mark of status.

57He writes:

When several editors have to work together, it is almost inevitable that the weakest one will drag his
colleagues down to the level of his own standards. But no one can maintain high standards unless
he has had considerable experience in more than one branch of mathematics, and, above all, unless
he enjoys a secure and unassailable position in the mathematical world.



60 2.4 The local to global paradigm in sheaf theory

Lefschetz was a strong figure, and students like Tucker followed in his footsteps establishing
Princeton as a center for topology in the 1940s and 1950s, buoyed by the presence of luminar-
ies at the nearby IAS. Cartan’s students were undoubtedly successful, but due to what personal
efforts of Cartan? There is a reciprocal mechanism acting between “exciting mainstream math-
ematics” and “faculty hiring.” Status gets dynamically transferred between these two systems
and also journals.

Bourbaki and category theory

By the end of the 1940s, category theory was in the air, but the question of its reception seems to
me more complicated. At this point one sees a certain fracture between American and European
directions. Whether people used categories themselves seems to be a question of individual
taste, and to work on category theory was another matter altogether.

The first crop of Eilenberg’s students (he started taking students in the late 1940s and early
1950s), a group including Alex Heller, David Buchsbaum and Dan Kan were undoubtedly fa-
miliar with category theoretic notions and all of these people wrote papers that were directly
category-theoretic related, though Kan’s story is perhaps a bit more complicated than the oth-
ers.xxxix Buchsbaum’s thesis was devoted to “exact categories”, a predecessor to the later notion
of abelian category [Buc54]. In the MathSciNet review of [Buc55] by H. Cartan, which expands
on what appeared in Cartan–Eilenberg, we learn that Grothendieck had formulated a notion of
abelian category by this point.

The situation involving Bourbaki and category theory has been treated elsewhere in much
greater detail. It is treated in great detail in [Cor04, Chapter 8], and also in great detail in
Krömer’s paper [Krö06]. We mention just one episode that has some bearing on the later dis-
cussion. In February 1955, Grothendieck discussed formulating sheaf cohomology in terms
of categories of modules in [CS01, Feb 26, 1955]. Serre responds [CS01, Mar 12, 1955] that
Cartan was aware that sheaf cohomology of some flavor could be formulated in terms of the
Cartan–Eilenberg notion of derived functor, and had asked Buchsbaum to develop this, but was
unaware of what happened. This correspondence makes it clear that Serre was familiar with and
conversant with the theory of categories, but he scrupulously avoided using this terminology in
his written work.

2.4 The local to global paradigm in sheaf theory
The fourth cultural touchstone I’d like to discuss is Leray’s theory of sheaves, which was in-
vented by Leray around 1946 after his stay in a prisoner’s camp during World War II. This stay
has been recounted many places, e.g., [Mil00] and there are a number of sources describing
aspects of the history of the theory of sheaves, e.g., [Hou00] and [Gra79]; I will draw on these
works, but I’d like to start a bit earlier. While the algebraic-topological influences on the the-
ory of sheaves are very well-represented in the literature, Cartan’s reworking of Leray’s ideas
will be very important for our narrative; Chorlay [Cho10] discusses the history of sheaf theory
from this point of view,58 but I’d like to bring the discussion back through the lens of Cartan–

58Chorlay also has a nice discussion of the construction in the subtitle: “local-to-global” in [Cho11].
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Weil, viewing sheaves as a complementary perspective to that brought by the theory of the fiber
bundles.

Leray was a student at the ENS, overlapping with Weil, Cartan, Dieudonné and Chevalley,
and received his degree in 1933. Leray participated in some of the initial Bourbaki meetings,
but Leray moved away from Bourbaki [And00]; the complicated relationship between Leray
and Bourbaki has recently been reanalyzed [Ric21], and plays a not inconsiderable role in our
discussion. A clear disjunction between Leray’s mathematical tastes and those of other Bour-
baki members is an evident source of tension, but the ways in which these tensions changed
and eventually bubbled over during subsequent years is important. We claim that there is some
reflection of these tensions in the reception of sheaf theory. Indeed, the theory of sheaves as ini-
tially developed by Leray was not immediately absorbed by the postwar French mathematical
mainstream. Undoubtedly Leray’s status played a role in the willingness of others to grapple
with his ideas in the first place.

Leray announced his theory of sheaves in a collection of announcements published in the
Comptes rendus de l’Académie des Sciences (CRAS), appearing as: [Ler46a, Ler46c, Ler46b,
Ler46d]. After discussing some aspects of Leray’s biography and early mathematical work
that seem relevant to his presentation of ideas, I aim to show that there were two competing
evaluations of Leray’s initial CRAS notes. On the one hand, there is a collection of individuals,
one might call it the Eilenberg–Weil axis, who questioned the novelty of Leray’s ideas. On the
other hand, there is an opposing Cartan–Hopf axis that was convinced that Leray’s theory had
much to offer. I aim to unearth some sources for this tension and simultaneously to explain that
Cartan’s support, in particular his focused reworking of Leray’s theory and dissemination by
way of his seminars, cleared the way to wider applicability of these ideas.

The change in perspective offered by Cartan on the nature of sheaves was integral to the
mainstream acceptance of sheaf theory, especially outside France. In the context of the broader
narrative, I aim to show how Cartan’s broadening of the sheaf concept, wresting the idea from
Leray in a sense, is essential in bringing the theory of fiber bundles to bear on algebraic geom-
etry. In Section 3.3, I will return to this point and describe its influence on the reception of the
projective module concept.

Leray–Schauder theory becomes applied topology?

Leray’s thesis related to applied analysis, specifically mathematical problems related to fluid
flow; certainly looking back with modern eyes, this seems quite far from the topics discussed
above, but let us not refer to Leray as an applied mathematician in an unqualified way. In
the Spring of 1933, Hans Lewy introduced Leray to Julius Schauder in a restaurant on the rue
Soufflot [Ler80]. Leray continues:

I immediately said to Julius Schauder: “I have read your paper on the relationship
between existence and uniqueness of solutions of a nonlinear equation. I know
now that existence is independent of uniqueness. I admire your topological meth-
ods. In my opinion they ought to be useful for establishing an existence theorem
independent of the whole question of uniqueness and assuming only some a priori
estimate.”
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In practice, the tools used were analogs of fixed-point like theorems of Brouwer in the setting
of (infinite dimensional) function spaces. Leray and Schauder quickly applied their techniques
to establish existence result for certain non-linear partial differential equations; Leray refers to
applications of the Dirichlet problem for two-dimensional convex regions as key. Of course, the
Dirichlet problem itself has a long pedigree, going back to Riemann’s “problematic” variational
approach that was put on sound footing by Hilbert. Evidently the Leray–Schauder method was
existential and non-constructive, a point to which I will return momentarily, but undoubtedly
these results established “first contact” between Leray and the tools of algebraic topology.

Leray’s life has been described as curiously parallel to Weil, but in some ways opposite
[Eke]. Both were born in 1906 and died in 1998, both were Normaliens. Weil avoided WWII
escaping to the United States, while Leray fought until he was captured. Ekeland argues Leray
is the “applied” yin to Weil’s “pure” yang, writing [Eke]:

Leray viewed mathematics as a tool for modelling, and drew his inspiration from
problems in mechanics and physics, such as fluid dynamics and wave propagation.
He was fond of explaining how the road from mathematics to applications is two
way, and how a purely mathematical theorem (concerning, for instance, the exis-
tence and uniqueness of solutions of systems of partial differential equations) might
have profound physical implications.

This is reflected to some extent in Leray’s own self-identification.
One gets a sense of Leray’s tastes by looking at his commentary on some of his correspon-

dence with Schauder from the period. Schauder attended the Moscow Topology colloquium of
1935 and presented a talk “Some applications of the topology of functional spaces” [ANS19,
p. 38] touching on his joint work with Leray. Schauder sent Leray a letter discussing his views
on the conference. Leray views Schauder’s pronouncements as giving “evidence of very sound
judgment and great breadth of mind, analysing with penetration the capabilities and limits of
everyone, whether they were admirably great or somewhat narrow” [Ler80]. He highlights
Schauder’s comment “I am like you a man of applications.”59

For all this talk of a “mindset of applications,” one sees a slightly different side of Leray
in the Bourbaki meeting of January 14, 1935 [Del00]. The extract we are about to give turns
around the so-called Cauchy–Lipschitz theorem, an existence theorem for ordinary differential
equations.60

Weil finds the stated hypotheses unnatural; Leray strongly criticizes Goursat’s proof
and draws attention to the interest that there would be in giving before all theorems

59This correspondence was also discussed by Eckes [Eck22] who adds some color to Leray’s description by
mentioning that Schauder’s letter emphasizes the misunderstandings, in particular, of John von Neumann and
Hans Freudenthal. Eckes writes [Eck22]

La lettre de Schauder s’achève sur un résumé de sa conférence, soulignant les mécompréhensions
dont elle a fait l’objet de la part de John von Neumann et de Hans Freudenthal en particulier.

60Weil trouve les hypothèses demandées, anti-naturelles ; Leray critique vivement la démonstration donnée par
Goursat et attire l’attention sur l’intérêt qu’il y aurait à donner avant tous les théorèmes de ce type, théorèmes
maintenant classiques, des théorèmes généraux, de caractère topologique, qui sont des théorèmes d’existence purs
et non des théorèmes de calcul, mais qui permettent de prévoir quand il est possible d’énoncer un théorème de
calcul. Delsarte termine en critiquant la désinvolture avec laquelle chacun est arrivé à la présente séance. Il faut
préparer ce qui a été demandé et ne pas se fier à ses facultés d’improvisation, si brillantes qu’on les estime.
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of this type, now classical, general theorems, of a topological character, which are
pure existence theorems and not theorems of calculus, but which make it possible
to predict when it is possible to state a theorem of calculus.

Delsarte ends by criticizing the nonchalance with which everyone has arrived at the
present session. It is necessary to prepare what has been requested and not to rely
on one’s faculties of improvisation, however brilliant they are considered to be.

As Peter Lax writes in his foreword to Volume II of Leray’s collected works [Ler14]: “physicists
sometimes deride such existential pursuits by mathematicians.” Certainly Leray’s work seems
applied by contrast to that of Weil. Nevertheless, looking back with modern eyes, the idea that
one would want to formulate “pure existence theorems” seems quite “pure” and makes the view
that Leray was an “applied mathematician” seem over-simplified.

Leray’s work in algebraic topology has been described as “obscure”, and I’d like to analyze
that characterization now. To set the stage for this discussion, we need to review some of the
development of Leray’s point of view on algebraic topology, a key source of which is the Leray–
Schauder theory (I will use this as a convenient summary for the joint work with Schauder
above). In the prisoner’s camp, Leray had famously given a course on algebraic topology “in
captivity,” eschewing his more “applied” interests for fear that they could be used by the German
war machine. Having limited interaction with development of algebraic topology at the time,
save a few articles that had been procured for him by Hopf, Leray had developed his own
perspectives, and consequently his own notational and terminological idiosyncracies.

The results of this course were published in outline form as CRAS notes [Ler42a, Ler42c,
Ler42b, Ler42d] during the war. Eilenberg reviewed the CRAS notes for Math Reviews, and
the conclusion sounds somewhat dismissive:61

The outline is very concise with no proofs and not very complete definitions but it
seems likely that the cohomology theory developed will coincide with that of Čech
(at least in the case of bicompact spaces). In the remaining two notes the author
uses his homology theory to outline the topological principles that lead to existence
theorems...

Čech’s approach to homology was published initially in 1933 [Čec32b], developing ideas of
Alexandroff, and Leray’s work postdates this by some time, so it seems worth exploring Eilen-
berg’s allegation somewhat.

2.4.1 (Čech and homology). In 1932 at the Zurich ICM, Čech delivered a lecture introduc-
ing higher homotopy groups. He already knew that higher homotopy groups were abelian,
and famously was “persuaded by Hopf” to withdraw his report; now only a paragraph appears
[Čec32a].62 Alexandroff reportedly remarked: “But my dear Čech, how can they be anything
but the homology groups?”, ironic since the Hopf map S3 → S2 had been defined by 1930 and
was known to be homotopically non-trivial [Whi83].

61In the paper [Č37], Čech gives various equivalent characterizations of bicompact spaces, one of which is
equivalent to what we now call a quasi-compact space.

62G.W. Whitehead claims that inklings of higher homotopy groups were also studied by Dehn [Whi83, p. 2].
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As mentioned earlier, a veritable zoo of approaches to homology theory developed in the
wake of Poincaré’s initial approach. Čech’s approach to homology developed Alexandroff’s
idea of combinatorialization of a space using, in modern terminology, limits of nerves of finite
covers of spaces. This approach to homology differed from other approaches in several ways.
For example, it differed from the approach of Vietoris which relied on a different combinato-
rialization that would perhaps nowadays be described as simplicial approximations to a space.
The variant approaches also differed in the class of spaces to which they were applicable. On
the one hand, this methodological variety led to differing perspectives on what “key” properties
of homology should be. From this point of view, the explicit methodological variations were
later “tamed”, or perhaps organized, by the Eilenberg–Steenrod axiomatic approach.

The Čech approach was distinguished by what are now called continuity properties: the
resulting homology theory “commuted” with formation of limits of spaces. Moreover, Čech’s
approach was understood to be well-suited to “local” analysis. Indeed, by 1934 Čech had used
his approach to homology to define “local” Betti numbers [Č34]. The appearance of this paper
in Annals of Mathematics can, in view of our discussion of publication practices in this journal,
be viewed as tacit endorsement of this approach by Lefschetz by this time. Lefschetz writes
about Vietoris homology: “It is noteworthy for its convenience in many applications, but as we
shall show, it is in fact reducible to the Čech theory” [Lef42b, Chapter 7, Point 23]. Thus, by
the mid 1930s, the Čech approach to homology seems to be well-known.

Leray after the war

Leray’s motivation for revisiting the foundations of homology were evidently grounded in his
work with Schauder: he wanted an approach that was general enough to apply to Banach spaces.
In view of the vast variety of approaches to defining homology at the time, the search for yet an-
other variant with slightly different domain of applicability seems unsurprising. Eilenberg’s as-
sertion that Leray’s theory “coincides” with the Čech theory thus seems, retrospectively, some-
what reductive.

The fleshed out versions of the CRAS notes were submitted to Henri Villat at the Jour-
nal de Mathematiques Pures et Appliques in January of 1944. Villat begins his preface to
Leray’s papers by explaining that Leray’s treatment is the first “didactic treatment” since the
Alexandroff–Hopf text.63 He closes with:64

63Villat writes [Ler45a]:

“L’exposé rédigé par Mr J. Leray ≪Sur la forme des espaces topologiques et sur les points fixes
des représentations≫, est la première partie d’un Cours de Topologie algébrique, appelé à faire
quelque bruit dans le monde mathématique. Le sujet est neuf et de grande actualité. Mais en dehors
d’un livre de MM. Alexandroff et Hopf, il n’existe encore aucun traité didactique sur ces sortes de
questions.”

64Il est presque superflu d’insister sur l’opportunité d’une telle publication: on sait le renom de l’auteur,
dont les nouvelles méthodes concernant les équations différentielles ou aux dérivées partielles, et les équations
intégro—différentielles, ont en immédiatement un retentissement mondial. Ajoutons que M. J. Leray, professeur
à la Sorbonne, a écrit le présent travail en captivité (il est encore prisonnier, détenu à l’Oflag XVII). Le travail
actuel a reçu de M. Hopf, professeur à l’Université de Zurich (savant d’une compétence notoire sur le sujet,) une
adhésion enthousiaste...
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It is almost superfluous to insist on the timeliness of such a publication: we know
the renown of the author, whose new methods concerning differential equations or
partial derivatives, and integro-differential equations, immediately had worldwide
impact. Let us add that Mr. J. Leray, professor at the Sorbonne, wrote the present
work in captivity (he is still a prisoner, detained at Oflag XVII). The current work
received enthusiastic support from Mr. Hopf, professor at the University of Zurich
(a scholar of noted competence on the subject)...

The papers appeared in sequence in 1945 as [Ler45a, Ler45b, Ler45c]. Eilenberg reviewed
these more complete treatments as well writing:

The starting remark is that the product of two abstract complexes is again an ab-
stract complex, while the product of two simplicial complexes is not (without fur-
ther construction) a simplicial complex. In order to take full advantage of this con-
venient property of abstract complexes the author by-passes the usual “covering-
nerve” scheme and constructs a cohomology theory of topological spaces more di-
rectly connected with abstract complexes. The resulting cohomology theory seems
to be isomorphic (at least for compact Hausdorff spaces) with the groups obtained
following the Čech scheme.

This review contains slightly more detail about the methods, but Eilenberg appears to confirm
his earlier conclusion.

Houzel characterizes Leray’s approach [Hou00, §2] slightly differently writing: “il cherchait
à se débarrasser des hypothéses inutiles et à associer aux espaces topologiques des invariants
algébriques sans passer par des constructions intermédiaires”; this sounds to me more like a
reworking of Čech theory, but this deserves some discussion. Čech’s initial investigation studied
homology. While the Alexandroff–Čech approach to homology is mentioned above, Čech also
worked on product structures of Alexander–Kolmogorff. Leray speaks of the “homology ring”
referencing the work of Alexander–Kolmogoroff and the latter work of Čech that we now call
the cohomology ring.

Leray sought to avoid the complicated “combinatorialization” used by Čech involving the
nerve of a space and the associated auxiliary constructions. These papers of Leray never men-
tion the word sheaf, speaking instead of abstract and concrete complexes. Leray explicitly
mentions work of Alexander [Ale36a] extending the latter author’s earlier work on cohomology
rings (the connectivity ring in those papers) to more general settings using a notion called a
“grating”. Gray suggests [Gra79] that Leray’s notion of concrete complex and subsequently
“couverture” is a first step towards his invention of the sheaf notion: a concrete complex is an
algebraic structure (an abstract chain complex) together with a rule or “support function” for
attaching this algebraic structure to closed subsets of a suitable topological space.

Leray mentions a good deal about de Rham’s approach to cohomology citing what we now
call the product in the exterior algebra. We have already mentioned Weil’s first meeting with
Eilenberg where he brings up de Rham theory as a putative challenge to Eilenberg’s axiomatic
approach to homology. Miller characterizes Leray’s approach using “concrete complexes” and
couvertures as an axiomatization of the de Rham theory of forms. Specifically, the axiomat-
ics of couvertures were built in order to encode abstractly the Poincaré lemma, that, viewed
sufficiently “locally”, closed forms are exact.
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Yet another source of this attention to “locality” in Leray’s work stems from the Leray–
Schauder theory and eventual applications to fixed point theorems: in order to compute the
degree, one would like situations where it can be computed in terms of suitable local contribu-
tions [Maw99, p. 284].

In June or July 1945, just after Leray had returned from the prisoner’s camp, Weil remarks
on meeting him in Paris that:65

...he spoke to me about his “cohomology with variable coefficients”; at least that’s
the memory that remains with me, and the idea, although vague in my mind, struck
me.

In 1946, Leray published two further CRAS announcements where the notion of a sheaf
finally does appear [Ler46a, Ler46c]. Miller characterizes the reception of these announcements
as follows [Mil00, §3]:

This work must have seemed incredibly obscure at the time—a sheaf, a new concept
certainly containing a lot of information, was immediately fed into an unstudied
cohomology theory, and then used to define an invariant of a map on which there
appeared without any motivation a highly complex structure, all expressed in a terse
and contrarian style.

There is much to say about the reception of these works, which I don’t believe Miller’s descrip-
tion completely captures. While they were certainly terse (could a CRAS announcement be
anything but compressed?) much of our discussion will turn on questions of novelty of the new
notions.

Eilenberg was the reviewer of these CRAS notes for Math. Reviews again. His review can
be viewed as providing the word “bundle” as an English translation of “faisceau”, and he states
that these bundles of groups can be viewed as coefficient system for a homology theory. Unlike
previous works that were interested in cohomology of a space, Leray was interested in what he
called the “homology ring of a representation.” Leray was explicitly interested in Steenrod’s ap-
proach to “local coefficients”. Furthermore, he aimed to associate cohomological information to
a continuous map, rather than to a topological space. Houzel goes further [Hou00], suggesting,
by way of the fact that Leray references work of Steenrod on the homology of fiber bundles, that
he had in mind computations of homology of fiber spaces of various sorts. This interpretation
is indeed supported by some of Leray’s later work it’s important to remember that Picard and
Lefschetz had analyzed various classes of fibrations establishing results that know go under the
name “Picard–Lefschetz theory”, and Leray was undoubtedly aware of these results.

Eilenberg was undoubtedly familiar with Steenrod’s theory of local coefficients. His review
mentions in particular, that given a continuous map of topological spaces, the cohomology of the
fibers with coefficients in the bundle of groups again yields a bundle of groups, and closes with
comment that “the second article enters in more detail into the structure of this new group and
states without proofs a number of applications.” This description demonstrates awareness that
the situation Leray considers is more general than fiber spaces in topology, though that would

65[Wei14, p. 526-7] “...il m’avait parlé de sa “cohomologie a coefficients variables”; c’est ainsi du moins que le
souvenir m’en était resté, et cette idée, bien que vague dans mon esprit, m’avait frappé.”
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eventually be an application. In retrospect, this is the germ of the Leray spectral sequence, and
Eilenberg mentions no consequences of Leray’s analysis.

Sheaves filtered through Cartan and Weil

Before the war broke out, there was a certain amount of jockeying for mathematical positions.
Tensions between Weil and Leray were heightened during these various campaigns. One clear
view into these tensions stems from a letter from Weil to Jean Coulomb in 1938 around the
promotion of Bourbaki member Mandelbrojt that has been discussed in detail in [Ric21].66

Jean Leray aligned with Émile Picard and Gaston Julia, campaigned fiercely (he
had the nerve to write to [Henri] Cartan that he had spent 15 days in Paris “studying
the spirit of the Institute”), and, by putting forward (he had the impudence to tell
me) the xenophobic argument and also, I believe, the anti-Semitic argument, he
managed to garner 21 votes against 26 for M[andelbrojt]. So here are Julia and
Villat, who praised him to the skies at the Institute, and who can no longer go back
on their words at the Sorbonne.

The view of increasing tension between Leray and Bourbaki around this affair goes further.
Julia ran a seminar around the time, and various Bourbaki members had contributed talks. Julia
unceremoniously decides to remove all Bourbaki members from his seminar, and Leray’s role
in this removal is described by Weil [Ric21, 4.3] thus: 67

[Leray] managed to make Julia understand that he had been very wrong to let Bour-
baki lead his seminar, that the seminar was going badly, that no Travaux were com-
ing out of it, and that with his collaboration, Leray, everything would work out
quite differently. Which explains why at the end of the last two presentations of the
year (Chevalley and Pisot, excellent presentations by the way) Julia yelled at the
speakers with a clear bias, and properly dismissed our team, announcing that next
year the seminar would take place “under different conditions”.

These accusations are strong, but nevertheless we saw above that in 1945 Weil was still talking
to Leray, and evidently interested in his mathematical opinions.

In 1945, Weil moved to São Paolo, Brazil and had assumed a temporary role as an instructor.
This period takes up but a few pages in his autobiography–effectively an epilogue. About his
mathematical interactions he writes [Wei92, p. 192] the circumspect sounding:

66Jean Leray s’est retourné vers Émile Picard et Gaston Julia, a fait une campagne acharnée (il a eu le toupet
d’écrire à [Henri] Cartan qu’il avait passé 15 jours à Paris à ≪ étudier l’état d’esprit de l’Institut ≫), et, en faisant
valoir (il a eu l’impudence de me le déclarer) l’argument xénophobe et aussi, je crois, l’argument antisémite, il a
réussi à récolter 21 voix contre 26 à M[andelbrojt]. Voilà donc Julia et Villat, qui l’ont porté aux nues à l’Institut,
et qui ne peuvent plus s’en dédire à la Sorbonne

67[Leray] s’est arrangé pour faire comprendre à Julia qu’il avait eu grand tort de laisser à Bourbaki la conduite
de son séminaire, que le séminaire marchait mal, qu’il n’en sortait pas de Travaux, et qu’avec sa collaboration
à lui Leray tout marcherait bien autrement. Ce qui explique qu’à la fin des deux derniers exposés de l’année
(Chevalley et Pisot, exposés excellents d’ailleurs) Julia a engueulé les conférenciers avec un parti pris manifeste,
et a proprement limogé notre équipe, en annonçant que l’an prochain le séminaire aurait lieu ≪ dans des conditions
différentes ≫.
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Besides, despite Zariski’s presence in São Paulo in 1945, and Dieudonné’s in 1946
and 1947, it was impossible not to wish for a more stimulating scientific milieu. My
Parisian friends thought it possible to arrange for my appointment to the College
de France when Lebesgue’s retirement left a chair vacant, but this plan did not
materialize.

The Cartan–Weil correspondence from this period paints a rather different picture and involves
Leray on several fronts. The appointment at the College de France to which Weil refers, in
1946, was eventually assumed by Leray.68 The correspondence itself refers to this episode as
“L’affair du college”. One cannot help but keep all these scuffles in mind as one confronts the
tone of the letters exchanged between Cartan and Weil and, consequently, the mathematics they
discuss.

Weil’s comment about wishing for “a more stimulating scientific milieu” can also be un-
packed a bit. Certainly the institute in São Paulo had a library, but which periodicals did they
receive? How did Weil get to hear about current mathematics? On the one hand, the Cartan–
Weil correspondence itself answers this question: there is rather a lot of it saved from this
period, with Weil’s epistolary efforts presenting something of a bridge to the outside mathemat-
ical world, supplemented by the visits he mentioned above. Indeed, it appears Weil receives
a cache of interesting articles from visiting friends, attached in letters he receives and through
French periodicals delivered to the embassy.xl Thus, the “scientific milieu” in which Weil found
himself sounds rather spartan, and given the context in which Weil left France, it strikes one
almost as mathematical exile.69

Against this backdrop, in January 1947, Weil wrote a letter to Cartan where he sketches a
proof of the de Rham theorem using local–to–global ideas: he asserts the existence of suitable
“simple” coverings; on each covering patch, one can appeal to the Poincaré lemma, and then
appeal to combinatorics to conclude. While Weil works with closed coverings, some variant of
this is one of the standard “modern” proofs of the result.

Weil’s letter to Cartan is reproduced in [Wei14, pp. 45-47], but a different version appears in
[CW11, p. 139–142]. The version in Weil’s collected works makes no mention of Leray, leading
Miller [Mil00] to write: “It is curious and surprising that it was André Weil rather than Leray
himself who found the modern proof of the de Rham theorem, since this proof was a vindication
of the local methods espoused by Leray. While Weil does not acknowledge Leray’s influence...”
However, the version of this letter in [CW11, p. 142] includes two further paragraphs, which
do mention Leray 70

68Leray’s published recollections of this, which I take from [Mey04, §5], are rather bland:

C’est [ce travail de topologie algébrique] qui m’a fait entrer à mon retour de captivité au Collège
de France...Il y eut un drame à cause de l’attitude d’André Weil pendant la guerre: elle ne fut pas
admise par cette maison, qui a hautement le sens du devoir national...

Much more is written about Weil’s view of this episode, and we will discuss it momentarily.
69He expresses a sentiment in this direction in a letter to Cartan [CW11, p. 93] from November 1944:

...pour moi, je n’ai pas trés brillamment réussi; en ce pays oú d’ailleurs je n’ai jamais eu l’intention
de me fixer. Non sans hésitation, j’ai accepté une chaire au Brésil, ou je dois rester deux ans; mais
je compte venir passer en France les vacances de 1945-46, d’octobre à mars.

70Weil writes:
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In particular, if the cohomology groups with local coefficients of the illustrious
Leray, are indeed what I thought I understood when he said a word to me about
them in Paris, they should fit quite naturally into your exposition of cohomology,
and into the principle of the method above; has L. begun to publish on this subject? I
have not yet seen his great opus in Liousville’s journal, but according to Eilenberg’s
analysis in Math. R. there is not much new to be found in this treatment. Would
his invention of variable coefficients be oriented towards a Morse-like theory? It
would be nice to know as soon as possible if there is something to be gained from
it for us.

This translation does not suggest that Weil viewed Leray’s comments to him as “inspiration”. I
feel like this reading is supported by the last line of the quote above that seems to orient Weil,
and by association Cartan, in opposition to Leray. It seems natural to read Weil’s mention of
the “illustrious” Leray as mocking (indeed, he uses this construction numerous times in letters
to Cartan) or, perhaps, even jealous.71 Weil seems to equivocate: he appears simultaneously
skeptical of the interest of Leray’s mathematical ideas, echoing Eilenberg’s comments, and open
to the idea that there are things from which he and Cartan could draw. Weil was aware of the
Alexandroff–Čech approach to homology and his opinion seems to reflect Eilenberg’s opinion
that at an appropriate distance “local methods” are already contained in this work. Borel marks
this letter in [BHL00] as the source of Cartan’s interest in the theory of sheaves, and below we
will analyze subsequent correspondence between Weil and Leray, justifying our assertion of
Weil as the “skeptic” to Cartan as Leray’s supporter.

Looking back at Leray’s initial works on sheaves and homology, one sees an approach that
contains an amalgam of concepts. The new notion of sheaf appears simultaneously with new
computational tools like the still intimidating notion of spectral sequence. As we will detail
below, the reception of these new ideas was not uniform: some members of the establishment
viewed the ideas somewhat suspiciously, perhaps an elaborate dressing-up of ideas that are
inherently simpler, others view the techniques hopefully as the claimed applications begin to
appear.

From this point of view, it is no surprise that Leray’s approach has been described as ob-
scure. Note: Leray’s work is not obscure in an anachronistic way; Leray still uses “axiomatic”
methodology and presentation, but instead his notation, terminology, or perhaps something

En particulier, si les groupes de cohomologie, à domaines de coefficients variables, de l’illustre
Leray, sont bien ce que j’ai cru comprendre quand il m’en a dit un mot à Paris, ils doivent s’encadrer
tout naturellement dans ton exposeé de la cohomologie, et dans la principe de la meéthode ci-dessus;
L. a-t-il commenceé à publier sur ce [barré:sujet?] sujet? Je n’ai pas encore vu son grand opus de
Liouville, mais d’aprés l’analyse d’Eilenberg dans Math. R. il ne s’y trouve rien sur ce sujet, et
même il ne s’y trouve rien de bien nouveau. Son invention des coefficients variables serait-elle
orienée vers une théorie genre Morse? Il conviendrait de savoir le plus tôt possible s’il y a quelque
chose à en tirer pour nous.

Recall that the Journal de Mathématiques Pures et Appliquées was founded by Liouville.
71We have already discussed some of the tensions between Weil and Leray above, but one can add to this a further

rupture caused by the war. In the spirit of Ekeland’s “opposing forces” we can speak of Leray the “illustrious” war
hero vs. Weil the shamed. In support of this point of view, in addition to Leray’s comments above, I mention here
the discussion in [CW11, p. 553] of “L’affair College” which describes Weil’s aborted candidacy for a position at
the College de France, contra Leray and stymieing Weil’s redemptive return to France.
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more ineffable, “style” perhaps, are not reflective of the mainstream presentations of ideas of
algebraic topology, even in France. As a consequence, it seems completely unclear at this stage
whether Leray’s ideas would assume a place of importance in mathematics. What changed
people’s minds?

The early January 1947 letter from Weil to Cartan marks the beginning of an explosion of
correspondence about homology and sheaves that we now have access to. We can track the
evolution of the notion of sheaf by its reflection in these letters. Later in January [CW11, p.
143], Weil writes to Cartan about a putative Bourbaki algebraic topology book: “the more I
reflect on it, the more I think that fiber spaces, differential geometry, etc., cannot be separated
from algebraic topology and should constitute only one book...”72. Weil goes on to suggest that
this treatment should be based on open coverings instead of triangulations, in the manner of
this previous letter. In February he writes with further discussion of de Rham theory, as well
as questions about the cohomology theory for groups discussed by Eilenberg–Mac Lane. Weil
sends another letter on February 2 [CW11, p. 145] clarifying some points of his preceding
treatment and making mention of the fact that his proof depends on some lemmas, the first of
which (A) is the fact that given a compact differentiable manifold V there exists a covering of V
by open sets Ai such that every non-empty intersection is homeomorphic to a ball. Nowadays
we call this a good cover, and this seems to be one of the first places where this notion appears.
The second allows Weil to identify the cohomlogy of V in terms of the nerve of this covering
in the sense of Alexandroff-Čech.

Cartan responds shortly thereafter on February 5, saying that he has a thousand things to say.
He questions a key step in Weil’s sketched proof of the de Rham theorem, which Weil remarked
was a bit delicate in his first letter: cover a given space by subsets all of whose intersections
are homeomorphic to balls. The existence of a “good cover” of a differentiable manifold is now
frequently attributed to Weil, but Cartan brings this up to support Leray: “this follows from one
of the essential theorems of Leray”. Cartan then asks: “do you know this theorem, or are you
using something else?” and writes73

As for your proof itself, I saw its relation (without wishing to offend you) to a
proof that Leray gives several times, in another form, moreover, a proof which I
studied at length last year when I was trying to unravel Leray’s memoir (which,
incidentally, is more interesting than you seem to believe). I thought about sending
you a detailed report on what I learned last year from this memoir, but I think it is
now useless because I have just found much better, if it is correct! I don’t yet have
all the proofs in black and white, but I didn’t want to wait any longer to write to
you so as not to try your patience.

72“Plus je réfléchis et plus je pense que les espaces fibrés, géométrie différentielle, etc. ne peuvent être séparés
de la topologie algébrique et doivent constituer un seul livre avec celle-ci...”

73Quant à ta démonstration elle-même, j’ai aperçu sa parenté (sans vouloir ta vexer!) avec une démonstration
que Leray fait plusieurs fois, sous une autre forme d’ailleurs démonstration sur laquelle j’ai longuemont travaillé
l’an dernier quand je cherchais à debrouiller le mémoire de Leray (qui, entre parenthèses, présente plus d’intérêt
que tu ne sembles le croire). J’ai songé a t’addressser un rapport détaillé sur ce que j’avais tiré l’an dernier de ce
mémoire, mais je crois que c’est maintenant en partie inutile car je viens de trouver bien mieux, si c’est exact! Je
n’ai pas encore toutes les démonstrations en noir sur blanc, mais je n’attends pas davantage pour t’écrire pour ne
pas abuser de ta patience.
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The letter continues with discussion of some purely algebraic notions subordinate to generaliza-
tions of the de Rham theorem: differential graded algebras, tensor products of such, eventually
returning to Cartan’s reconsideration of Leray’s notion of couverture, which he calls a carapace.
Among these examples is included the “delicate point” in Weil’s approach to the de Rham the-
orem. The letter concludes with announcements of results unifying Leray’s presentation, the de
Rham theorem and various other approaches to cohomological computations.

The back and forth continues: Weil further discusses the points on which Cartan asked for
clarification. Cartan draws back some of his claims, and Weil responds with further questions.
On February 18th, Weil continues to be skeptical of Leray’s approach linking his opinions to a
possible Bourbakiste treatment of algebraic topology [CW11, p. 178]:74

...but, for a Bourbakiste theory based on “carapaces”, there is the objection of com-
plication and artificiality–I do not know if Leray’s method escapes from this (you
say that it also provides “carapaces”): I doubt it after Math. Rev.; moreover, any
theory which introduces general (cellular) complexes and not just simplicial ones
seems to me doomed in advance, for a Bourbakiste presentation, because of the
horrible incidence matrices.

Still later in February, Weil’s skepticism of the novelty in Leray’s approach continues. In
a letter date February 24 [CW11, pp. 181-186], which contains a large number of postscripts,
he brings up the discussion of Alexander’s theory of gratings (which we discussed earlier; see
[Ale36a, Ale36b]). The third postscriptum reads:75

According to what you tell me about“Leray’s method”, Alexander’s method (grat-
ings) is basically nothing more than the application of this method (with a few years
precedence!) to the set of two-fold coverings (I mean, each consists of only two
sets) of the space studied; it is therefore, in principle, a simplification of “Leray’s
method”; from which it follows that if the latter (as you assert) gives “carapaces”,
the one given by Alexander’s method must certainly be simpler.

This postscriptum ends with the Weil’s vivid characterization of the Leray’s approach:76

In short, the Leray monster would be the bastard child formed of the incestuous
union of the cube and the simplex (or even of Alexander and Cech)!!!

74...mais, pour une théorie bourbachique fondée sur les ≪carapaces ≫, il y a l’objection de la complication et
de l’artificialité–a laquelle je ne sais si la méthode Leray échappe (tu dis qu’elle fournit aussi des ≪carapaces ≫):
j’en doute après Math. Rev.; d’ailleurs, toute theorie qui introduit des complexes généraux (cellulaires) et non
pas seulement simpliciaux me paraı̂t condamnée d’avance, pour un exposé bourbachique, à cause des horribles
matrices d’incidence.

75D’après ce que tu me dit la ≪méthode Leray ≫, la méthode Alexander (gratings) n’est au fond pas autre chose
que l’application de cette méthode (avec quelques annees d’anteriorité!) a l’ensemble des recouvrements binaire
(je veux dire, formés chacun de deux ensembles seulement) de l’espace étudié; c’est donc, dans son principe, une
simplification de la ≪méthode Leray ≫; d’où résulte que si celle-ci (comme tu affirmes) donne des ≪carapaces ≫,
celle que donne la method Alexander doit certainement être plus simples.

76En somme, le monstre Leray serait un rejeton bâtard issu de l’union incestueuse du cube et du simplexe (ou
encore: d’Alexander et e Cech)!!!
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The sixth [CW11, p. 186] returns to Leray, reflecting on the conversation Weil had with him
in 1945 around the notion of local coefficients:77

If this is indeed what I thought I understood in 1945, it is a very fruitful idea,
but of such generality and such scope that we can only hope to implement it, at the
moment, in particular cases...If it is Leray’s idea, and if he has already implemented
it, it would be of primary importance for us to know where he stands; otherwise we
would have to explore the terrain ourselves, although that seems difficult.

Weil goes on to speculate once again about using ideas of local-coefficients to move toward
Morse theory, and includes the telling footnote:78 “An inexhaustible mine of thesis topics for
(clever) Bourbaki students.

On March 4th, Cartan responds with a long letter. He discusses a number of things before
writing, “and now we come to homology” responding to a number of Weil’s criticisms [CW11,
p. 191], in part around how Bourbaki should approach homology, but also about Leray. First,
I mention for context that Cartan points out that the Eilenberg–Steenrod axiomatization of ho-
mology only establishes certain kinds of uniqueness statements, but of a manifestly different
sort than what one would like. Cartan references “complexes” presumably of the combinatorial
sort, which is at odds with Weil’s point of view about what a proper “Bourbaki” account of
homology might look like. Cartan continues:79

Besides, you seem to have lost sight a little of the importance of this uniqueness
theor., having been especially attached to the existence question, which you be-
lieved you had to resolve by the negative in general. I think you are now convinced
of this existence result, since you found Leray’s ideas already in Alexander’s work!
But, if I judge Alexander by what you tell me, the difference with Leray (or rather,
what I told you about Leray) is very minimal; and there is no need to get excited
about whether we will completely ban simplicial complexes and only tolerate the
subcomplexes of a cube (because that is what you are demanding with your bi-
nary Alexander coverings) . To think that in your previous letter (of the 18th), you
wanted to ban all complexes other than simplicial, for anti-Bourbachism! You go
from one extreme to the other. My opinion is that we need simplicial complexes

77Si c’est bien là ce que j’ai cru comprendre en 1945, c’est là une idée très féconde, mais d;une telle généralite et
d’une telle portée qu’on ne peut guère espérer la mettre en œuvre, pour l’instant, que dans des cas particuliers...Si
c’est l’idée de Leray, et si il l’a déjà mise en œuvre, il serait de première importance pour nous de savoir où il en
est; sinon il faudrait explorer nous-mêmes le terrain, bien que ça semble difficile.

78Mine inepuisable de sujets de these, pour eleves (astucieux) de Bourbaki.
79D’ailleurs tu sembles un peu avoir perdu de vue l’importance de ce théor. d’unicité, t’étant surtout attaché à

la question d’existence, que tu croyais devoir résoudre par la négative en général. Je pense que maintenant tu es
convaincu de cette existence, pusique tu as retrouvé Leray chez Alexander! Mais, si je juge Alexander par ce que tu
m’en dis, la différence avec Leray (ou plutôt, ce que je t’ai dit de Leray) est bien minime; et cela ne veut pas la peine
de s’exciter pour savoir si on proscrira entièrement les complexes simpliciaux pour ne plus tolérer que les sous-
complexes d’un cube (car c’est cela que tu réclames avec tes recouvrements binaires d’Alexander). Dire que dans
ta lettre antérieure (de 18), tu voulais bannir tous les complexes autres que simpliciaux, pour antibourbachisme!
Tu passes un peu d’un extreme et à l’autre. Mon opinion est qu’on a besoin des complexes simpliciaux et de leurs
produits; avec cela, on peut tout faire...C’est ev́idemment beaucoup plus que qu’il n’en faut.
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and their products; with this, you can do anything...It’s obviously much more than
is necessary.

Cartan continues with an implicit admonishment of taking the content of Math Reviews of
long memoires too seriously:80 “All the same, it is regrettable that you cannot consult Leray’s
big memoir, because the Math.Reviews are not enough: in general, the reports of important
memoirs are so poorly done that the reader cannot even understand that he is missing out on
something important.”

Cartan continues to give further explanations for the importance of Leray’s work. Could it
be that he knows he cannot change Weil’s mind on his own? After mentioning some results
of Gysin, Cartan continues:81 “Leray claims that he integrated this into his theory of variable
coefficients; Leray already published 3 or 4 very complicated and difficult to understand notes
last summer; it would take several months to sort this out. He obtains results that I am not in a
position to appreciate, but which greatly interested Hopf last summer (Hopf having previously
tried and failed with the same questions).”

Cartan continues on March 11th [CW11, p. 198], having looked closely at Alexander’s
work on “gratings” to ostensibly defend Leray’s originality, but ceding some ground on the
precedence of Alexander’s approach:82

My current opinion on “gratings”: it is a particular process for defining a cohomol-
ogy ring, just like that of Leray (obviously several years prior), but almost the entire
work is devoted to an algebraic presentation of the process, and he gets little out
of it, not even the cascade (and yet, this is how it presents itself very intuitively).
Leray draws lots of things from it, if only his theorem on the determination of the
homology ring by that of a covering with simple “supports”. On the other hand, no
more than Leray, Alexander does not seem to want to take the trouble to compare
his definitions with other existing definitions, such as that of Čech. Finally, it turns
out that the “gratings”, like Leray’s tricks, give “carapaces”, but there are others

80Tout de meme, il est regrettable que tu ne puisses pas consulter le gros memoire de Leray, car les Math.Reviews
ne suffisent pas: en general, les comptes rendus des memoires importants y sont si mal faits que le lecteur ne peut
même pas se douter qu’il passe à côté de quelques chose d’important.

81Leray prétend qu’il a intégré cela dans sa théorie des coefficients variables, il a déjà paru des Leray, l’été
dernier, 3 ou 4 notes très compliquées et difficilement pigeables; il faudrait plusieurs mois pour débrouiller cela.
Il obtient des resultats que je ne suis pas a meme d’apprecier, mais qui ont vivement intéressé Hopf l’été dernier
(Hopf ayant auparavant séché vainement sur les memes questions).

82Mon opinion actuelle sur les ≪gratings≫: c’est un procédé particulier pour définir un anneau de cohomologie,
tout comme celui de Leray (avec évidemment plusieurs années d’antériorité), mais presque tout le mémoire est
consacré à un exposé algébrique du procédé, et il en tire peu de chose, pas même la cascade (et pourtant, c’est
de cette manière qu’elle se présente très intuitivement). Leray lui, en tire des tas de choses, ne serait-ce que son
théorème sur la détermination de l’anneau d’homologie par celui d’un recouvrement à ≪supports≫simples. D’autre
part, pas plus que Leray, Alexander ne semble vouloir se donner la peine de confronter ses définitions avec d’autres
définitions existantes, telles que celle de Cech. Enfin, il se trouve que les ≪gratings≫, comme les trucs de Leray,
donnent des carapaces, mais il y en a d’autres comme celles de De Rham avec les formes différentielles. Donc, si
Alexander (ou Leray, ou une synthèse des deux) peut et doit servir à prouver l’existence de carapaces (sup., bien
entendu), le théorème d’unicité de l’anneau d’hom. des carapaces est une pièce essentielle, qu’on ne trouve pas
chez Alexander ni ailleurs, pas plus que chez Eilenberg; et il donne immédiatement, de la manière la plus simple,
le théorème de la cascade.
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like those of De Rham with differential forms. So, if Alexander (or Leray, or a syn-
thesis of the two) can and must be used to prove the existence of carapaces (sup.,
of course), the uniqueness theorem for the homology ring of a “carapace” is an es-
sential piece, which one does not find in Alexander or elsewhere, nor in Eilenberg;
and he immediately gives, in the simplest way, the cascade theorem.

Here the term “cascade” is a reference to what we now call a “long exact sequence”. It is
difficult to decipher exactly which “long exact sequence in cohomology” is being considered,
but given the discussion of local coefficients, it is natural to speculate that they are speaking
of the long exact sequence in cohomology attached to something like a short exact sequence.
Cartan follows this up soon thereafter with a letter on the 12th of March [CW11, p. 200] where
he describes another benefit of the theory of carapaces it:83

...results in the theorem Eilenberg sought in vain and also in the determination of
the homology ring of a product space. I am convinced that the Alexander-Leray
method is the right one, up to some details in the presentation. It is these details
that will decide its apparent “simplicity” or “complication”.

Cartan also draws a distinction between the ideas of Čech, which “seduced him” and the method
of Alexander–Leray, to which we will return shortly.

The subsequent discussion turns to other topics, but there are still a few remarks to be made.
On the 6th of April [CW11, p. 215], Weil writes:84

Where are you on homology? It seems essential to me that you write down as soon
as possible, very briefly but completely, your carapatic theory, with, not only the
uniqueness theorem, but also the existence theorem; without which we won’t press
forward.

Cartan’s response to further questions in this letter is also striking because it gives a first hint of
the influence of Eilenberg’s categorical point of view on his thinking and presentation [CW11,
p. 222]. 85

I now respond, at least in part, to the questions in your homological letter of April
6,–without waiting for a complete redaction on my part! ...But this supplement to
the uniqueness theorem (namely that the representations in question are “natural”
as Eilenberg says) is easy..

83...entraı̂ne le théorème vainement cherché par Eilenberg et aussi la détermination de l’anneau d’homologie
d’un espace-produit. Je suis persuadé que la méthode Alexander–Leray est la bonne, aux détails de présentation
près. Ce sont ces détails que décideront de sa ≪simplicité ≫ou de sa ≪complication ≫apparentes.

84Où en es-tu de l’homologie? Il me parait essentiel que tu rédiges le plus tôt possible, très brèvement mais
complètement, ta théorie carapatique, avec, non seulement, le théorème d’unicité mais le théorème d’existence;
sans quoi nous n’avancerons pas.

85Je réponds maintenant, au moins en partie, aux questions de ta lettre homologique du 6 avril,–sans attendre
une rédaction complete de ma part!...Mais ce supplement au théorème d’unicité (à savoir que les représentations
en questions sont ≪naturelles≫comme dit Eilenberg) est facile...
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Cartan continues, now confident that his point of view allows a comparison of the Čech and
Leray approaches to homology.

Finally, on the 2nd of May, Weil writes back [CW11, p. 225]:86

Thank Koszul for Leray’s notes...the definitions in these notes are exactly what I
had reconstructed on my own; the results he gives do not seem to go very far for
the moment, and what he says about the applications he has in mind is also a little
disappointing; but the idea is worth remembering.

In a letter on the 9th of May [CW11, p. 227], Weil continues:87

I began to study the Leray notes; It’s very interesting, and besides not difficult, and
I recommend you study it. What is essentially new are the canonical homomor-
phisms defined in the 2nd note (N.B. I am waiting for the following ones soon).

I think I laughed out loud the first time I read Weil telling Cartan to study Leray, but I can only
imagine how Cartan must have responded to this nudge. He continues in a postscript:88

Of course, the fact that Leray uses, in these notes, his technique of “couvertures”
(sic) is not an argument in favor of these; there is no difficulty in transporting all of
this into any system (Čech, Alexander, “carapaces”) that we may decide to adopt.
It does not seem to me, for the moment, that there is any connection between Leray
and Gysin (except that Leray claims that he deduced G.’s results relating to sphere
bundles).

The letters continue, but the parties seem to have drawn their sides. I was struck at just how
hard Weil works, over an extended correspondence to assert that Leray’s point of view is really
not new.

In the meantime, the reception of these ideas in the United was somewhat different, and this
is discussed in detail in [Mil00]. George Whitehead stated that he found Leray’s writing obscure
and William Massey said: “In the late 1940’s and early 1950’s all of us were studying Leray’s
papers to try to understand how he got the marvelous results he claimed. To be perfectly frank, I
never got to 1st base in this enterprise, it was very frustrating. Leray was a horrible expositor.”;
Evidently this is at odds with Weil’s assessment of the results. Miller goes on, quoting an
interview with Leray where he remarks on the distress he felt by the reception of his work
in the United States, drawing particular attention to the Math. Reviews which he felt did not
accurately represent their content.

86Remercie Koszul pour les notes de Leray...Les définitions de ces notes sont exactement ce que j’avais recon-
stitué de mon coté; les rèsultats qu’il y donne ne semblent pas aller très loin pour l’instant, et ce qu’il dit des
applications qu’il a en vue est un peu décevant aussi; mais l’idée est à retenir.

87Je me suis mis à l’étude des notes Leray; c’est fort intéressant, d’ailleurs pas difficile, et je t’en recommande
l’étude. Ce qui est essentiellement nouveau, ce sont les homomorphisms canoniques définis dans la 2e note (N.B.
j’attends pour bientôt les suivantes)

88Bien entendu, le fait que Leray utilise, dans ces notes, sa technique des ≪couvertures≫(sic) n’est pas un
argument en faveur de celles-ci; il n’y a pas de difficulté a transposer tout ça dans n’importe quel système (Cech,
Alexander, ≪carapaces≫) qu’on pourra décider d’adopter. Il ne me semble pas, pour l’instant, qu’il y ait un rapport
quelconque entre Leray et Gysin (sauf que Leray affirme qu’il retrouve les resultats de G. relatifs aux fibrés a fibre
sphérique).
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What are we to take away from all of this? In the face of Weil’s criticisms, Cartan con-
tinued to investigate Leray’s ideas, was a proponent for them, and decided to internalize them.
What would have happened to the theory of sheaves without the support of Cartan and Weil’s
challenges? In retrospect, the differences between all of these approaches have disappeared.
Cartan’s theory of “carapaces” and Leray’s original theory of sheaves have been subsumed in
another more “modern” theory. The variant different approaches have been unified with Leray’s
ideas of “spectral sequence” providing a useful tool for comparing all the different approaches,
but none of this seems evident to me at this stage. Indeed, in order for the theory to develop, it
seems necessary for the tools to find an audience.

Sheaves in the Cartan seminar

In the meantime, at the instigation of Cartan, J.-L. Koszul was investigating Leray’s work.
Cartan already remarks on Koszul’s works in the letter of April 20th [CW11, p. 223], where he
indicates that Koszul has recovered “all of Leray’s results and those of some others” in the case
of “representations” of a compact Lie group to a homogeneous space. These results eventually
appeared as [Kos47a], which isolates the algebraic structures that Leray considered–in modern
terminology aspects of the theory of filtered differential rings–, and [Kos47b] which announces
the claimed applications to homogeneous spaces.

In the summer of 1947, the CNRS hosted an international colloquium on algebraic topology
in Paris. Leray gave a talk at this conference, and Cartan comments directly on this talk [CW11,
p. 244-5]:89

Leray taught me nothing essentially new, except perhaps the addition he made for
his talk at the conference and which relates to spaces on which a group operates
by automorphisms. I will have to clarify the few cryptic indications he gives; these
questions relate to Eilenberg’s memoir of the Transactions, which I was able to read
quickly before leaving Strasbourg.

Here, Leray makes reference to Eilenberg’s paper [Eil47] analyzing homology of spaces on
which a group acts; he uses Steenrod’s theory of local coefficients and makes connections to
his earlier work on group cohomology. In his colloquium talk, Leray applied his theory to
the analysis of finite (Galois) coverings. Cartan’s “clarifications” amounted to an extension of
Leray’s results to infinite coverings and were announced in two CRAS notes [Car48a, Car48b].

In 1947-48, Leray gave a course on his approach to cohomology via sheaves at the College
de France; the notes from this course were eventually published in a polished form in 1950
[Ler50]. Cartan visited Harvard in 1948 and gave a course on algebraic topology. The notes
of this course were written up by George Springer and Henry Pollak [Car], and it is unclear
what influence Cartan had on the final treatment (see [Mil00, Footnote 4]). The aim of the
course was to end up at Weil’s proof of the de Rham theorem. According to [Mil00], the
resulting treatment makes no mention of Leray or Weil. Moreover, Chern’s MathSciNet review

89Leray ne m’a rien appris d’essentiellement nouveau, sauf peut-être le supplément qu’il a fait pour un cours
du colloque et qui se rapporte aux espaces dans lesquels opère un groupe d’automorphismes. Il faudra que je tire
au clair les quelques indications sybyllines qu’il donne; ces questions se rattachent au mémoire d’Eilenberg des
Transactions, que j’ai pu lire rapidement avant de quitte Strasbourg.
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of this course makes no mention whatsoever of Leray’s work on “couvertures”, though it does
make mention of Alexander’s theory of gratings. In view of the amount of discussion of the
relative importance of the ideas of Alexander and Leray in the Cartan–Weil correspondence,
one wonders how Cartan reacted to this lack of attribution.

Shortly after the correspondence above, in the 1948-49 academic year, Cartan devoted a
portion of the Séminaire Cartan to analyze sheaves and Leray’s approach to homology. The
write-ups from these exposeés were later withdrawn as Cartan’s viewpoint changed, and only
the portion of the seminar devoted to other topics in algebraic topology is still available. We
draw a few comments from the exposes that do remain. Leray’s name is explicitly mentioned in
the expose on Čech–Alexander cohomology [Sem55a, Expose 6]. In the exposé on local coeffi-
cients [Sem55a, Expose 10 §11], one finds a definition of “local system of groups”, highlighted
as a new definition; this is the modern notion of presheaf. Here “local coefficient systems” are
used as coefficients for Čech cohomology.

We will continue this development below, but while we keep referring to Leray’s theory of
sheaves, it is telling that Leray published essentially nothing about sheaves or homology af-
ter 1950 (save an erratum to his various works discussed above). The comments above about
Leray’s frustrations with the reception of his work, the rapid internalization of the theory by
Cartan and the subsequent developments of Leray’s tools by other authors, e.g., spectral se-
quences and Koszul as we described above, make it clear that the theory was very quickly no
longer Leray’s. One is led to ask the question: was this for reasons of taste or frustration?
Instead, the theory of sheaves was subject to significant and repeated re-invention in the 1950s.

Interlude: on the mathematical mainstream

Leray’s work was very much a topic of discussion among a certain group of mathematicians in
the 1940s and 1950s: one might call this group mainstream French mathematicians interested
in algebraic topology and related subjects. This treatment of Leray’s work on sheaf theory, I
hope, demonstrates that there is a real sense in which Leray never entered this community, as
evidenced by his mathematical interests moving in other directions. Leray was in some ways
an outsider to this community to begin with, and it seems unquestionable that issues of taste
played a role in this outcome. We hear from various people that Leray’s work is “difficult”,
“obscure” or that Leray is a “poor expositor”. But one could just as well argue that there was
a simple disjunction between Leray’s intuitive style and the Bourbaki-style that was sweeping
across the landscape of algebra and algebraic topology where Leray’s ideas found their audi-
ence. Mawhin describes Leray’s writing in the following way: “With his caustical mind, which
reminds Voltaire or Henri Poincaré, with his love of French language, whose severe elegance
follows from a constant care for concision...”. Meyer echoes this description [Mey04, §5]:90

For Jean Leray, the beauty and strength of mathematics were enough. He therefore
carefully wrote on the board what he wanted to convey to his listeners. His style

90Pour Jean Leray, la beauté et la force des mathématiques suffisaient. Il écrivait donc soigneusement au tableau
ce qu’il voulait transmettre à ses auditeurs. Son style était sobre, sec, sans concession et les auditeurs de ses cours
étaient parfois perdus.
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was sober, dry, uncompromising and the listeners of his courses were sometimes
lost.

And thus we come back to Leray’s independent-mindedness [Maw98]:

The essential character of my publications is however their diversity: the problems
which attracted me required techniques still unused in the specialty where they were
classified; their solution required or suggested improvements of those techniques,
such that, to develop them, I had to change my area.

While Leray won a number of mathematical honors, he gave only a contributed paper in the
1950 ICM, and was never a plenary speaker at any of the ICMs that took place during his
lifetime [Maw98].

I have already mentioned Tucker’s review [Tuc35a] where an awareness of the existence of a
mainstream in mathematics, or at least an opinion that a mathematical mainstream exists is pro-
fessed. The discussion of mainstream mathematics, especially around sheaf theory surrounds
Bott’s recollections of his second visit to the IAS [DM89, p. 532] from 1955-1957:

if my previous stay was dominated by a feeling of awe at the brilliance of the older
generation, during this second one, my dominant feeling was one of awe, alas,
mixed with envy, at the brilliance of a generation younger or contemporary to my
own!

And no wonder. During that time, and largely at Princeton, I met Serre, Thorn,
Hirzebruch, Atiyah, Singer, Milnor, Moore, Borel, Kostant, Harish- Chandra, James,
Adams,...,

He speaks of the “great topologist, Serre” and how Serre tried to teach him sheaf theory. By
1950, sheaf theory was very much part of the culture of “mainstream mathematics” about which
Bott also recorded some interesting things.

Baum wrote, in volume 3 of the collected works [Bot95]:

What did I learn from Bott? I learned–perhaps I should say relearned–from Bott
things that I already knew: that there is great beauty and wonder and fun in mathe-
matics; that the best mathematics is not necessarily the most difficult; that there is a
mainstream to our subject that talented mathematicians like Bott have an instinctive
feel for; that ideas should be presented clearly and without nonsense so that other
mathematicians can understand and appreciate them.

Allyn Jackson discusses this in her interview with Bott [Jac01]. Of Baum’s comments she
writes: “How does one come to understand what that mainstream is? You’re born with it? You
learn it? You pick it up from the environment?”

For Bott, finding the mainstream was always a matter of following his tastes. “And some-
times my taste led me in directions that weren’t fashionable but that luckily turned out to be
fashionable later on! But these things are dangerous, the fashions change, and it’s hard to tell in
retrospect whether you were in the mainstream. I was just very affected by the early develop-
ment of sheaf theory, and especially the combination of analysis with topology that then ensued.
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Suddenly complex variable theory fitted in with topology and even certain aspects of number
theory. So I think that at that time it was very easy to discern this development as a main road in
mathematics.” While we haven’t gotten there yet, this discussion of “mainstream sheaf theory”
seems entirely divorced from the theory that Leray was describing.

Bott continues: “But I’ve seen the mainstream change considerably over my lifetime. For
instance, if I think of Princeton before sheaf theory, the emphasis was very different. When I
first came there, much of topology in those early years had to do with very abstract questions
of pathological spaces, comparing fifteen different cohomology theories, and such. This was
what I would have said at first was the mainstream. Then topology moved more to what I felt
was the real world: the study of compact manifolds and their invariants. Lower-dimensional
topology was not emphasized then, but in the 1990s it came to the fore again. So there is really
a tremendous difference in perspective over the years.”

And finally, we come to the question which touches on the inevitability of this kind of
mathematics: “But isn’t there a core of mathematics that is vital and lively, independent of
fashion, and there are other fields that are more outlying; and one needs a sense of what is
central and what perhaps is not so central?” To which Bott responds: “I don’t know to what
extent I believe this. I think, for instance, that Bourbaki had that feeling, and I was always a little
skeptical of Bourbaki. The subject is just too big. It doesn’t just have one main road. There
are too many unsuspected branches. So although I was in a sense very much influenced by
Bourbaki, I don’t really subscribe to the belief that there is just one way of looking at things...If
you had one really good main highway, it would be dangerous, because then everybody would
be marching along it!”

It is worth contrasting this opinion to that put forth by Serre in an interview from 2004
[RS04]. Serre was asked directly: “Do you feel that there are core or mainstream areas in
mathematics? Are some topics more important than others?” He responds: “A delicate ques-
tion. Clearly, there are branches of mathematics which are less important: those where people
just play around with a few axioms and their logical dependencies. But it is not possible to be
dogmatic about this. Sometimes a neglected area becomes interesting and develops new connec-
tions with other branches of mathematics.” Serre goes on to mention the Riemann hypothesis
and the Langlands program as “obvious” cases of questions that are central to our understanding
of the mathematical world.

Cartan and analytic sheaves

The War also marked a turn for Cartan and we discuss the implicit question from the Cartan–
Weil correspondence: why was Cartan so receptive to Weil’s approach to the de Rham theorem
(effectively immediately lecturing on it at Harvard) but simultaneously less receptive to Weil’s
opinions about sheaf theory? We have already mentioned Weil’s pushing Cartan to integrate
“bundle-theoretic thinking” into his approach (see §2.1.5).

In 1944, Cartan published the second part of his work on the Cousin problem [Car44] and,
we recall some aspects of Chorlay’s analysis [Cho10, §4] of this period. Chorlay refers to this
as the beginning of Cartan’s “structural” transition. Cartan remarks on this paper to Weil in a
letter of December 10, 1944 [CW11, p. 96] explaining that it answers questions posed to him
by Weil in December 1940. This paper embarks on a project of a “global” study of ideals of
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holomorphic functions. Cartan embeds the multiplicative Cousin problem into a problem of
patching invertible matrices with holomorphic coefficients:91

to pass from local data to a global existence, parts are assembled in turn. Each
assembling step consists in what we will call an elementary operation.

Chorlay argues that the algebraic structures used in Cartan’s theory are a visible example of the
structuralist ideal of Bourbaki (viz. the theory of ideals and modules being imported wholesale
into holomorphic function theory). Chorlay also highlights Cartan’s use of “coherent systems”
where algebraic data are seen varying with the points on a space.

In the 1944 letter to Weil discussed above, Cartan also mentions that his interests have
turned a bit to algebraic topology, especially the notion of homology, and that he’s curious
if the conclusions he’s drawn are concordant with Eilenberg’s views. In 1945, he publishes
[Car45], which Steenrod reviews for Math. Reviews asserting: “The interest lies chiefly in
the methods used. Once the general properties of the Lefschetz groups are established, all
subsequent results are deduced from these properties alone, thus avoiding any additional use of
complexes or assumptions of triangulability. These basic properties are almost exactly the ones
used by Eilenberg and Steenrod in their axiomatic development of homology theory” closing
with reference to [ES45]. Cartan’s published work in these years seems quite far from algebraic
topology, for example, he publishes numerous papers on potential theory, but in the Cartan–Weil
correspondence we see Cartan grappling at the same time with sheaves.

Conclusion

The years 1950-1952 show the theory of sheaves rapidly diverging from path initiated in Leray’s
approach. Cartan’s synthesis of the bundle-theoretic approach to the Cousin problems espoused
by Weil, his understanding of Leray’s theory of sheaves, and developments of algebraic topol-
ogy play out in the seminar in 1949-1952. The aborted 1948-49 treatment of sheaf theory is
revisited in the 1950-51 version of the Séminaire Cartan providing a first approximation to
Cartan’s “definitive” treatment of sheaf theory.

In this “second generation” approach ([Cho10, p. 3]) Leray’s definitions have effectively
been excised. In their place, one finds a new more geometric definition of sheaf due to Lazard.
This new definition allows one to retain the idea of sheaves as coefficients, which we saw
was key to Weil’s initial fascination, but expands the purview of sheaf theory to allow sheaves
as complementary geometric objects to fiber bundles. The key point I’d like to make here,
echoing, and I believe extending some aspects of Chorlay’s analysis, is that this conjunction of
ideas: sheaves as coefficients, fiber bundles, and sheaves as way-station in formulating “global”
problems in complex analysis is unexpected.

Simultaneously, tremendous use was made of Leray’s spectral sequences in the hands of
Koszul, Borel and Serre; these results have been well-documented elsewhere so I will not say
much about them here. At the end of this period, we see that Leray’s influence has been tran-
scended as the notion of sheaf is subsumed in a paradigm evolving in the Cartan seminar.

91pour passer de données locales à une existence globale, on procède par assemblages successifs de morceaux.
Chaque stade d’assemblage consiste en ce que nous appellerons une opération élémentaire.



81 2.4 The local to global paradigm in sheaf theory

In the background, we see academic squabbles, perhaps anodyne to the French reader, but
which to my modern American sensibilities, read like tales of intrigue from courtly salons.
Rather than viewing this as mere pettiness, I feel that this tension led to a particular style of
treatment of Leray’s work because of the way it plays out in the Cartan–Weil discussion. Fur-
thermore, the political drama in the background brings to the fore questions such as whom
should we credit for what discoveries and how much should we credit them! What is said
seems to matter just as much as who says it! One wonders what Leray’s role in algebraic topol-
ogy would have been if the politics had been different: would the reception of his ideas would
have played out differently?
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3 Projective modules proper
With the incantation: “a module P is projective if given any homomorphism f : P → A′′ and
any epimorphism g : A → A′′, there exists a homomorphism h : P → A with gh = f” the
“notion of projective module” was invented by Cartan and Eilenberg in their influential treatise
on homological algebra [CE99, p. 6].92 While this text was published in 1956, it was written
earlier. The preface to [CE99] indicates that the text was submitted to Princeton University
Press by September 1953, but Cartan states [Car99] that he has no idea why it only appeared in
1956.93

Weil writes to Cartan [CW11, p. 329] indicating that the 150 page manuscript he received,
evidently a preliminary version of [CE99] could be published by Hermann. Thus, a rather
detailed treatment already existed by 1951 and apparently enough to start considering where
the resulting monograph should be published. A preliminary Bourbaki report on “homological
algebra” [Boub], notably written in English, also contains a treatment of aspects of homological
algebra, once more before the official publication of Cartan and Eilenberg’s text, but explicitly
mentioning projective and injective modules.

Preliminary treatments of the ideas in the Cartan–Eilenberg text also appeared in the Séminaire
Cartan and there is another Bourbaki redaction of an approach to homological algebra [Boua],
this time written in French and making no mention of projective modules. Instead, this text
contains a preliminary notion of a complex of projective modules: a graded (left) module over
a ring equipped with a graded projection operator, makes no mention of Cartan–Eilenberg (so
one imagines that it predates the inception of that text), but seems not to come equipped with a
precise date of preparation.

At the very least, making precise the date of invention of the notion of projective module
seems much more complicated,xli, but we will see that by 1956 the ideas contained in the Cartan
and Eilenberg treatise were well-accepted in a wide circle around these figures. Having set
the stage with a discussion of the mathematical “cultures” before 1951 into which projective
modules were born, we now focus on the interactions of these various cultures and their co-
evolution in the early 1950s. Key among these will be further attempts to bridge a perceived
“gap” between sheaf theory and Cartan–Eilenberg’s homological algebra.

As discussed above, Cartan and Eilenberg defined projective modules in [CE99, p. 6]. In
fact, the notion appears before this in the preface [CE99, p. vii]. I no longer remember when I
first read the definition of projectivity, but on looking at the definition again recently I had the
experience of a familiar word becoming unfamiliar.

92Nowadays, I think it is standard practice to isolate a definition in its own environment, especially if one is
isolating a new concept or one that plays a central role in the text. This kind of separation did already occur in the
1950s: it appears in [ES52], but it does not appear in Cartan–Eilenberg.

93Mac Lane opens his review of [Mac56] with the amusing:

At last this vigorous and influential book is at hand. It took nearly three years from completed
manuscript to bound book; Princeton is penalized 15 yards for holding.

He continues with

In spite of the delay in its publication, widespread acquaintance with the manuscript and with the
ideas of this book has already played an important role in the development of this lively subject.
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Cartan and Eilenberg aim to introduce/motivate their work: “During the last decade the
methods of algebraic topology have invaded extensively the domain of pure algebra, and initi-
ated a number of internal revolutions. The purpose of this book is to present a unified account
of these developments and to lay the foundations of a full-fledged theory” [CE99, p. v]. This
phrasing strengthens Eilenberg’s description from [Eil49]: “ The method of study is also purely
algebraic but is the replica of an algebraic process which has been widely used in topology,
thus the words “topological methods” could be replaced by “algebraic methods suggested by
algebraic topology.”” The “invasion” was on three fronts including cohomology theories for
groups, Lie algebras and associative algebras.xlii

The authors stand “in part” upon Künneth’s works on homology of a product space [K2̈3,
K2̈4]. As discussed earlier, Künneth’s description of the homology of a product space was given
in Poincaré’s style, separating Betti numbers and “torsion numbers”. Cartan and Eilenberg de-
scribe their goal as “stating these results in a group-invariant form”, which is vague enough, but
granted their introductory remark above, can be viewed as code for presenting this result within
their unified treatment. As a “first step” in this direction the goal is to study “the homology
groups of the tensor product of two (algebraic) complexes.” The aim is to describe the homol-
ogy of this tensor product in terms of homology of the contributing complexes, but they quickly
observe that the problem involves in addition “a second product called their torsion product.
The torsion product is a new operation derived from the tensor product.”

I’d like to begin by attempting to reconstruct how this must have looked in 1953. One can
imagine two vantage points: those who were participating in the Cartan seminar or in the orbit
of Eilenberg and those that were not. In the course of defining the torsion product, Cartan and
Eilenberg use “free resolutions” before immediately commenting that freeness is “unnecessar-
ily restrictive”. What are we to make of this “unnecessary restriction”? I will argue that, in fact,
the notion of projective module is a technical contrivance, introduced for aesthetic reasons, as
opposed to any of the standard reasons mathematicians use to justify making definitions. The
idea that projective modules could transcend their “technical” role is mediated by an observa-
tion of Serre, which seemingly only could have been made within the culture of fiber bundles,
sheaves, homology etc. that we have described.

With this context in place, projective modules appear prominently at the beginning of the
book, followed quickly by a related notion of injective module. No mention is made of sources
of inspiration for the definition, and projective modules appear as an essentially technical tool
and, as I will argue, not even technically relevant if one looks carefully. Bourbaki makes one
comment about motivation for the notion of projective modules in [Bou60, p. 145-6]. They
assert:

several of the fundamental notions of Homological Algebra (such as those of pro-
jective module and that of the functor Tor) were born as a result of the close study
of the behaviour of modules over a Dedekind ring relative to the tensor product, a
study undertaken by H. Cartan in 1948.

Bourbaki concludes (I use the French, since the English translation seems to me to have a
slightly different feel:

Inversement, on pouvait prévoir que les nouvelles classes de modules introduites
de façon naturelle par l’Algèbre homologique...jetteraient une lumière nouvelle sur
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l’Algèbre commutative. Il se trouve que ce sont surtout les modules projectifs...qui
se sont révélés utiles...

Indeed, by the late 1950s projective modules took on a life of their own, enough to be retro-
spectively mentioned in Bourbaki’s own historiography, becoming a rich theory in its own right.
How did this happen?

3.1 Bourbaki’s algebra in context
Almost immediately in the introduction to Cartan–Eilenberg’s text one is confronted by the
tensor product for modules and the statement “It is important to consider the behavior of this
construction in relation to the usual concepts of algebra: homomorphisms, submodules, quotient
modules, etc.” [CE99, p. vi]. I think nothing of such statements now, but how were they
received in 1953?

I will take the above statement at face value and attempt to disentagle where one might have
learned about the relevant notions. After all, the notion of tensor product of abelian groups was
defined by Whitney by 1938 [Whi38], but the more general notion of tensor product of modules
over rings was considered only later in Bourbaki’s algebra treatise, reprised as [Bou48]. When
did it become “important” to study, in modern parlance, functorial properties and who might
have done so? More widely, how was Bourbaki’s approach to algebra received?94 Having gone
through those exercises, I will then return to the introduction of Cartan–Eilenberg. I aim to
show that the text was written in a way that would have made it easily accessible to only a small
group around these authors.

The evolution of tensor products

We’d like to trace the development of tensor products of modules and its reception in the wider
mathematical world. Bourbaki says only a sentence about the development of this notion tracing
it back to Kronecker: they mention Kronecker’s work on matrices (what is now called the
Kronecker product) [Bou60, p. 88]; in fact Bourbaki characterize Kronecker’s work as the
introduction of tensor products, in an fashion that was not “intrinsic” and without feeling the
need to give it a name.

Certainly for the uses we have in mind, this description seems wholly inadequate. As an
example of the kind of thing that requires comment: in order to formulate something like the
“universal property” of tensor products, we need to have at hand the notion of functoriality. This
kind of notion seems to have first been considered by Eilenberg and Steenrod, so something
like a “universal” characterization of tensor products, which appears in [Bou48] and on which
Artin remarks in his 1953 review, is unlikely to have been formulated earlier, i.e., even by
Bourbaki.xliii Indeed, one of the first public treatments of universal constructions appears in
the work of Samuel [Sam48], which was submitted in August 1947. Thus, the treatment in the
referenced version (which does include the universal property) likely was a later modification,

94I think it is safe to assert that Bourbaki’s algebra (and Lie theory) texts have had the most long-standing
influence on modern mathematics; so analyzing the reception of these texts among mathematicians of the era
seems useful especially as regards questions of “heritage” as discussed in Section 2.1.
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though the presentation does appear to have stabilized by 1948, as Cartan and Serre describe
Bourbaki’s theory of tensor products in the [Sem55a, Expose 11].

Weibel suggests in [Wei99] that the notion of tensor product appears as well in [ANT44].
MathSciNet lists a publication date of 1944, agreeing with the copyright date of the text. The
fact that the book mentions results of Artin–Whaples indicates the book was published after
1943, but other sources, e.g., the chronology in the Artin–Hasse correspondence list other dates
of publication [FR14, p. 44]. The chapters of this book in which we will be interested, origi-
nated in a course given by Artin in 1941 while he was visiting the University of Michigan (from
Indiana University, Bloomington) for a semester. During this period, it is unclear what, if any,
interaction Artin had with topologists like Eilenberg or Wilder; though based on his publications
his research focus seemed rather different.

The Artin–Nesbitt–Thrall monograph speaks of vector spaces over a ring (see [ANT44,
I.3]); this is in the spirit of the terminology of groups with operators, rather than that of module-
theoretic terminology. This terminology presents a first disjunction with that used by Bourbaki
and serves to highlight the variety of different names for this kind of notion. The notion of
Kronecker product of “spaces” is then defined using elements which are given by formal jux-
tapositions of symbols [ANT44, VI.2]; the object itself is denoted by × rather than by means
of some other symbol, though notation may have been circumscribed by typographical limita-
tions imposed by the printers. Some multilinear aspects of the Kronecker product spaces are
described. Unfortunately, the Artin–Nesbitt–Thrall monograph gives no references, so I am un-
able to determine with certainty whether the authors were familiar with Whitney’s work or the
work of Bourbaki mentioned above.xliv However, Artin’s stay at Michigan was temporary and
dissemination of texts during the war was difficult. The eventual goal is to construct Kronecker
products of rings. Note that Bourbaki, like Artin–Nesbitt–Thrall, mentions tensor products of
algebras, and credits this notion to B. Pierce [Bou60, p. 150].

In any event, Artin’s experience with Kronecker products places him in a unique position
to appreciate the significance of the tensor product construction, which he later does rather ex-
plicitly when he highlights the universal property in his 1953 review of Bourbaki’s algebra text
[Art53, pp. 476-7]. I am therefore led to conclude that this discussion of Kronecker products of
“spaces” is a parallel development, not overlapping with tensor products as used later in topol-
ogy, and consequently playing no role in how the notion was used later; only retrospectively
could it be viewed as a precursor in any sense.

Postwar, Princeton (and the IAS) had become the center for “mainstream” mathematics
[Asp88] and Artin moved there in the Fall of 1946. Undoubtedly, the sphere of Artin’s interac-
tion and influence grew here, and his students in the period up to his review included John Tate
and Serge Lang. Rota characterizes his personality here thus [Rot08, p. 14]:

A great many mathematicians in Princeton, too awed or too weak to form opinions
of their own, came to rely on Emil Artin’s pronouncements like hermeneuts on the
mutterings of the Sybil at Delphi. He would sit at teatime in one of the old leather
chairs (“his” chair) in Fine Hall’s common room and deliver his opinions with the
abrupt definitiveness of Wittgenstein’s or Karl Kraus’s aphorisms.

Artin had particularly strong views on algebra, and from Rota’s point of view Artin’s views
were consonant with those of Gauss and Dirichlet [Rot08, p. 14]: “a piece of mathematics was
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the more highly thought of, the closer it came to Germanic number theory.” In this regard, the
Cartan–Eilenberg text appealed to Artin’s sensibilities, as aspects of the cohomology of groups
relevant to the Artin–Tate formulation of class field theory are developed there [CE99, Chapter
XII]. Artin’s review of Bourbaki’s algebra text is also revealing in several respects [Art53].

Artin begins with a striking general observation of the nature of exposition of mathematical
results.

We all believe that mathematics is an art. The author of a book, the lecturer in
a classroom tries to convey the structural beauty of mathematics to his readers,
to his listeners. In this attempt he must always fail. Mathematics is logical to
be sure; each conclusion is drawn from previously derived statements. Yet the
whole of it, the real piece of art, is not linear; worse than that its perception should
be instantaneous. We all have experienced on some rare occasions the feeling of
elation in realizing that we have enabled our listeners to see at a moment’s glance
the whole architecture and all its ramifications. How can this be achieved? Clinging
stubbornly to the logical sequence inhibits the visualization of the whole, and yet
this logical structure must predominate or chaos would result. Bourbaki is quite
aware of this dilemma. The fact that his work is subdivided into books, the fact
that exercises are given which utilize more advanced parts of the theory show this
awareness. However I feel that in some instances the subdivision into books is not
enough.

As evidence of the “not enough” of the final line, Artin describes the Bourbaki treatment of Ga-
lois theory, evidently one of the fields closest to Artin’s heart, lamenting Bourbaki’s avoidance
of arithmetic ideas:

...a heavy price has to be paid for the fact that one is not permitted to use number
theory...almost no example over the rational field can be given, since it is next to
impossible to show the irreducibility of a polynomial without some arithmetic.

Once again, laid bare is the fact that Bourbaki has made a choice about what results are primary
and what results are secondary, and that these choices are not universally agreed upon. Artin
nevertheless closes with his approval:

In concluding I wish again to emphasize the complete success of the work. The
presentation is abstract, mercilessly abstract. But the reader who can overcome the
initial difficulties will be richly rewarded for his efforts by deeper insights and fuller
understanding.

Thus, in the end, Bourbaki is forgiven for his sins, and absolution granted. Nevertheless, Artin’s
criticisms highlights something about the reading of Bourbaki that I would like to explore,
recalling some of Zariski’s criticism of the strict logical progression of Weil’s Foundations of
algebraic geometry. Even though Bourbaki’s texts were nominally textbooks, how did one learn
mathematics from them?
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Outside Bourbaki’s algebra

The reception of the ideas of Bourbaki’s algebra, even by those in Artin’s circle in the early
1950s was not uniform, and the reception of Bourbaki texts outside the scope of algebra was
even less uniform. We probe these two directions separately. We begin by discussing Cheval-
ley’s Fundamental concepts of algebra [Che56], released in June 1956, as a proxy for Bourbaki’s
algebra.

Arthur Mattuck received his Ph.D. from Princeton in 1954 under Artin’s direction. Mattuck
seems poised at the cusp: by this point in time Bourbaki’s ideas are relatively widely avail-
able and well-exposed, certainly in Artin’s circle. Mattuck reviewed Chevalley’s text for the
Bulletin; his review suggests an attraction to the intuitive nature of pre-Bourbaki treatments of
algebra, but simultaneously aware of the usefulness of the new approach, which he nevertheless
characterizes as “austere”.95

Beyond the reasons suggested above, we analyze the reception of Chevalley’s text because
it seems to be one of the first sources that mentions projective and injective modules, via the
lifting property, but, in support of the theme we will pursue in Section 3.2 defers them to an
exercise [Che56, p. 130 Exercise 17].96

Mattuck’s review [Mat57] begins with the following characterization of Chevalley’s project;
the austerity motif seems to appear repeatedly in description of Bourbaki’s algebra:97

Readers...who agreed at the time with André Weil’s dictum “algebraic austerity can
go no further” may decide that a counterexample has been produced.

Mattuck comments in detail on his view of the perceived level of abstraction in Chevalley’s
treatment and whether it is appropriate for the subject matter at hand, but aesthetic judgments
appear in this evaluation.

In considering the treatment the book presents of its subject, one must recognize
that it is extremely abstract, and the level of abstraction each man likes in his math-
ematics is as personal a taste as the amount of perfume he likes on his wife. When
linear transformations made their comeback over matrices, it was easy to point to
the shortened proofs and to the gain in clarity resulting from the triumph of abstrac-
tion over algorithm. An intense sans-culottism has since made the subject perhaps
a bit top-heavy in concepts (after all, we still do have a multiplication table). Each
reader will have to decide for instance whether Chevalley’s seven page intrinsic

95For the sake of comparison, Rota describes Mattuck’s lectures [Rot08, p. 16] as “an exercise in high motiva-
tion.”

96According to Mattuck [Mat57]:

There are a number of exercises after each chapter—well over a hundred in all. Almost none of
then are routine, nor are there many in the nature of specific examples; most of them are not easy.
Many provide significant extensions and applications of the theory, and are the equivalent of many
additional pages of text. Such, for instance, would be the exercises on the derived groups of a
group, projective and injective modules, projective limits, quadratic forms and Clifford algebras,
and representations of Lie algebras.

97The reference in the quote below is to the first paragraph of Weil’s review of Chevalley’s “Introduction to the
theory of algebraic functions of one variable” for the Bulletin [Wei51].
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treatment of the Pfaffian here is the height of beauty and elegance, or of absur-
dity, and if the former, whether the associated aroma is that of ripe bananas or of
freshly-roasted coffee.

Evidently, I wish to view the reception of Chevalley’s treatment as indicative of the reception
of Bourbaki’s ideas more generally, but it is perhaps difficult to the draw the line so that I am
not simply extracting features of Chevalley’s particular presentational idiosyncracies (writing
as a group certainly served to rounded out such individual tendencies that leaned extreme in
Bourbaki’s presentations).xlv Nevertheless, Mattuck’s comments on Chevalley’s tone seem quite
relevant as they directly reflect the reception of Bourbaki’s ideas among the “older generation”
and we have heard their echo in the reception of other Bourbaki-aligned presentations.

The voice that we hear resounding is that of an Old Testament prophet, but the men-
tal attitude is more like a tenth-grade Latin teacher’s, reeking with the old theory
of formal disciplines. Thinking rigorously demands first of all a firm grasp of the
concepts, otherwise the sort of proof-following which passes for thinking is only a
very sophisticated version of computation-checking. It is the difference between a
rat running physically through a maze and a man running his pencil through one of
the Sunday supplement mazes: one has the over-all understanding, the other does
not. It is downright unfair for an older generation which learned these ideas in
an intuitive fashion in which they were well-adapted for thought to foist off on a
younger one, in the name of rigorous thinking and without any further explanation,
such a construction as this one...

Nevertheless, Mattuck’s comments are tempered by momentary cracks of admiration and as-
sent: “This basic and essential usefulness of the book should be kept in mind as overshadowing
any critical remarks made below.” Mattuck also strongly praises the “unity” of Chevalley’s
algebra.

One cannot emphasize too strongly the beautiful unity of the book: the pruning has
been severe, perhaps, but at least one will not forget the essentials that have been
left.

Simultaneously, Mattuck seems to highlight the tension between unity, in this case revealed to
us by presentational choices, and intuition, for which there is no easy explanation.

Rather than leave Mattuck’s analysis on its own, we can also consult another review of
Chevalley’s book, this time by Irving Kaplansky for Math Reviews, which observes that Cheval-
ley’s treatment of multilinear algebra is quite reflective of the Bourbaki presentation.

A generation of algebraists grew up for whom “modern algebra” meant Van der
Waerden’s book, or possibly one of several similar later texts. Time has passed
and (happily) mathematics has not stood still. In particular algebraic topology has
exhibited an insatiable appetite for algebraic gadgets. In response, modern algebra
has changed.

What distinguishes the new modern algebra from the old? The latter emphasized
groups, rings, and homomorphisms as the basic concepts. Modules, more or less
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sitting astride groups and rings, were prominent, though perhaps not sufficiently
prominent. But at least two things, now clearly of central importance, were com-
pletely missing: the tensor product of modules, and the generalization of every
object to a graded object.

Chevalley’s book is timely and it will be widely studied; the meaty exercises will
invite a diligent reader to educate himself some more. Teachers may find it “futile
to disguise the austerity” (last sentence of the preface). It goes without saying
that large sections are similar to Bourbaki’s “Algèbre multilinéaire” [Actualités Sci.
Ind., no. 1044, Hermann, Paris, 1948; MR0026989].

Once again, we see the austerity motif.
Reading these criticisms first, the start of Chevalley’s rather circumspect preface might come

as a shock:

Algebra is not only a part of mathematics; it also plays within mathematics the role
which mathematics itself played for a long time with respect to physics. What does
the algebraist have to offer to other mathematicians? Occasionally, the solution of a
specific problem; but mostly a language in which to express mathematical facts and
a variety of patterns of reasoning, put in a standard form. Algebra is not an end in
itself; it has to listen to outside demands issued from various parts of mathematics.
This situation is of great benefit to algebra; for, a science, or a part of a science,
which exists in view of its own problems only is always in danger of falling into
a peaceful slumber and from there into a quiet death. But, in order to take full
advantage of this state of affairs, the algebraist must have sensitive ears and the
ability to derive profit from what he perceives is going on outside his own domain,
Mathematics is changing constantly, and algebra must reflect these changes if it
wants to stay alive. This explains the fact that algebra is one of the most rapidly
changing parts of mathematics: it is sensitive not only to what happens inside its
own boundaries, but also to the trends which originate in all other branches of
mathematics.

The final statement here is prescient, especially in light of the “cohomological turn” concurrent
with the release of this text. While the initial impetus was a development of algebraic notions
in the service of topology, Bourbaki’s treatment of algebra and the focus on constructions such
as tensor product and their properties, allowed the flow of information to turn in the opposite
direction: this breed of algebraists was prepared to allow cohomology to “clarify” algebra. This
began with Eilenberg and Mac Lane’s cohomology of groups, buoyed by the then recent main-
stream applications and developments of this cohomology theory to class field theory in the
work of Artin–Tate, the cohomological formulation of the theory of separable algebras stud-
ied by Hochschild, and the incorporation of cohomological ideas in formulation of Lie theory.
Even if cohomological formulations did not prove new results, they could be used to unify and
streamline or incorporate old results. The algebraic language became the one people needed to
speak. In retrospect, the transition in styles from 1945 to 1956 seems practically revolutionary.

That people would adopt this language and terminology was certainly not a foregone conclu-
sion, as one can see by comparing with the reception of other Bourbaki texts. Halmos reviewed
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Bourbaki’s “Integration”, which was itself published in 1952, for the Bulletin [Hal53]. He finds
several aspects of the treatment artificial

Owing, no doubt, to the authors’ predilection for using as definiens what for most
mathematicians is the definiendum, there are many spots at which the treatment
appears artificial.

He then goes on to detail several examples of this artificiality, explaining how these are forced
by the choices the authors have made, for example writing, “the effect of the definition is to help
perpetuate the myth that the measurability of a function can only be defined by reference to a
measure—a myth quite as unfounded as the (fortunately moribund) myth that the continuity
of a function can only be defined by reference to a metric.” Halmos, complaining about the
unsuitability of Bourbaki’s approach to probability theory closes with:

My conclusion on the evidence so far at hand is that the authors have performed a
tremendous tour de force; I am inclined to doubt whether their point of view will
have a lasting influence.

In the review proper, he carefully details a host of problems he sees with the choice of presenta-
tion of material. Indeed, Halmos’ predictions seem to have been borne out; one modern review
of Bourbaki’s Integration by R. Schilling [Sch05] writes:

The Bourbaki volumes on integration are nowadays mainly of historic value, which
is partly due to the (dogmatic) misconception which limited the theory to a locally
compact setting and the, especially for probabilists, cumbersome notion of measur-
ability.

This dual treatment (Halmos and Artin) of the Bourbaki project did not go unnoticed by
Weil who remarks on it [CW11, p. 340]:98

Artin’s paper on our Algebra largely compensates us for Halmos’s rag. Would it not
be appropriate to send him from now on our sufficiently advanced algebra essays,
in order to have a critique that would be useful to us?

And following up on the reviews of Bourbaki’s Integration, the notes in the Cartan–Weil corre-
spondence [CW11, p. 622] suggest that Bourbaki’s “Integration” is still useful in modern p-adic
arithmetic settings.

Receiving the introduction of Cartan–Eilenberg

Having analyzed the reception of Bourbaki’s algebra texts, we return to analyze how the Cartan–
Eilenberg monograph may have been received. First, there were practical differences between
the notation and terminology of this text and notation and terminology that were more “widely”
in use. For example, the notion of kernel of a homomorphism was widely used, but consulting

98Le papier de Artin sur notre Algèbre nous dédommage largement du torchon de Halmos. Ne conviendrait-il
pas de lui envoyer désormais nos rédactions d’algèbre suffisamment avancées, afin d’avoir une critique qui nous
serait utile?
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papers in group theory from this era and before (e.g., those papers we will discuss in Section 3.2
as regards the evolution of the notion of “injective” module), one sees that when considering a
single homomorphism it was standard to give the kernel a special name. Uniform notation for
kernels only becomes useful when one considers many homomorphisms simultaneously, which
of course was the case in homology. The notation Ker does not seem to be widely used even by
1952. Even in [ES52] which did consider many homomorphisms simultaneously, one frequently
sees Kernel spelled out in its entirety. Cartan and Eilenberg seems to be the first place where
this notation is systematically used. Second, Cartan and Eilenberg systematically use diagrams
and what might be called diagrammatic arguments.xlvi While diagrams themselves may have
been psychologically useful, diagrammatic arguments have a mechanical, performative nature
that in my experience is better communicated by demonstration than by reading. Keeping all
that in mind, I think it is fair to say that the nature of the introductory example must have seemed
fairly inscrutable to those outside a small circle around Cartan and Eilenberg.

Mac Lane claims that Čech “first introduced (but did not name) the torsion product” [ML95,
p. 172] making reference to [Čec35, p. 34]. Indeed, does Čech consider the n-th homology
group with coefficients in some abelian group A. He aims to describe homology with co-
efficients with A of some “infinite complex” in terms of previously defined invariants, e.g.,
Betti numbers. His formulation of the universal coefficient theorem is contained in two results:
[Čec35, Théorème II and III]. He identifies two contributions Bn

1 (A) and Bn
2 (A) to the n-th

homology with coefficients in A. The first result states that the first contribution is determined
entirely by A and the n-th Betti group, while the second result asserts that the second contri-
bution is completely determined by A and the torsion in the n − 1st homology group. These
descriptions are all given in terms of equations involving generators and relations arising from
the combinatorial description of the complex.

As we described earlier, the tensor product of abelian groups had not yet been invented
(this construction predates even [Whi38] who himself made no mention of anything like torsion
product). Only someone who is well-versed in the formal aspects of the tensor product would
be able to extract the “tensorial” description of the torsion product from this presentation. As a
consequence, it seems better to say that Čech highlighted a contribution to a homology group,
which was retroactively realized to be a concrete instantiation of the functor described by Eilen-
berg and Mac Lane. This is not a distinction without a difference: from Čech’s point of view,
his problem of describing the homology group in question was solved by the generators and
relations picture: he effectively gave a formula for the determination of the groups from the
combinatorial description of a geometry.

Bourbaki’s analysis of tensor products is reprised in the Cartan seminar in an expose at-
tributed jointly to Cartan and Serre [Sem55a, Exposé 11]. Bourbaki analyzes behavior of ho-
momorphisms under tensor products and formulate various “exactness” statements. The current
version of Bourbaki considers this section “Proprietes..relatives aux suites exacts” but the no-
tion of exact sequence was not widely used yet. One point to which Cartan and Serre draw
attention, which is not mentioned in Bourbaki is the behavior of tensor product with respect to
homomorphisms that are projectors (while the latter are defined in Bourbaki’s algebra treatise,
no special mention is made of projectors). At this stage, it makes sense to measure the fail-
ure of left exactness of tensor product, but no one appears to explicitly do so until Cartan and
Eilenberg’s book.
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Imagine, then, opening Cartan and Eilenberg and immediately being confronted with free
resolutions, higher torsion products etc., all of which appeared to be new notions at the time.
The introduction continues to layer definition on top of definition. After having been confronted
with the notion of free resolution, Cartan and Eilenberg immediately add yet another layer of
abstraction:

The condition that...free in the definition...is unnecessarily restrictive. It suffices
[to]...be projective...

What evidence do they give for the pronouncement that this restriction is unnecessary? Perusing
Cartan–Eilenberg, we will argue in the next section that the answer is, apparently, none.

After the introduction, one has the sense that a vast new landscape has been unveiled: infinite
sequences of new homology groups. What do these groups mean...what do the new groups
measure? What tether to older more concrete notions do we have? At this stage, the key notion
is unification of constructions and proofs.

3.2 On the axiomatic necessity of projectivity
In the introduction to Cartan–Eilenberg, projective modules are introduced via the lifting prop-
erty described above. In Chevalley’s [Che56], projective modules are mentioned, once again
via the lifting property, but in this case they are relegated to an exercise. The particular style
of these mentions leads one to speculate that projective modules were not conceived initially as
central actors, but relegated to a purely technical role with no “practical” mathematical value.
This section and the next will, undoubtedly, be the most purely mathematical sections of the
text.

To make this case about the “status” of projective modules, I will employ several devices.
First, I will show that in early formulations of homological algebra, projective modules make
no explicit entrance whatsoever: the results which the theory aims to establish can be estab-
lished by consideration the considerably more limited and intuitively simpler notion of free
modules. Second, while free modules serve as examples of projective modules, I will argue
that non-free projective modules appear as “curiosities” early-on: non-free projective modules
are never highlighted explicitly, only implicitly, if one extrapolates from the text. Finally, I will
suggest that bearing the above in mind, the introduction of projectivity is guided by axiomatic
“aesthetic” concerns.

From freeness to projectivity

Here we counterpoise Eilenberg’s treatment of homology of groups for the Cartan seminar
in 1951 [Sem55b, Expose I-II] with earlier discussions of group cohomology in the work of
Eilenberg–Mac Lane and later discussion of Cartan–Eilenberg to track the evolution of the
theory. In particular, our discuss here centers on the contention from Cartan–Eilenberg’s intro-
duction that to be “free...is unnecessarily restrictive” [CE99, p. viii].

The first expose, dated November 13, 1950 sets out Eilenberg’s aim: he wishes to give a
systematic development of the homology and cohomology of discrete groups, following the ax-
iomatic method. To understand his goal further, we must investigate precisely what he means by



93 3.2 On the axiomatic necessity of projectivity

“axiomatic” as compared to previous treatments of (co)homology of groups (we have already
observed that, for example, Mayer had given axiomatics for homology), and thus we should re-
view what previous treatments of the cohomology of groups looked like, at least schematically.

As we have sketched it, up to this point, homology of some kind of structure has been
presented in terms of one explicit complex. In more detail, the original Eilenberg–Mac Lane
treatment of (co)homology of groups [EML86], say even as summarized later in [Eil49] is
given by (co)homology of what we now call the bar resolution. The cohomology of associative
algebras as developed by Hochschild was given as cohomology of the Hochschild complex
[Hoc45]. The cohomology of Lie algebras was given in [CE48] also in terms of cohomology of
an explicit cochain complex.

I would like to frame this in terms of a dichotomy emphasized in the Cartan–Weil corre-
spondence: the tension between “existence and uniqueness”. To this point, there is no question
of existence of any of the cohomology theories mentioned above: they are all given by co-
homology of some explicit complex. We thus find ourselves in a situation entirely unlike the
situation for (co)homology of manifolds where there were multiple putative methods for build-
ing up workable (co)homology groups (see Paragraph 2.2.5), and thus the uniqueness question
does not even arise for each of the theories above.

Nevertheless, the starting point of Eilenberg’s approach is that there are in principle many
approaches to group homology. For the reader’s convenience, we summarize his treatment in
modern terminology. Start with a discrete group G and a (left) Z[G]-module A (he calls A a
G-group). Group homology, is then any procedure that:

(1) attaches to each such A a sequence Hq(A) of (abelian) homology groups, together with
(2) for each homomorphism A → A′ of Z[G]-modules an induced homomorphism f∗ :

Hq(A) → Hq(A
′), and

(3) given a short exact sequence of Z[G]-modules 0 → A′ → A → A′′ → 0, connecting
homomorphism ∂ : Hq(A

′′) → Hq−1(A
′).

The main claim that Eilenberg makes is the assertion that if such a group homology theory fur-
thermore satisfies suitable naturality, and normalization axioms, then the homology procedure
is unique. Thus, Eilenberg has, with this presentation, shifted the discussion: having described
homology axiomatically, and answering the uniqueness question, the existence question arises
anew. One wonders if a conservative reader would have supposed that a new problem has been
artificially created.

For Eilenberg, this was evidently not an issue, and he quickly describes a procedure for
producing many different potentially inequivalent homology theories for a group. On the very
first page of this note, he makes definitions of a free module and an injective module. The
“new” cohomology groups arise via different free resolutions. By way of passing, the definition
of injective used here is identical to that in Cartan–Eilenberg, i.e., the modern use, and this
appears to be the first instance of this word in the literature.

Having created all these potentially new versions of (co)homology by means of different
resolutions, we are forced to consider new questions. Given two such approaches, how can
we even compare them? It’s worth pointing out that Eilenberg’s axiomatization only makes
sense when one considers arbitrary G-modules, as opposed to considering “classical” group
cohomology using only “trivial” coefficients. Thus, axiomatization only seems reasonable when
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we move to the “variable coefficient” setting. This potential variety of new approaches, now
unified by the axiomatic approach, is once again viewed as a positive feature of the theory.

Cartan–Eilenberg indicate in the introduction to [CE99] a further point that they refer to as
unifying, in the context of the three theories alluded to in the discussion above:

In addition an interplay takes place among the three specializations; each enriches
the other two. The unified theory also enjoys a broader sweep.

Here they allude to applications of the relationship between cohomology of commutative rings
and Hilbert’s theory of syzygies.

What Cartan and Eilenberg fail to mention is a psychological trade-off. Instead of having to
consider a single complex to compute (co)homology in a given setting, one is now confronted
with a multitude of different complexes. Of course, the uniqueness theorem tells us that the
multitude of new computational approaches to (co)homology yield the same answers, but there
is a cost: the unification comes at the expense of development of considerable (at the time) over-
head: they spend the bulk of Chapters III-V developing tools for comparing different complexes
computing (co)homology.

In [Sem55b, Expose I-II], we also do not yet see the full sweep of different resolutions, nor
even the terminology of a resolution (Eilenberg only speaks of acyclic complexes). What is
furthermore conspicuous, by comparison with later treatments is a lack of symmetry: injective
resolutions are not considered and the notion of projectivity makes no appearance.

Returning to the fact that Eilenberg computes cohomology using only free resolutions, at
least at the beginning freeness was definitively not viewed as “unnecessarily restrictive”: it
was sufficient for establishing uniqueness of the relevant (co)homology theories. Furthermore,
while Eilenberg mentions that every module can be embedded in an injective module, he does
not provide a construction (in contrast to the fact, used almost immediately in the Expose, that
every module admits a surjection from a free module).

Given the way that results from Cartan–Eilenberg trickled out (150 pages by May 1951
as Weil mentions in his letter), one wonders precisely when projectivity was introduced in
this period. We will analyze the parallel story of injectivity momentarily. Having just argued
that free resolutions are sufficient to establish the uniqueness theorems, the only motivation for
introducing projective modules and projective resolutions into the story is axiomatic minimality:
they provide the answer to the question what is the minimal structure necessary to write the
proof of uniqueness. Slightly more broadly, if one is interested in simply defining satellites
of a given functor, and then computing the resulting (co)homologies, then free resolutions are
entirely sufficient.

The red-herring of rational reconstruction: invertible modules

The standard modern treatments of projective modules quickly turn to the Dedekind–Weber
theory of invertible ideals for examples. Since the work of Dedekind–Weber was clearly a
motivating force in approaches to modern algebra, and as such a theory with which one expects
Bourbaki-aligned mathematicians to be familiar, it is tempting to frame the theory of invertible
ideals as a source of motivation for the theory of projective modules. Thinking this true, I asked
Serre for confirmation, only to be rebuffed with the response [Ser]:
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Another thing : you seem to believe that the correspondence “invertible line bundle”
↔ “ideal classes” (under suitable conditions on the ring) was standard before the
50s. I don’t think so: it was clarified in the period 1952-1955.

I would like to explore this here further.
First, I take up the fact that not a single “non-trivial” example of a projective module is

given throughout the Cartan–Eilenberg text. Here, we need to qualify the characterization “non-
trivial” and in doing so we will return to the discussion of projective modules in Bourbaki’s
history. Evidently free modules are projective as follows immediately from the lifting property.
However, does the Cartan–Eilenberg text give examples of non-free projective modules? One
is tempted to say that the answer is “no” as there is no explicit mention made at any point in the
book of such an example. There is, however, implicit discussion of non-free projective modules
in the treatment of modules over hereditary rings from [CE99, I.5].

By definition a (not necessarily commutative) ring R is called left hereditary if every left
ideal is a projective module; this ring-theoretic notion appears to have also been defined by Car-
tan and Eilenberg. Cartan and Eilenberg make reference to some work of Kaplansky [Kap52]
which studies modules over a Dedekind domain or a valuation ring, “modernizing” and extend-
ing earlier work of Steinitz [Ste11].99 Cartan and Eilenberg state [CE99, Theorem I.5.3] that
if R is a left-hereditary ring, then every submodule of a free module is isomorphic to a finite
direct sum of modules, each of which is isomorphic to a left ideal of R.

Recall that the structure theorem for finitely generated modules over a principal ideal do-
main implies that finitely generated torsion-free modules are free (and thus projective); this
was known in some form, e.g., via the theory of Smith normal form from the 1860s or, as
we described it in Noether’s conception, the “elementary divisor theory”. It took quite some
time to consider more general rings. However, the theory of finitely-generated modules over
more Dedekind domains was considered in detail by Steinitz [Ste11]. From a matrix-theoretic
point of view, Steinitz analyzed finitely generated torsion-free modules over Dedekind domains
(this is the formulation given by Kaplansky in [Kap52]) observing that a torsion free module
is a finite sum of invertible ideals.100 Steinitz’s result was considered classic, and also made
its way into Bourbaki’s algebra treatment (and so should be taken as well-known to Bourbaki
members).

Now, the notion of invertible ideal was studied for a long time in arithmetic situations. How-
ever, it appears to only have been realized after making the definition of projectivity that invert-
ible ideals gave rise to non-free projective modules. Indeed, granted the analysis of torsion-free
modules in Kaplansky’s 1952 paper, it would appear that projectivity was still not widely used

99From the standpoint of classical algebra, projectivity is a notion that has a somewhat subtle relationship with
finite generation. Indeed, the rational numbers Q is a uniquely divisible abelian group and thus provides an
example of an (infinitely generated) torsion-free Z-module that fails to be free. Thus, while many authors had
isolated torsion-free groups as interesting, since many algebraists of the day, e.g., Kaplansky, were concerned with
not-necessarily finitely generated abelian groups, given the tenuous relationship between projectivity and finite
generation, it strikes me as unlikely that an algebraically-inspired mathematician of the age would have isolated
projectivity as a useful concept.

100Continuing the discussion of the preceding footnote: Kaplansky is interested in not necessarily finitely gener-
ated modules over Dedekind domains. Once again, the isolation of projectivity seems somewhat unnatural from
the point of view of general modules.
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by this point. That being said, it was widely known that the ideal class group of a Dedekind
domain could be non-trivial, i.e., there were, in general, invertible fractional ideals that were not
principal. In that case, Cartan and Eilenberg write “it will be seen later” that hereditary integral
domains (now in the commutative case) are precisely the Dedekind domains.

Further evidence for propagation in this direction arises from the notes of Kodaira and
Spencer [KS53b, KS53a] discussing line bundles on complex varieties and divisor class groups
on algebraic varieties in terms of sheaf cohomology. These results can be viewed as published
versions of some of the ideas exposed in Weil’s letters to Cartan on the same topics. Thus, only
after one formulates the general definition of projectivity, is there a search for examples, and it
seems unlikely that considerations of pure algebra would have inspired the definition.

Moreover, this background use of projectivity, and the fact that the only non-trivial examples
of such even implicitly given in the Cartan–Eilenberg text are invertible ideals contributes once
again to the feeling that projective modules are simply technical devices. Moreover, to a ring-
theorist of the day, most of the non-trivial examples of projective modules given were simply
torsion-free. One can easily imagine a skeptic wondering whether this new notion was just
some esoteric notion amongst the zoo of special types of modules of the day.

Injective modules, a counterpoint

As a complement to our discussion of projective modules, we now survey some episodes in the
development of the notion of injective modules, taking a tour through some aspects of finite
group and module theory in the 1930s and 1940s. Weibel’s history of homological algebra
discusses injectivity [Wei99, §3.2 p. 817] and makes the flat assertion that “injective R-modules
were introduced and studied by R. Baer”. Moreover, Weibel suggests a linear, cumulative
narrative surrounding the development of this notion, fitting nicely into a point of view about
mathematics suggested by H. Hankel [Mor58, p. 15]:

In Mathematics alone each generation builds a new story to the old structure.

I refer the reader to [Cro88, §3 p. 263] for further criticism about this point of view, but here I
aim to argue that the mathematical record suggests a much more complicated narrative.

The name injective module appears, to the best of my knowledge, for the first time in Eilen-
berg’s treatment of the cohomology of groups for the Cartan seminar [Sem55b, Expose I]. While
Eilenberg phrases the property in the context of groups with operators, in module-theoretic lan-
guage he gives precisely the characterization of injectivity in terms of the lifting property, i.e.,
if I is a left R-module, then I is injective if and only if given any R-module map A → I and an
injective map A ↪→ B, there is an induced map B → I extending the map A → I; I will refer
to this as the “lifting” characterization of injectivity.

The lifting characterization of injectivity has some immediate consequences already in the
case of abelian groups, i.e., Z-modules. Indeed, if I is any injective abelian group and a ∈ I
is an element, then we can consider the homomorphism Z → I sending 1 to a. The multipli-
cation by n map Z → Z is injective, and the lifting property then guarantees that we can find
an element a′ ∈ I such that na′ = a. In other words, the multiplication by n map is surjec-
tive. To say this slightly differently, we have deduced that injective abelian groups are divisible
abelian groups. A similar argument can be made for injective modules over an integral domain,
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but maintaining the distinction between injectivity and divisibility will be important in what
follows.

To develop the story, we need to turn back the clock a bit. In making the “modernist”
transition away from matrices to abstract structures, one apparent source of problems in the
1930s group and module theory surrounds transitioning from results about finitely generated
modules to various not-necessarily finitely generated situations. For example, the structure
theorem for finite abelian groups or finitely generated abelian groups was well-known in the
19th century, say in terms of Smith normal forms for matrices or the elementary divisor theory.
On the other hand, Prüfer introduced his eponymous rings in the 1920s and 1930s [Prü32];
now-a-days we think of such rings as not necessarily finitely generated analogs of Dedekind
domains. Even in 1943, it was open question [Hel43] whether or to what extent one could
salvage the elementary divisor theory (a.k.a. structure theory for finitely generated modules) in
this context.101 We will not try to analyze why these questions were posed, but merely observe
that they were.

Another distinction that seems to reappear in the literature of the time was between torsion
and non-torsion elements, especially in abelian groups. As a sample “extension” of the structure
theorem for finite abelian groups (thus finitely generated) to torsion abelian groups (not neces-
sarily finitely generated) is the primary decomposition. Baer mentions primary decomposition
several times in papers that we will reference shortly; Kaplansky refers even in 1954 to the
original source of the primary decomposition as being “lost to antiquity” [Kap54, §20 p. 73].

In a ring-theoretic direction, we have already mentioned Steinitz’s version of the structure
theorem for finitely generated modules over Dedekind rings. While we now consider the theory
of abelian groups as part of the theory of modules over commutative rings, the papers in the
1930s indicate that considerable attention was paid to the analysis of abelian groups proper,
distinct from more “abstract” or general module-theoretic analyses, and the latter were typically
carried out only for special classes of rings (which have themselves been named, Dedekind
rings, Prüfer rings, later Krull domains.)

With that context in mind, in 1936, Baer published [Bae36], analyzing so-called mixed
abelian groups, i.e., those containing elements both of finite order and infinite order. If A is
an abelian group, Baer considers the subgroup F (A) of elements of finite order and, in mod-
ern terminology the corresponding quotient A/F (A) (he calls this the classgroup). The first
result, appearing as result [Bae36, (1;1)] states that if S is a subgroup of A that is stable by
multiplication by n, then S is a direct summand of A. Baer observes in a footnote that “The
statement (1 ;1) is well known. But we prove it here, since, to the authors knowledge, it has not
been published before.” In the same paper, Baer introduces the notion of p-complete group and
complete group (which we would now call p-divisible and divisible respectively). Note that he
definitively does not use the terminology “injective”.

In late 1934, L. Zippin submitted a paper entitled “Countable torsion groups” to Annals of
Math [Zip35]; which appeared in early 1935. This paper defines a notion of “root subgroup”

101It’s also worth pointing out that, in this context, the distinction between finitely generated and finitely presented
modules was still not standard. For example, in 1949, Kaplansky [Kap49] feels the need to write:

the ability to reduce finite matrices does not carry with it results on all finitely generated modules,
but only those whose “relations” are also finitely generated.
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of a countable torsion subgroup [Zip35, Definition 2], which coincides with the notion of a
p-torsion p-divisible group; he makes no mention of the notion of “root subgroup” outside the
torsion case. Theorem 3.3 of this paper establishes that root subgroups are automatically direct
summands. Kaplansky highlights the fact [Kap54, p. 74] that Zippin’s arguments make no use
of the countability hypothesis. Zippin’s paper appears to be completely independent of Baer’s
treatment, and is likewise not mentioned by Baer. It also appears not to be mentioned in most
subsequent treatments we will discuss.

The case of torsion divisible groups appears elsewhere, in particular in analyses of duality
à la Pontryagin. Pontryagin initially studied in [Pon34] the group of continuous characters
of a topological abelian group; here a continuous character is a continuous homomorphism to
the circle group, for which he writes K. Among other things [Pon34, Lemma 1] states that
any character of a subgroup of a group G can be extended to a character of the whole group.
Near the end of the proof, he notes in passing something related to divisibility “in the group K
division is always possible, though perhaps not unique.” Analysis of divisibility in this context
appears repeatedly. In [Whi37b, §2], Whitney mentions the notion of an infinitely divisible
group. In Section 3 of this paper, he remarks that the group of rational numbers modulo 1 is an
example of an infinitely divisible group and no group with finitely many generators can be. In
the Remarks on p. 38, Whitney makes the statement: “If A′ is a subgroup of A with division
(i.e., ma in A′, m ̸= 0, implies a in A′), and f is a homomorphism of A′ into G, we may always
extend f over A.” As Whitney remarks, this results extends the observation of Pontryagin stated
above.

Whitney revisits these ideas in [Whi44] (submitted November 1943, published in 1944),
which introduces the notion of “completely divisible group.” His putative goal here is to ana-
lyze universal coefficient theorems for cohomology, using ideas related to Pontryagin duality.
Here, [Whi44, Lemma 1] expands on the Remarks from the preceding paper and contains var-
ious equivalent characterizations of complete divisibility, among which include the “lifting”
characterization of injectivity that Eilenberg later isolated. Once again, this paper does not use
the word “injectivity” to modify abelian groups, seems not to be mentioned in subsequent work,
even in later more expository treatments such as [Kap54]. Moreover, Whitney’s title suggests
that this work is intended to be the first part of some treatment, the subsequent portions of which
never appeared. I view these independent treatments as support for Baer’s idea that results such
as these were “well-known”.

In [Bae40], which appeared in 1940, Baer extends his previous results on abelian groups
to abelian groups with a ring R of operators, i.e., R-modules. In so doing, he introduces a
modification of the notion of p-completeness for an abelian group: for an ideal I ⊂ R, he
introduces a notion of I-completeness of an R-module. An R-module M is called I-complete if
for every m ∈ M and every element i ∈ I , we can find an element m′ ∈ M such that im′ = m.
Baer then analyzes modules that are I-complete for all ideals, calling these complete modules.
He also focuses attention on the case of modules that are I-complete for I ranging among the
principal ideals of R. With this terminology, [Bae40, Corollary 2] contains a converse to the
observation that a complete abelian group is a direct summand of every group in which it is
a subgroup, and [Bae40, Theorem 3] states that every R-module is a submodule of divisible
R-module. Once again, injectivity in the guise introduced by Eilenberg is nowhere to be found,
nor is any discussion around extension of homomorphisms.
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In a note submitted to the PNAS in May 1948 [Mac48], Mac Lane formulated the lifting
property characterizing injectivity in another analysis of “duality” phenomena, also motivated
in part by Pontryagin duality. He recapitulated these ideas in a talk at the Western Sectional
meeting of the AMS in November 1948, and submitted a more complete treatment of these ideas
appears in December 1949, appearing finally in 1950 as [Mac50]. According to [ML05, Chapter
26], Mac Lane was officially at Harvard through the end of the 1947-48 academic year, but had
spent considerable time in Europe that year. still in Europe at this time, and only returned to
Chicago in the Fall of 1948. Mac Lane’s paper makes no mention of Baer’s work, or the work of
Whitney, to which it seems most similar, even though Whitney was a colleague at least when the
PNAS note was published. Mac Lane does make a number of other references. Among other
things, Mac Lane gives a formulation preliminary to the eventual universal property of free
groups (existence of a lifting along a surjection). Furthermore, he remarks on the importance
of “duality” in his approach to cohomology and homology making reference to joint work, still
to appear, with Eilenberg [EM49]. The discussion of [Mac50] makes the view that this work
is a precursor to Eilenberg’s treatment in [Sem55b] seem apparent. Indeed, [Mac50, Theorems
1.2 and 1.2’] explicitly formulate the computation of extensions of abelian groups in terms that
look strikingly like the beginning of a free or injective resolution.

Kaplansky introduced the terminology of divisible modules in [Kap52, §2], which was sub-
mitted to Transaction of the AMS in July 1950. In [Kap52, Theorem 6], Kaplansky shows two
things. First, if R is a Dedekind domain and D is a divisible R-module, then given any injective
ring homomorphism S → M and a homomorphism S → D, there is an extension M → D.
Second, if D is a divisible submodule of some R-module M , then D is a direct summand. Of
course, the first point is precisely the condition of injectivity introduced by Eilenberg, to which
Kaplansky makes no mention. Kaplansky then adds a footnote stating that what he is doing
is showing that Baer’s more complicated notion of completeness is equivalent to the simpler
notion of divisibility. Kaplansky is thus aware of Baer’s work. However, Kaplansky seems
unaware of Eilenberg’s treatment of injectivity.

Eilenberg’s treatment from [Sem55b, Expose I-III] makes no reference of Kaplansky’s work
or Baer’s work, but in fact makes no reference to any other papers either. In his proof of the
uniqueness of group cohomology, he mentions only102

The proof is based on a construction (not given here) that associates with every
Π-group A, a Π-injective Π-group Q containing A.

Eilenberg’s formulation does not allude at all to the work of Baer–Kaplansky.
Mac Lane returned to Chicago in Fall 1948, and Kaplansky had just been hired the preceding

year. Kaplansky was Mac Lane’s first student, so one imagines that they would have interacted.
Nevertheless, Kaplansky’s paper [Kap52] also makes no reference to Mac Lane’s PNAS note
[Mac48], the subsequent treatment [Mac50], nor to the Whitney paper, so one wonders whether
Kaplansky was in fact aware of these ideas at this time. Nevertheless, [Kap52, Theorem 6],
establishes the equivalence, for modules over Dedekind domains, of the notion of divisibility
and the lifting characterization of injectivity, once again without ever mentioning injectivity.

102“La démonstration est basée sur une construction (non donnée ici) qui fait correspondre à tout Π-groupe A un
Π-groupe Π-injectif Q contenant A.
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Kaplansky’s book [Kap54], published in 1954 does mention Mac Lane’s ideas of duality in
the closing “guide to the literature” [Kap54, p. 97]. Here Kaplansky writes:

Another approach is to...concentrate instead on an axiomatic study of duality it-
self...A typical instance of this duality is afforded by divisible groups and free
groups. A group is divisible if and only if it is a direct summand whenever it is
a subgroup: a group is free if and only if it gives rise to a direct summand whenever
it is a homomorphic image.

Once again, the lifting characterization of injectivity without any mention of injectivity...
This all leads one to the idea that there were roughly two parallel evolutions, not quite

simultaneous, of the eventual notion of injectivity: one that was “algebraically” oriented, and
one that was “topologically” oriented. A more complete description would suggest various
evolutionary dead ends, like the theory of Zippin or Whitney that appear not have been further
developed. Another piece of support of this parallel development theory is the publication in
1953 of the work of Eckmann and Schopf [ES53]. Here, the authors explicitly mention Baer’s
paper [Bae40] in a footnote clarifying:103

...it does not speak of injectivity, but of an equivalent property...

Eckmann and Schopf make no mention of Whitney, Mac Lane or Kaplansky, though the content
of Section 4.2 of their paper clearly overlaps with these treatments.

Axiomatic aesthetic

The treatment of individual modules in Cartan–Eilenberg’s homological algebra was remarked
upon by Hochschild in his MathSciNet review. Indeed, from the point of view of homological
algebra, focus was to be placed on relations between modules rather than modules themselves.
This diminishing of the role of individual modules, in conjunction with the arguments above
leads to my conclusions that, at the outset, projective modules were not to be viewed as in-
teresting objects in their own right. Their definition arose only in axiomatizing the property
of free modules that was used in the construction of resolutions that were used to compute
(co)homology. Those resolutions themselves were thought of as auxiliary black boxes with the
actual cohomology groups being of primary importance. The relevant lifting property also was
more naturally suggested by category-theoretic considerations rather than simply considerations
of abstract algebra and thus reflects a “modernist” or perhaps “minimalist” axiomatic sensibil-
ity.xlvii Coupled with the lack of examples, how did projective modules leave this background
role?

Having clouded the waters as regards the linear narrative of injectivity, let us indicate some
further complicating factors echoing Hochschild’s view that homological algebra brought a shift
away from study of individual modules and toward relationships between modules. The Baer–
Kaplansky notion of divisibility could be viewed as a focus on divisible modules in their own

103“..es ist dort nicht von Injektivität, sondern einer damit äquivalenten Eigenschaft (4.2 (c) unserer Note) die
Rede.”
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right. Indeed, there is a fascinating “structure” theory for divisible abelian groups104, which
Kaplansky is explicitly developing in his paper [Kap52]. The transition from divisibility to
injectivity that we have described above seems to coincide with a transition away from estab-
lishing structural results for divisible modules. Instead, the many mentions of injective modules
that begin to appear only seem to care about cohomological triviality of injective modules,
rather than any explicit description of such modules and there appear to be few attempts in the
literature to study divisibility in its own right.105

Given this development of the theory of injective modules, I speculate that there has to be
a reason that projective modules developed differently: instead of fading away as an obscure
technical tool, projective modules instead become a focal point of mathematical research. One
can see shadows of a development of this form in modular representation theory of finite groups
today where the projective modules are precisely the uninteresting modules: one forms the
stable module category by essentially working “up to projectives” and thereby systematically
ignoring their contributions. Thus, the change in the theory of projective modules arose from
some additional, external “vitalizing” influence.

3.3 Fiber bundles and projective modules
The 1951-52 version of the Séminaire Cartan was devoted to the theory of analytic functions of
several variables [Sem]. One point that we have not addressed earlier is how widely available
the polycopies of the Cartan seminar were. Wide publication of some of these seminars had to
wait until 1955 or so, as the publication dates indicate. The last three exposes of this seminar are
particularly important for our discussion as Cartan’s presentations develop aspects of the theory
of coherent sheaves on Stein spaces, in particular formulating results that eventually became
“Theorems A and B”. These results of Cartan allowed explicit links between the Cousin prob-
lems, and sheaf cohomology, and the final Expose of this year is given by Serre who explains
how to use Cartan’s results in applications, especially to Cousin-type problems.

This edition of the Seminar gives a first public development of the vision we followed in
the Cartan–Weil correspondence around fiber bundles in complex analytic settings (see Para-
graph 2.1.5). Rather than using fiber bundles directly, however, Cartan has used cohomologi-
cal formulations involving his theory of coherent sheaves (as discussed in Section 2.4). That
these results from the Cartan seminar were more widely available is attested by other public
treatments of this work, e.g., Cartan’s expose at a Conference in Brussels [Car53] and Serre’s
subsequent treatment [Ser53].

Serre’s initial expose in the Cartan seminar was given on the 16th of June, but the write-up
was revised in November of 1952. Already at this stage, a number of the proofs, especially
around applications of Cartan’s theorems to theory of analytic fiber bundles are modeled on
Weil’s treatment in his 1952 course on the algebraic theory of fiber bundles. This talk already
contains results like the characterization of Stein spaces in terms of vanishing of higher coho-
mology of ideal sheaves.

104A divisible abelian group is a direct sum of copies of the rational integers and Prüfer p-groups (a.k.a., quasi-
cyclic groups); [Kap54, Theorem 4].

105But not none!
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In May 1953, Serre gave a talk in Séminaire Bourbaki entitled “Éspaces fibrés algebriques”
[Ser54]. In this talk, Serre discusses Weil’s theory of fiber bundles in algebraic geometry,
largely using the language of Weil’s foundations of algebraic geometry [Wei62] and building
on the work of [Wei55] and the talk upon which that work was based. In Section 3, he observes
that the “most important” example of algebraic fiber bundles are the algebraic vector bundles.
In particular, guided by the discussion in the Cartan seminar, one sees Serre’s interests moving
away from Cartan’s analytic treatment into corresponding algebraic situations.

These developments, especially the theory of analytic sheaves, were gaining broad accep-
tance at the same time, especially around Princeton. Indeed, Kodaira and Spencer were using
Cartan’s sheaf theory for complex manifolds more generally, this time in conjunction with an-
alytic techniques. In 1953, they wrote [Kod53], [KS53b] and [KS53a] which adopt the tech-
niques and terminology of Cartan’s version of sheaf theory.

In this section, I aim to explore how projective modules made the transition from “tech-
nical” actors to objects of “central” mathematical focus. To illustrate this transition, I give a
“rational reconstruction” of the bridge between projective modules and fiber bundles, and then
compare this to the actual presentation, which appears in Jean-Pierre Serre’s influential treatise
Faisceaux algébriques coherents [Ser55], submitted to Annals of Mathematics in October 1954,
and appearing in March 1955. Since Serre appears as a key player at this stage, we highlight
something of his mathematical status by inclusion of some discussion around the 1954 Fields
Medals, especially as it relates to the place of sheaf theory and fiber bundles in the mathematical
mainstream.

Projective modules as afterthought

The link between projective modules and fiber bundles is spelled out in [Ser55]. I will momen-
tarily engage with Serre’s proof of this fact, but I want to begin instead with another rational
reconstruction of the link. The link between projective modules and algebraic vector bundles
requires first observing that geometric notion of algebraic vector bundles can be described in
purely ring/module-theoretic terms; this requires admitting an algebro-geometric point of view;
the corresponding module-theoretic notion is that of a “locally free” module.

3.3.1 (Interlude: cultural features of proof). I would like to give a proof that finitely generated
projective modules over a commutative unital ring R are precisely locally free modules. This
proof is, I believe, a standard proof now, and I think from a modern point of view it might even
appear “organic”; I would like to indicate the cultural assumptions that are required to make
that assertion. I do this both to situate the ideas to a modern reader, and also to emphasize
that the idea this proof is more elementary depends itself on various changes in perspective and
mathematical values.

There are two implications to establish. For the forward implication, we need to know that
finitely generated projective modules are locally free. In other words, given a projective module
P , we want to show that for any prime ideal p ⊂ R, the localized module Pp is itself free. This
amounts to establishing that finitely generated projective modules over a local ring are free.

Nowadays, the conceptual scaffolding of this part of the argument is built with an appeal to
“Nakayama’s Lemma”.xlviii To be precise, let S be a local ring; write m for the maximal ideal
of this local ring and set κ = S/m, usually called the residue field. If P is a finitely generated
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projective S-module, then we get a (finitely generated) κ-module P ⊗S κ, which is a finite-
dimensional vector space. In this context, “Nakayama’s lemma” is the assertion that a basis for
this finite-dimensional vector space can be lifted to provide a basis for P . This class of results
was published in the early 1950s.

For the reverse implication, suppose we admit that someone is familiar with the properties
of tensor products of modules and localization in commutative algebra in the following form:

(1) over any commutative ring R the assertion that M is projective is equivalent to the con-
dition that the functor HomR(M,−) preserves surjections,

(2) an R-module homomorphism N1 → N2 is surjective if and only if it remains so after
localization at all prime ideals p of R, and

(3) the construction HomR(−,−) behaves functorially under localization.
The first statement is a reformulation of the “lifting characterization” of projective modules
stated at the beginning of Section 3, but depends on reformulating this property in terms of
a functor, i.e., admitting a category-theoretic point of view. The second statement perhaps
becomes “natural” only when one adopts a geometric point of view on rings and modules:
elements of a module are “generalized functions” on an associated geometric space (the prime
or maximal ideal spectrum); this algebro-geometric point of view arguably only gained currency
due to Weil and Serre’s work. Finally, admitting the last statement also requires some category-
theoretic familiarity: for example, one could imagine thinking about this by viewing localization
in terms of tensor products and appealing to universal properties.

Now, suppose M is a locally free module and we want to check that M is projective. Ap-
pealing to (1) we will show that Hom(M,−) preserves surjections. Localizing at a prime ideal
p, properties of tensor products imply that

HomR(M,N)⊗R Rp
∼= HomRp(Mp, Np).

In that case, since Mp is free by assumption, we conclude that HomRp(Mp,−) preserves surjec-
tions and we conclude. This rational reconstruction could have been constructed by someone in
the Cartan–Eilenberg circle, but doing so requires, I think different primary notions. It is plausi-
ble that this proof could have been constructed by someone in the Cartan–Eilenberg circle, but
doing so requires, I think, different primal notions. Granted what we have to accept, in what
sense is this argument more elementary?

So how does this presentation compare to the original discussion? The establishment of
the two implications in the statements of 3.3.1 appear separately, and we discuss each such
implication separately.

3.3.2 (Projective implies locally free). The assertion that projective modules over local rings is
contained in [CE99, Theorem VIII.6.1’]. They give a “cohomological” criterion for freeness
of a module involving the Tor-functor. More precisely, Cartan–Eilenberg prove that if M is a
finitely generated module over a local ring R with maximal ideal m and residue field κ := R/m,
then whenever TorR1 (M,κ) = 0, M is necessarily free. Of course, this vanishing holds when
M is a projective R-module and thus one concludes that projective modules over local rings are
free.106

106I highlight the fact that Cartan–Eilenberg do not assume M is projective in the statement of this result, perhaps
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The proof of [CE99, Theorem VIII.6.1’] is “immediate” from two results in [CE99, VIII.5].
These auxiliary results are also phrased in terms of “lifting generators” of M ⊗R κ to M , but
the discussion of [CE99, VIII.5] uses additional notation and terminology (that of “proper,
faithful and allowable”) that a dutiful reader would have to process. No reference is made to
“Nakayama’s lemma”, perhaps because such results were not packaged as standard yet. More-
over, these auxiliary results make no explicit mention of projective modules. Only one impli-
cation of the claim in Paragraph 3.3.1 appears in [CE99]. To my knowledge, the first published
mention of “Nakayama’s lemma” in this context appears in the proof of [Ser58, Proposition 1].

What about the reverse implication? Serre begins [Ser55] with the statement:107

We know that cohomological methods, in particular sheaf theory, play an increas-
ing role not only in the theory of several complex variables ([5]), but also in clas-
sical algebraic geometry (let me recall the recent works of Kodaira-Spencer on the
Riemann-Roch theorem). The algebraic character of these methods suggested that
it is possible to apply them also to abstract algebraic geometry; the aim of this paper
is to demonstrate that this is indeed the case.

The reference to [5] here is to Cartan’s theory of coherent sheaves on analytic spaces. Certainly
holomorphic vector bundles were known examples of coherent analytic sheaves.

Serre observes early in [Ser55, §41 Proposition 5] that algebraic vector bundles also give
examples of coherent algebraic sheaves. Here, Serre makes explicit reference to Weil’s work
on algebraic fiber bundles and, in particular, the Chicago lecture notes on algebraic fiber spaces
[Wei55].

3.3.3 (Locally free implies projective). Projective modules enter only in [Ser55, §50]. Propo-
sition 4 in this section contains the assertion that projective modules are precisely the locally
free modules. Let us compare Serre’s proof of this result to that in Paragraph 3.3.1. We have
already discussed the projective implies locally free direction of the statement. The reverse
implication again relies on results in Cartan–Eilenberg: in particular, the reader is required to
know about notions of projective dimension of modules and a characterization of projective
modules as modules of projective dimension 0, for which the reader is referred to [CE99, VI.2].
To establish the relevant dimension estimate, Serre relies on an exercise in Cartan–Eilenberg:
[CE99, Chapter VII Exercise 11] which bounds projective dimension in terms “local” projective
dimension. These results appear more than 150 pages into the Cartan–Eilenberg text.

because for them, local rings need not be commutative. Thus, on a first reading, projective modules are simply
examples of modules that satisfy the hypotheses of the theorem. In fact, from a psychological point of view, it
seems to me that the focus on vanishing of Tor draws one’s attention away from particular modules because it
implicitly depends on the ring R. Nevertheless, once the theorem is phrased in this way, it immediately raises the
question: are there other modules that satisfy this vanishing condition? As it turns out, the answer to this question
is “no”: Serre established later [Ser58, Proposition 1] that the vanishing condition in [CE99, Theorem VIII.6.1’] is
equivalent to M being projective.

107On sait que les méthodes cohomologiques, et particulierement la théorie des faisceaux, jouent un role crois-
sant, non seulement en théorie des fonctions de plusieurs variables complexes (cf. [5]), mais aussi en géométrie
algébrique classique (qu’il me suffise de citer les travaux récents de Kodaira-Spencer sur le théoreme de Riemann-
Roch). Le caractere algébrique de ces méthodes laissait penser qu’il était possible de les appliquer également a la
géométrie algébrique abstraite; le but du présent mémoire est de montrer que tel est bien le cas.
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In private communication, Serre remarked that once he saw that projective modules were
locally free, he saw the converse “essentially immediately”; but the proof given makes the de-
pendence of the phrase “essentially immediately” seem to depend on detailed familiarity with
the ideas of Cartan–Eilenbeg. The proof Serre gives makes free use of the results in Cartan–
Eilenberg, which I emphasize remained unpublished from submission through publication of
Serre’s paper. Anyone not part of the circle consisting of people with detailed familiarity of the
Cartan–Eilenberg text could not plausibly have read and understood this proof, and it seems a
stretch to describe the proof at that time as elementary as relied on what can only be described
as cutting-edge mathematical ideas. Moreover, I imagine processing this proof without some
kind of roadmap to the Cartan–Eilenberg text would be difficult even for someone to whom
that text was available. As such, the cultural context of Serre’s proof is paramount: it is clearly
written for people with particular familiarity, and emphatically not a familiarity that most math-
ematicians of the time could have had.xlix

Immediately thereafter, Serre remarks that projective modules are equivalent to algebraic
vector bundles. In fact, [Ser55] is replete with references to Weil’s theory of fiber spaces in
algebraic geometry, here in the form of the Chicago lecture notes, so we conclude that Serre
has studied this paper carefully.108 Moreover, [Ser55, §50 Corollaire] contains all aspects of the
dictionary: projective modules, locally free sheaves of modules and algebraic vector bundles.

All of a sudden, it seems everything has changed. Bott characterized the ideas of sheaf
theory as part of the “mathematical mainstream” (see Section 2.4), and we will see additional
evidence for this belief shortly. By means of the identification Serre has provided, projective
modules are now part of this conversation also: they have been contextualized in a world mix-
ing homological algebra, algebraic fiber bundles, and sheaf theory. Among the algebraic fiber
bundles, we have already seen the algebraic vector bundles described as “the most important
examples”. The full force of the Cartan–Weil vision can thus be harnessed to motivate the study
of projective modules as rich in its own right, at least to those who were exposed to this vision.
It will take a bit of time for this change in perspective to percolate, but the ball has been set
rolling.

From analogies to concrete problems

Famously, Weil addressed the guiding role of analogy in mathematics [Wei14, p. 408]:109

As all mathematicians know, nothing is more fruitful than these obscure analogies,
these troubled reflections from one theory to another, these furtive caresses, these
inexplicable confusions; also, nothing gives more pleasure to the seeker. A day

108Further, in January 1954, Weil remarks to Cartan [CW11, p. 348]: “J’ai reçu une lettre de Serre il y a quelque
temps; je songeais vaguement à y répondre un jour, mais je n’arrive plus à remettre la main dessus, et d’ailleurs
je n’avais rien d’intéressant à repondre. Il faisait des objections à quelques passages des notes sur les variétes
fibrées...”

109Rien n’est plus fécond, tous les mathematiciens le savent, que ces obscures analogies, ces troubles reflets
d’une théorie à une autre, ces furtives caresses, ces brouilleries inexplicables; rien aussi ne donne plus de plaisir
au chercheur. Un jour vient où l’illusion se dissipe; le pressentiment se change en certitude; les théories jumelles
révèlent leur source commune avant de disparaı̂tre; comme l’enseigne la Gita on atteint à la connaissance et à
l’indifférence en même temps.
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comes when the illusion dissipates; presentiment changes into certainty; twin theo-
ries reveal their common source before disappearing; as the Gita teaches we achieve
knowledge and indifference at the same time.

Projective modules have been identified as algebro-geometric analogs of vector bundles in
topology. Given the primacy of fiber bundles in Weil’s worldview, which has evidently been
passed to this generation of Cartan’s students, it is natural to wonder how this analogy will be
used: at which stage in the evolutionary arc of this analogy can the identification of algebraic
vector bundles with projective modules be located? Is the analogy still to be viewed as obscure,
or have we reached a stage of knowledge and simultaneous indifference?

Two questions are posed at this stage, and to address the preceding question we will track
their reception in the mainstream mathematical conscience. In [Ser54, §4(3)], Serre considers
the following situation: if V is a non-singular complex variety, and G is an algebraic group,
we can consider the comparison map from isomorphism classes of algebraic fiber bundles with
structure group G to the corresponding set of isomorphism classes of analytic fiber bundles. In
this case, Serre writes: it appears very likely that the comparison map is a bijection.

Serre himself would go on to analyze this question in [Ser56] with the additional hypotheses
that V be a complete algebraic variety. It is unclear what evidence existed for this conjecture
at this stage. The techniques of the day were sufficient to establish that this question of Serre
had a negative answer if V is a any non-singular complex affine curve of genus g > 0: the
divisor class group of a non-singular affine curve was well-known to be non-trivial, but Cartan’s
theorems show that all analytic line bundles on a non-singular complex affine curve are trivial
for cohomological reasons (Cartan’s formulation of the so-called Oka principle).

In [Ser55], Serre also makes the comment [Ser55, p. 243]:

Signalons que, lorsque V = K ′ (auquel cas A = K[X1, . . . , Xr]), on ignore s’il
existe des A-modules projectifs de type fini qui ne soient pas libres, ou, ce qui
revient au m me, s’il existe des espaces fibrés algébriques à fibrés vectorielles, de
base Kr, et non triviaux.

Serre raises this question, no doubt motivated by his training as a topologist, by the analogy
between algebraic and topological vector bundles. The belief that all projective modules over
polynomial rings over a field are trivial has sometimes been recast in the literature as the “Serre
conjecture”, but Serre has very adamantly asserted that he did not have an opinion about the ex-
istence or non-existence of non-free projective modules in this situation: it was only a problem
[Lam06, Footnote p. 1].

There are two cases where one can show that projective modules over polynomial rings are
trivial, with the known technology at the time. The first is the case where r = 1, since in this
case, the result follows immediately from th structure theorem for finitely generated modules
over a principal ideal domain. The second case requires a bit more speculation at this stage.
It seems likely known to Krull that in a unique factorization domain, all height 1 prime ideals
are principal. That the class group of a unique factorization domain is trivial then follows
immediately. Thus, granted the dictionary that had become available between the divisor class
group, line bundles and rank 1 projective modules, we conclude that rank 1 projective modules
over a unique factorization domain are necessarily trivial.
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Serre and the 1954 Fields medal

One fundamental difference in reception between the two questions just posed is that, in the
meantime, Serre and Kodaira win the 1954 Fields medals. Ignoring the question of the cachet
of the Fields Medal at this point in history, what this award does do is solidify the mathematics
of the winners as mainstream mathematics. Attention is thus focused on the style of work
that I’ve been discussing: topology, sheaf theory, complex analysis and its interactions with
algebraic geometry.

The 1954 Fields medal committee was presided over by Hermann Weyl, with other mem-
bers including E Bompiani, F Bureau, H Cartan, A Ostrowski, A Pleijel, G Szegö, and E C
Titchmarsh. Weyl begins his address to the conference with the statement: “That at each Inter-
national Mathematical Congress two gold medals be presented to two young mathematicians
who have won distinction in recent years by outstanding work in our science.” Weyl continued
to describe the work of the 1954 winners Kodaira and Serre.

...for I realise how difficult it is for a man of my age to keep abreast of the rapid
development in methods, problems and results which the young generation forces
upon our old science; and without the help of friends inside and outside the Com-
mittee I could not have shouldered this burden at all. It rests more heavily on my
than on my predecessors’ shoulders; for while they reported on things within the
circle of classical analysis, where every mathematician is at home, I must speak on
achievements that have a less familiar conceptual basis. A report like this cannot
help reflecting personal impressions.

Having thus characterized the realm of ideas in which Kodaira and Serre are working, Weyl
then mentions “I find it convenient to explain as briefly as I can a number of universal concepts
before entering upon some of our laureates’ individual achievements. Be prepared then to have
to listen now to a short lecture on cohomology, linear differential forms, faisceaux or sheaves
Kahler manifolds and complex line bundles.” Weyl continues to describe the work of Kodaira
and Serre mentioning briefly the recently discovered links between the work of the pair; in this
direction he remarks “you may get the impression that our Committee did wrong in awarding
the Fields Medals to two men whose research runs on such closely neighboring lines. This
contact, however, has been established only during the last year and may well be a transient
phenomenon.” He closes with a strikingly positive description of Kodaira and Serre, writing
about the latter:

let me say this that never before have I witnessed such a brilliant ascension of a star
in the mathematical sky as yours.

Weyl’s description above contributed to the shaping of Serre’s reception by the broader
mathematical community. Weyl alludes above to “help” in preparing his presentation of the
mathematics of Kodaira and Serre, and it perhaps comes as no surprise, given Weyl’s proximity
to Weil at the IAS that Weil was one of the people whom Weyl consulted.

In a letter to Cartan dated Nov 8, 1953, Weil writes [CW11, p. 338 ]:110

110“L’oncle Hermann (par lettre) et Bureau (de vive voix) m’ont consulté sur la médaille Fields. Il me parait
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Uncle Hermann (by letter) and Bureau (orally) consulted me on the Fields Medal. It
seems to me ridiculous and unfair to push Serre at the expense of Borel and Thom,
and, in another direction, Néron. Serre is more brilliant, that is understood. But I do
not see how one could, at the present time, affirm that he is well and truly superior
to the others; and, if one is not sure, it seems to me unfair to give the appearance
of being so. I understand well that there are questions of tactics here, and that there
is greater chance of winning if one presents a single candidate than if one presents
several. But this is not a game of football, and after all it matters little whether one
or the other has the chocolate medal.

Cartan responds to this letter on the 16th of November [CW11, p. 341]:111

The passage in your letter concerning the Fields medals surprised and upset me. I
had never imagined that you would put Néron and Thom on the same level as Serre;
maybe, we could discuss Borel, although that is not my opinion. In any case, you
know me well enough not to doubt that if I were not certain that Serre is “well and
truly superior to the others”, I would not give the impression of being sure of it.
This is not a question of tactics. It is curious to note (it is not the first time that I
have made this observation) that the personalities whose stature is indisputable are
sometimes the most discussed.

Weil responds in a latter on November 20th [CW11, p. 342]:112

I am probably wrong to think that it was for tactical reasons that you concentrated
your efforts on Serre with regard to the Fields Medal; but in any case I can only
admire your “certainties”, while finding ridiculous your sentence which says “it is
the most indisputable personalities who are the most disputed”. I do not see at all in

ridicule et injuste de pousser Serre aux dépens de Borel et Thom, et, dans un autre genre, de Néron. Serre est plus
brillant, c’est entendu. Mais je ne vois pas comment on pourrait, à l’heure actuelle, affirmer qu’il soit nettement et
clairement supérieur aux autres; et, si on n’en est pas sûr, il me parait injuste de se donner l’air de l’etre. J’entends
bien qu’il y a là des questions de tactique, et qu’il y a plus de chances de gagner si on présente un candidate que si
on en présente plusieurs. Mais ceci n’est pas une partie de football, et après tout il importe peu que l’un ou l’autre
ait la médaille en chocolat.”

111Le passage de ta lettre qui concerne les médailles Fields m’a supris et contrarié. Je ne m’étais jamais imaginé
que tu mettais Néron et Thom sur le même niveau que Serre; à la rigueur, on pourrait discuter pour Borel, quoique
ce ne soit pas mon avis. En tout as, tu me connais assez pour ne pas mettre en doute que si je n’avais pas la certitude
que Serre est ≪nettement at clairement supérieur aux autres≫, je ne me donnerais pas l’air d’en être sûr. Il ne s’agie
pas de tactique ici. Il est curieux de constater (ce n’est pas la première fois que je fais cette observation) que les
personnalités dont l’envergure est indiscutable sont parfois les plus discutées.

112“J’ai sans doute en tort de penser que c’était pour des raisons tactiques que tu concentrais tes efforts sur Serre
en ce qui concerne la médaille Fields; mais en tout cas je ne puis qu’admirer tes ≪certitudes ≫, tout en trouant
ridicule ta phrase qui dit ≪ce sont les personnalités les plus indiscutables qui sont le plus disutées≫. Je ne vois
nullement en quoi je ≪discute≫les mérites (incontestables, en effet) de Serre en leur comparant les mérites de
Borel, Thom et Néron, qui, à moi, me paraissent non moins indiscutables. Je suis particulièrement surpris que to
te figures pouvoir avoir une opinion fondée sur les mérites de Néron–je ne te savais pas si compétent en géometrie
algébrique et en arithmétique; je puis t’affirmer, quant à moi, que ce qu’il a fait est toute première importance, et
tout à fait comparable en difficulté à ce qu’a fait Serre. Pour Borel and Thom, je ne conteste pas tu compétence,
mais je te conseille un effort pour te dégager un peu de tous goûts personnels.”
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what way I “dispute” the merits (uncontestable, in fact) of Serre by comparing them
to the merits of Borel, Thom and Néron, which, to me, seem no less indisputable.
I am particularly surprised that you think you can have a well-founded opinion on
the merits of Néron–I did not know you were so competent in algebraic geometry
and arithmetic; I can tell you, for my part, that what he has done is of the utmost
importance, and quite comparable in difficulty to what Serre has done. As for Borel
and Thom, I do not contest your competence, but I advise you to make an effort to
free yourself a little from all personal tastes.

Weil continues with prescient:113 “The truth is that there is no measuring instrument that at the
moment allows us to say with certainty that one of them is superior to the other; all that can be
said about it is a matter of guesswork; in ten years or twenty years, it is possible that we will be
able to make a clear judgment on their respective merits (it is no less possible that we will not
be able to do so in 10 years or in 20 years, if by then they remain equal to themselves, which is
obviously to be hoped for.)”

In the meantime, Weil and Cartan discuss a number of issues of academic politics around
hiring. Weil writes [CW11, p. 347]:114

In this regard, your letter to Dieudonné indicates that you and Delsarte are in-
dulging in strategic gamesmanship; in my opinion you are amateurs in this game,
and clumsy amateurs, and you will always be beaten by the professionals; it is
therefore completely useless to waste your time on this kind of calculation, and
illusory to build rules of action on it.

The situation regarding the stature of the mathematicians discussed above as regards the
1958 Fields Medal is also fascinating. For example, Thom and Borel, in addition to Hirzebruch
were considered “leading candidates” based on correspondence possessed by Zariski [Bar, p.
46]. Other candidates with algebraic/topological interests include, in no particular order, A.
Grothendieck, J. Nash, J. Milnor and I. Shafarevich (though I should qualify here that, as the
deliberations were taking place in 1957, this was likely more for Grothendieck’s work in func-
tional analysis and homological algebra, rather than later work in algebraic geometry). These
candidates and deliberations suggest the important role played by algebraic geometry/topology
within the mathematics of the era.

3.4 On the precipice of a self-sustaining domain
While Serre’s Faisceaux Algebriques Coherents [Ser55] was being written in 1954, a host of
parallel developments took place that we do not want to ignore. Some of these notions were

113La verité est qu’il n’existe pas d’instrument de mesure qui, à l’heure qu’il est permette de dire avec certitude
que l’un d’eux soit supèriur à l’autre; tout ce qu’on peut en dire est du domaine du pari; dans dix ans ou dans
vingt ans, il est possible qu’on puisse se faire un jugement clair sur leurs mérites respectifs (il est non moins
possible qu’on ne le puisse pas non plus dans 10 ans ni dans 20 ans, si d’ici là ils se maintiennent toujours égaux à
eux-mêmes, ce qui est évidemment à souhaiter.)

114“A ce propos, ta lettre à Dieudonné indique que Delsarte et toi êtes en train de vous adonner au jeu des
combinaisons à multiple détente; à mon avis vous êtes à ce jeu-là des amateurs, et des amateurs maladroits, et
vous serez toujours battus par les professionnels; il est donc tout à fait inutile de perdre votre temps à ce genre de
calculs, et illusoire de bâtir là-dessus des règles d’action.”
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mentioned in passing in the preceding sections, in particular the work of Kodaira and Spencer
applying techniques of harmonic integrals to the analysis of algebraic varieties [Kod53, KS53b,
KS53a]. In the preface to [Hir56], Hirzebruch reminisces on this period, discussing his in-
teractions with Kodaira and Spencer and drawing a distinction between their approach to the
theory of algebraic manifolds and the approach being worked out by Cartan–Serre, even though
both groups could be said to be applying “sheaf-theoretic” techniques. Weyl also references a
distinction in our summary of his presentation of the 1954 Fields medals.

Hirzebruch used techniques learned from these groups together with work from Thom’s
cobordism theory to formulate and prove a version of the Riemann-Roch theorem [Hir54]; this
was announced in late 1953 and appeared in early 1954. In conjunction with the work of Cartan
and Serre on cohomology of coherent sheaves on suitably “compact” spaces, one can see an
impetus to return to the study of individual vector bundles, rather than relations between vector
bundles. Indeed, Hirzebruch’s formulation of the Riemann–Roch theorem provides a formula
for the Euler characteristic of an analytic vector bundle in terms of topological data.

After the submission of [Ser55], the scope of homological techniques and sheaf cohomology
continued to expand. Eilenberg published a series of papers drawing members of the Japanese
algebra school, e.g., Nakayama, into the orbit of homological techniques [Eil54, EIN55, EN55,
ENN56]. The links between homological algebra and commutative algebra mentioned in the in-
troduction to Cartan–Eilenberg were deepened. Auslander and Buchsbaum announced [AB56]
their homological characterization of regular local rings as those rings with finite global dimen-
sion; this proof was later exposed by Serre [Ser56].

The question asked by Serre in [Ser54] regarding comparison of algebraic and analytic fiber
bundles, one of the two which we discussed in the previous section, was taken up again by
Serre in [Ser56, §20]. He establishes [Ser56, Proposition 18 p. 31] that every analytic vector
bundle on a projective variety admits a unique analytic structure. It must by this point have
been well-known that the map in question was not a bijection even for line bundles over a non-
singular affine curve. Nevertheless, the question of comparison of algebraic and analytic vector
bundles in non-projective situations seems to have lain dormant for many years until the work
of Griffiths [Gri72, Gri72] some 15 years later.

The second question which we highlighted in the preceding section eventually became
known as Serre’s problem on projective modules, and it is fascinating to speculate about its
role in the development of the theory; a textbook treatment can be found in [Lam06]. One has
to imagine that the tantalizing ease with which one can state the Serre problem, provided one
accepts the notion of a projective module, combined with lack of an approach to the problem
led to persistent fascination.

Grothendieck asks [CS01, p. 6] in February 1955 (after Serre’s FAC was submitted, but
before it appeared in March 1955)

is a finitely generated projective module over the ring in question (for instance a ring
of polynomials or of holomorphic functions) free? Is this easy to see in interesting
special cases? If I understand correctly, in the case of polynomials, it is not even
known whether this theorem is true, and one has to restrict oneself to graded rings
to get a result.

This question appears among a long list of other questions/criticisms that Serre answers care-
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fully, but he seemingly skips over responding to this question.
Progress on the Serre problem was slow relative to the pace of the development of sheaf

theory, algebraic geometry, fiber bundles etc. during this period. Serre’s analogy between
topological and algebraic vector bundles lay dormant for a few years, but all that changed in
1958.

Seshadri published [Ses58] establishing the first non-trivial case of the Serre problem: the
case r = 2 in the notation used in the preceding section. Seshadri’s published proof was,
according to the written text, a modified version of something he had earlier sent to Serre,
incorporating suggestions of the latter. The idea of the proof itself was once again inductive with
respect to dimension: attempting to reduce the 2-dimensional problem to the already solved 1-
dimensional problem. This bit of progress, shortly after the initial formulation probably also
provided hope that Serre’s problem did admit a positive solution, and thereby perhaps led other
people to its consideration.

Shortly thereafter, Serre revisited the theory of projective modules outside of the homolog-
ical theory of commutative rings. In [Ser58], presented in the Séminaire Dubreil in May 1958,
Serre returns to the identification of vector bundles on affine varieties with projective modules
over the coordinate ring of a variety from [Ser55]. If the treatment of the earlier paper made the
dictionary seem like an afterthought or supporting detail, the presentation here takes a rather
different form. Here, Serre’s presentation seems to take more seriously the idea that projective
modules are analogs of vector bundles in topology, and spells out the correspondence in con-
siderably more detail. Support for this interpretation is given by the main result of this paper,
which is rather explicitly motivated by topological analogy: if R is a commutative ring whose
maximal ideal spectrum is connected and has dimension d, then every projective module of rank
r > d splits as the sum of a module of trivial module of rank r − d and a projective module
of rank d. The proof of the corresponding fact in topology goes back to the idea of “general
position” in topology. One can even argue that Serre’s proof is an adaptation of these ideas to
algebraic geometry.

From Serre’s point of view, this result encodes much of the intuitive feel of the theory
at this point in time. For example, if R is a local ring, then its maximal ideal spectrum has
dimension 0, so the splitting theorem implies that finitely generated projective R-modules are
free, as was observed by Cartan–Eilenberg. Another practical consequence had bearing on the
Serre problem itself: one reduces this problem to the analysis of projective modules of rank
smaller than the dimension. This additional partial progress undoubtedly buoyed interest in the
problem.

Yet another piece of support for the theory comes from the numerous attempts at classifica-
tion problems that arise. Grothendieck analyzed algebraic fiber bundles with structure a com-
plex Lie group over the projective line in [Gro57] (submitted in October 1956). Grothendieck
discusses the case of vector bundles first, and it is unclear if he was aware of earlier work that
could be interpreted as a solution to the problem. Indeed, it was retroactively realized that the
case of vector bundles is essentially contained in work of Dedekind–Weber as well as work of
Birkhoff. Shortly thereafter, Atiyah [Ati57] extends Grothendieck’s results by classifying vec-
tor bundles over an elliptic curve. Atiyah makes use of his previous work [Ati56] and phrases
his results in terms of a Krull–Schmidt type theorem.

A further impetus to the theory came from Grothendieck’s reworking of the Riemann–Roch
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theorem. As exposed in Borel–Serre [BS58, §4 p. 105], for any algebraic variety X , one
defines K(X) as a quotient of the free abelian group on the set of isomorphism classes of
coherent sheaves on X modulo the relation that we identify the middle term in a short exact
sequence as the sum of the two outer terms. Two remarks are made immediately: first, a
universal property for the group K(X) is observed, in particular making it clear that K(X) is
the universal recipient for Euler characteristics of coherent sheaves.

Second, the authors remark that one can make a similar definition for algebraic vector bun-
dles on X yielding a group K1(X), and that by construction there is a map K1(X) → K(X).
Then, [BS58, Théorème 2] states that if X is a non-singular, irreducible, quasi-projective va-
riety, then the map K1(X) → K(X) is an isomorphism. The proof given by Borel and Serre,
effectively still the standard proof of this result, builds on many of the results we have dis-
cussed above in an essential way: local-to-global ideas are used to reduce the result to a local
computation, where it is encompassed in the homological theory of regular local rings.

Conclusion

The analysis of vector bundles in general, and the classification problem we described just above
lead to a host of new problems for the theory. These problems, in conjunction with the Serre
problem and questions arising from the nascent algebraic K-theory lead to a flurry of work.
All of this classification work is guided by the analogy with topology, and the problems seem
structured so that understanding requires new mathematical architecture, rather than simply a
recycling of ideas of the now classical bundle theory.

That mathematicians were willing to engage with the new ideas around projective modules
thus seems predicated on their arrival within a suitably receptive and interactive community.
For me this precariousness, by which I mean the mangle of factors we have highlighted that
conspired to make the theory of projective modules relevant, including Bourbaki’s push of “ax-
iomatic aesthetics”, fiber bundles as unifying “important” mathematical questions, analogy as a
source for mathematical inspiration, either in Eilenberg and Mac Lane’s mathematical concep-
tion of “naturality”, or in Weil’s more prosaic conception bridging mathematical subdisciplines,
all serve to make the story more precious. More strongly, one cannot separate the theory of pro-
jective modules from the community in which it emerged.

I have, essentially arbitrarily, chosen to end the story here, the place which, in so many of my
mathematical papers, the story begins. As I have left them: projective modules in particular, and
vector bundles on algebraic varieties in general are, around the end of the 1950s, at the vanguard
of research in algebraic geometry and commutative algebra. Bolstered by numerous high-status
mathematicians routinely engaging with them and re-appearing in different sub-disciplines, the
potential energy of the original definition, if one can speak of such a thing, has been converted
to the kinetic energy of activity and knowledge production.

I return briefly to the discussion of Section 1.3 as regards “Why now?”. A final, more
personal, reason emerged only as I marked a stopping point, the arbitrariness of which reminds
me of the self-conscious pronouncement of Mann’s narrator in Doktor Faustus “what in my
own conscientious authorial opinion can really lay no claim to such segmentation” [MW97, p.
120], coincidentally written during the same period on which much of this text focuses. While
I embarked on this study feeling a certain anxiety about the value of the mathematics I do, the



113 3.4 On the precipice of a self-sustaining domain

process of composition has led me to a rich web of knowledge into which mathematics feeds.
The discovery of that interconnectedness has (oddly?), I think, led me to value the subject more,
underlining the fundamentally human nature of the pursuit.
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Notes
Prolegomena
Knowledge production..

iThere is a lot to unpack here, depending on what your view of what mathematics “is” is. Is mathematics
a science? Is it an art? For example, if mathematics is a science, then the idea that mathematical knowledge
has a special character sounds a lot like what is called “scientism”, about which there are many strong opinions.
However, whether or not mathematics is a science, there are difficult problems.

Unsurprisingly, many of the problems about the nature of mathematical knowledge that have been confronted
appear (already?) in elementary mathematics. J.S. Mill asked [Mil11], in effect: in what sense do we understand
large numbers? Much later, Frege [Fre60] had opinions strongly opposed to the views put forward by Mill. I really
want to separate myself from these kinds of questions about the nature of elementary mathematical objects because
mathematicians frequently don’t find such questions “exciting”.

Taken at face-value, Mumford’s claim seems to espouse a view of what mathematicians do that I don’t think
any mathematician would agree with. For example, mathematicians do not just aim to write down “true” state-
ments. For one thing, what does one mean by “true statements”? After Gödel and the failure of Hilbert’s axiomatic
program for mathematics, one could give this meaning as “true in some axiomatic system.” However, I doubt there
is any mathematician who would characterize mathematics as the act of writing down formally true statements in
some axiomatic system, which, frankly, sounds like rather dull activity. On this point, A.N. Whitehead famously
wrote [Whi29]

But in the real world it is more important that a proposition be interesting than that it be true; the
importance of truth is that it adds to interest.

Furthermore, so as not to inadvertently single out Mumford’s view, we observe that this kind of belief is far
from unique among mathematicians: one can find any number of assertions of Platonism in the mathematical
literature. Another famous one appears in Hardy’s famous apology [Har12, p. 123]:

I believe that mathematical reality lies outside us, that our function is to discover or observe it...the
theorems which we prove, and which we describe grandiloquently as our ‘creations’, are simply the
notes of our observations.

However, mathematicians are not a monolith and there are a large collection of theories of the nature of math-
ematical knowledge; among the most popular beyond Platonism are empiricism, formalism, and intuitionism.
Formalism in particular will play a role in our discussion because of its association with Hilbert and subsequently
Bourbaki and intuitionism is frequently counterposed as its opposite in the Hilbert–Brouwer debate. Neverthe-
less, as Michael Crowe discusses in [Cro88, §10], restricting one’s scope to these categories is, well, limiting. He
highlights Reuben Hersch’s [Her79] approach, wherein Hersch asks:

Do we really have to choose between a formalism that is falsified by our everyday experience, and a
Platonism that postulates a mythical fairyland where the uncountable and the inaccessible lie waiting
to be observed ... ?

I mention all these things only to say that I have less interest in trying to find a precise philosophical name for
the amalgam of views espoused by practicing mathematicians than in posing the question: in what (if any!) sense
is mathematical knowledge universal?

iiFollowing up on the previous point, Rowe also attributes this kind of Platonism to André Weil, who will be
a central figure in our discussion, writing [Row96, p. 11] “the Platonist viewpoint Weil espouses has been the
accepted orthodoxy for many years, not just among mathematicians...” and it is this latter characterization that will
be important for the mathematics that I discuss. I think this is something of an oversimplification and one can find
evidence for many different views of the nature of mathematical knowledge.

Yuri Manin reviewed Plato’s Ghost for the Notices of the American Mathematical Society [Man10], a discus-
sion that will be reprised shortly. As regards Mathematical Platonism, he has this to say:

So far as I can judge, “Platonism” of working mathematicians is based on a feeling that important
mathematical facts are discoveries rather than inventions.
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I highlight this here because the distinction between invention and discovery will appear repeatedly in what follows,
but Manin continues avowing some kind of Platonism himself:

What about Galois groups? If you feel that they were discovered by Évariste Galois, rather than
invented by him, you are in a sense a Platonist.
I will call such an attitude emotional Platonism in order to stress that (in my view) it is intellectually
indefensible, but not to the least degree invalidated by this fact, since our emotions happily resist
rational arguments.
Being such an emotional Platonist myself, I do not want to say that all mathematics is a discovery
of a Platonic world, whatever that could mean.

But Manin already raises the importance of the irrational in mathematics.
iiiAs background to what I discuss, but not something about which I will say much, let me mention the “two cul-

tures” drama that perhaps begins with C.P. Snow’s famous “Two cultures” essay suggesting a disjunction between
the sciences and the humanities [Sno64]. The tension increased significantly in the 1970s and 80s around the buga-
boo of “relativism” and “post-modernism”, used intentionally vaguely here, tracing through the “Sokal Affair” era;
books around this period predominantly written by “science-aligned” folks included [GL97] and [SB99].

This “two cultures” dichotomy is, bluntly, over-simplistic and reductive. In the direction of texts pertaining
to the “Sokal affair”, Michael Harris wrote several things that I have found compelling including [Har01] and I
refer to his work for some discussion of the Strong Programme as well. Shortly after Bloor’s work appeared, so
did numerous criticisms; I refer the interested reader to [Lau81] for criticisms from a Philosopher of science, and
the second edition of Knowledge and Social Imagery begins with a response to critics. This is less interesting to
me than the whole genre of books aimed at rejecting the conception of scientific or mathematical knowledge as
“contingent” in any sense; see for example [Bro09] for one such book written by a mathematician.

Nevertheless, methodologically, sociologists and anthropologists have “come back from the brink” somewhat,
since the objections to relativism above were raised, especially when analyzing science. For example, B. Latour’s
“We have never been modern” [LP12] or L Boltanski and L. Thevenet’s “On justification” [BTP21] deal with
issues arising in the sciences. While we will consult these texts, I don’t believe any part of the argument hinges on
such points of view.

ivGeorge Lakoff and Rafael Nuñez [LN00, p. xv] discuss a related notion of “romance” of mathematics, a
mythology including at least the following ingredients: “Mathematics is abstract and disembodied—yet it is real;
Mathematics has an objective existence/ providing structure to this universe and any possible universe/ independent
of and transcending the, existence of human beings or any beings at all; Human mathematics is just a part of
abstract, transcendent mathematics; Hence, mathematical proof allows us to discover transcendent truths of the
universe.”

v It is also probably necessary at this point to make some distinction between mathematics and other sciences.
I do not want to engage with facile discussions about scientific constructionism akin to Richard Dawkins’ famous
relativist at 30000 feet. Science has clearly allowed us to exert some control over our natural environment, but I
think it is unarguable that the methods that have allowed this control need not bear any resemblance to idealized
versions that scientists might describe, e.g., the “scientific method” as it is taught to my children in school. For the
sake of context, let me just say that I have found the discussions of experimental physics in [Mul14] or [KC99]
elucidating.

In a mathematical direction, the discussion of Mill and Frege in [Blo76] and the discussion of Hamilton’s
quaternions in [Pic95] were also very informative. Nevertheless, I am not going to assert my fealty to any particular
doctrinal social constructivism; I hope the subsequent argument speaks for itself. One related avenue of dissecting
mathematical practice that I have not explored stems from questions of mathematics education. I suspect that there
is some value in formulating a “standard model of mathematical practice” by collecting stories we tell to those
learning mathematics about how we do mathematics.

viHow many times has it been claimed that the job of mathematics is just to “prove theorems”. More prosaically,
in the introduction to Foundations of Algebraic Geometry [Wei62, p. vii], A. Weil writes:

At the same time, it should always be remembered that it is the duty, as it is the business, of the
mathematician to prove theorems, and that this duty can never be disregarded for long without fatal
effects.
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Weil makes this remark in the context of the use of “intuition” in Italian algebraic geometry, which he defends
against proponents of the “axiomatic creed” mentioning the importance of insight provided by careful study of
examples. As such, I am taking it out of context in using it with respect to philosophical investigation. However,
there is another plausible interpretation of this dictum to “just prove theorems”, which I also take from Weil. In
January 1954, Weil writes to Cartan [CW11]:115

In any case, experience seems to me to prove abundantly that all those who continue to play a major
role in the mathematical world while having ceased to do mathematics or at least to keep themselves
seriously up to date, sooner or later play a harmful role by falling into petty squabbles...

viiRobert Langlands, reflecting on beauty in mathematics, offers this comment on the human nature of mathe-
matics [Lanb, pp. 5-6]:

There are excellent mathematicians who are persuaded that mathematics too is divine, in the sense
that its beauties are the work of God, although they can only be discovered by men. That also seems
to me too easy, but I do not have an alternative view to offer. Certainly it is the work of men, so that
it is has many flaws and many deficiencies.
Humans are of course only animals, with an animal’s failings, but more dangerous to themselves
and the world. Nevertheless they have also created — and destroyed — a great deal of beauty, some
small, some large, some immediate, some of enormous complexity and fully accessible to no-one.
It, even in the form of pure mathematics, partakes a little of our very essence, namely its existence
is, like ours, like that of the universe, in the end inexplicable.

viiiRichard Brown writes, immediately after quoting Hardy that “mathematics is timeless” [Bro09, p. 149]. He
continues by further quoting Hardy’s opinion on the relative merits of Archimedes and Aeschylus (the latter will
be forgotten) and then concluding that mathematics “cannot be explained by social or historical factors.” Brown, a
mathematician with historical interests and training seems to exemplify something identified by W. Aspray and P.
Kitcher [KA88] who observe that

Social histories of modern mathematics are relatively uncommon, probably because in compari-
son with other sciences mathematics is regarded as least affected by factors beyond its intellectual
content...
Although mathematicians and historians have come to understand the value of studying professional
societies, journals, prizes, institutions, funding agencies, and curricula, they have considerably less
appreciation for the study of the social roots of the form and content of mathematics. This is evi-
dence of the firmly seated belief that mathematicians but not their ideas may be affected by external
factors.

ixThis is really a statement about intended audience: while I hope that sociologists of science/mathematics
might be enticed to care about the modern “pure mathematics” I discuss, I get the impression that for reasons of
“methodological richness” this is not the case. For example, I. Grattan-Guinness writes in his review of Restivo’s
book for MathSciNet:

The important fact is rightly emphasised that the preference for pure mathematics correlates pos-
itively with the growth of professionalisation of mathematics from the mid-19th century on, but
surprisingly little is said about the sociology of modern applied mathematics. The history of me-
chanics and mathematical physics, for example, offers more rich issues than many of the pure cases
discussed here. It would have been even more interesting to tackle areas of mathematics where
sociology and/or society itself were motivating agents: the mathematics of engineering, say, where
issues of economy and efficiency play a role; mathematical economics (both in the influence of alge-
bra on the growth of Mediterranean commerce in the late Middle Ages, and of mechanics-inspired
mathematical economics in the late 19th century); or the very late rise of probability and statistics

115En tout cas l’expérience me semble prouver abondamment que tous ceux qui continuent à jouer un grand rôle
dans le monde mathématiques tout en ayant cessé de faire des math. ou tout au moins de se tenir sérieusement au
courant jouent tôt ou tard un rôle néfaste en tombant dans la basse intrique...
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as a discipline within the last 100 years, when it finally came to form a third stream apart from the
disparate communities of pure and applied mathematicians.

To the pure mathematicians that remain, let me remark that there is some interest among historians/sociologists on
questions of pure mathematics, and I refer them to Alma Steingart’s interesting book Axiomatics [Ste23], especially
Chapters 2 and 4.
What happens here..

xThe plural cultures, used in Wilder’s original sense, and perhaps more generally in the sense used by anthro-
pologists of that era has also been criticized, even in more limited senses in which it may be applied to the sciences;
see [CK17] for some discussion of this point, but I highlight one point that seems quite relevant to my discussion
[CK17, p. 8]:

as the outcome of activity, a culture of scientific practice is subject to constant change—in relation
to the problems actors address and the goals they pursue and in the ways they draw on the resources
available to them to mold and remold their objects of research, their values, and so forth. Finally, we
suggest that establishing bridges between cultures of scientific practice is also part of what actors do.
Overcoming differences in knowledge and practice, constructing sameness (or even universality),
and achieving consensus are not properties of scientific practice and knowledge that are given a
priori but are outcomes of actors’ knowledge activities.

I will touch on this in the main body of the text, but in this terminology what will be important is actors perceptions
of their own mathematical culture(s).

More broadly, within spheres of scientific production one may appeal to different notions of culture. For
example, one may consider epistemic cultures; Knorr Cetina in [KC07, p. 363] defines these as follows:

The notion of epistemic culture is designed to capture these interiorised processes of knowledge
creation. It refers to those sets of practices, arrangements and mechanisms bound together by ne-
cessity, affinity and historical coincidence which, in a given area of professional expertise, make up
how we know what we know. Epistemic cultures are cultures of creating and warranting knowledge.

Knorr Cetina’s book [KC99] produces, to my mathematical eyes, interesting analyses of several epistemic cultures
around experimental physics and biology. This notion of epistemic culture is, I believe, intended to be more
narrowly applied; in the context of this document, one could imagine applying this notion to styles around the
Bourbaki group itself. This “micro” notion is then contrasted with a much broader “macro” counterpart called a
knowledge culture [KC07, p. 369]. For us I would argue that the “macro” conception means mathematics on the
scale of international mathematics, broadly construed.

xiAgain, I want to distinguish elementary mathematics from modern mathematics here. One might argue that
the fact different basic mathematical notions arose in cultures with vast geographic separation is a testament to the
inevitability of these mathematical ideas/structures. At this level, I suggest that something akin to the idea of par-
allel evolution in biology actually suffices to explain those instances. While I don’t want to develop this argument
here, distinctive features of the human brain and natural evolutionary pressures, e.g., around the development of
agriculture seem sufficient to explain the rise of arithmetic in different cultures.

Such a conception is certainly not new. Writing in [Wil53, p. 425] Wilder in reference to J.L. Coolidge’s
pronouncement that it was “a curious fact in the history of mathematics that discoveries of the greatest importance
were made simultaneously” that there was nothing “curious” about it, nor was it confined to mathematics. Never-
theless, even much later Mac Lane specifically highlights inevitability as a marker for excellence in mathematics
[Mac86].

xiiThis feeling is, admittedly, entirely based on anecdotal evidence and I should qualify it slightly. Robert Wagner
[Wag22, §2] writes:

Beauty, originality, importance and other measures of quality are not, I believe, more consensual
among mathematicians than among other scientists. In fact, and contrary to common perceptions,
even truth is not subject to consensus among mathematicians. Indeed, mathematicians have different
conceptions of mathematical truth, even if these conceptions are not always as well-articulated as
those developed by logicians and philosophers...
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He does not offer any support for this belief either. Note, however, that Inglis and Aberdein suggest that individ-
ual mathematicians are consistent in their aesthetic evaluations [IA15], whereas aesthetic assessments of proofs
between mathematicians can vary [IA16].

Wagner does observe that mathematicians “tend to agree much more than experts in other domains on whether
a given argument or proof is valid.” It something like this latter agreement, echoed in Jaffe’s comments earlier on
the role of proof that I imagine when speaking about universality.

xiiiThe careful reader will not have missed my Easter-egg use of the word “meta-narrative” early on. The “uni-
versality” I just described goes to the heart of modernism as characterized by Lyotard [Lyo84, p. xxii]:

I will use the term modern to designate any science that legitimates itself with reference to a metadis-
course of this kind making an explicit appeal to some grand narrative, such as the dialectics of Spirit,
the hermeneutics of meaning, the emancipation of the rational or working subject, or the creation
of wealth. For example, the rule of consensus between the sender and addressee of a statement
with truth-value is deemed acceptable if it is cast in terms of a possible unanimity between rational
minds: this is the Enlightenment narrative...

Lyotard furthermore echoes my discomfort with universality and inevitability [Lyo84, p. 54]:

But what never fails to come and come again, with every new theory, new hypothesis, new statement,
or new observation, is the question of legitimacy.

Once again, it is the sentiment that I want to highlight, rather than any details of the argument. Indeed, Lyotard
refers to this book [And98, p. 26] as the absolute worst of his books. Moreover, his use of the notion of meta-
narrative, especially in science, has been criticized [BBF97, p. 94], e.g., for being self-refuting in a “Russell
paradox”-like way: that there are no meta-narratives is itself a meta-narrative.
Why now..

xivOne investigation of this kind of question in a scientific context can be found in [Lau78] where on p. 3 he
writes:

Some historians and philosophers of science (e.g., Kuhn and Feyerabend) have argued, not merely
that certain decisions between theories in science have been irrational, but that choices between
competing scientific theories, in the nature of the case, must be irrational. They (especially Kuhn)
have also suggested that every gain in our knowledge is accompanied by attendant losses, so that it
is impossible to ascertain when, or even whether, we are progressing.

I see no reason why something similar could not also apply to mathematics. For that reason, it seems worth
considering Laudan’s reorientation of progress in science toward “solutions of problems”. As a human conception,
widespread interest in a problem seems a good justification of worth, even if it can only be local and social
agreement. Undoubtedly we already use “problem-solving effectiveness” as a proxy for mathematical interest.
Nevertheless, I hope to indicate in the main body of the text that such a discussion is too simplistic for progress in
a mathematical context; see especially Paragraph 2.2.6

xvHyde, writes [Hyd19, p. 264]

Myself, when writing poems, I practice revision by forgetting. I write a draft of the poem, and
then another and another, allowing the versions to pile up in a jumble–lines I am attached to, al-
though they don’t belong, lines that fit but go flat in the middle, words replaced and then reinserted,
promising developments that never delivered–it all sits there, a shapeless pile, clammy with fatigue.
Then I set the mess aside and ignore it for at least one day. Then I write the poem from memory.
Great chunks will have fallen into oblivion, while others will have returned clarified from the pool.
The double goddess attends, erasing as she records, drawing shape from shapelessness, dropping
the discord to reveal the harmony.

This practice seems to echo the perhaps apocryphal method of Jean-Pierre Serre for writing papers, which I
have heard referred to as the n + 1-method: write a draft of a paper, put it in a drawer. Write another draft: if
the two coincide, stop. If they do not, throw away the first draft and repeat the process until it converges. More
abstractly, this echoes the description of the Bourbaki axiomatic approach: one aims to strip away the inessential.
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My main question about all of this is: what factors influence how one decides what is inessential? This seems just
as fraught as deciding what is essential! The conception of “Losing knowledge” as part of “progress” also appears
in Peter Burke’s sociology [Bur12, Chapter 5], but I will not develop this here.

xviOne key example of what I mean here that has received prominent attention is the classification of finite
simple groups. Michael Aschbacher, a prime contributor to the proof, remarks on related questions in [Asc05].
He writes “because of the complexity of the proof and the absence of a definitive treatment in the literature, one
can ask if the theorem has really been proved. After all, the probability of an error in the proof is one. Indeed,
presumably any attempt to write down a proof of such a theorem must contain many mistakes.” He then states
“I suspect most professional mathematicians feel that, after some (high) minimal standard of rigor has been met,
it is more important that the proof convey understanding than that all formal details appear without error.” This
instance seems to be methodologically interesting to historians as well. Alma Steingart analyzed this proof as well
[Ste12], writing “Here, tacit knowledge and personal communication were not glossed over in publications, but
instead were indispensable components of how mathematicians were able to approach, apprehend, and evaluate an
unwieldy body of literature.

While group theory provides an example that is easy to wrap one’s head around, modern mathematical domains
frequently operate in a gray area as regards proof. Examples of this kind of phenomenon range from use of
statements made in talks for which complete write-ups are not available, to “known-to-experts” errors in published
results. In the latter case, sometimes fixes are known (to varying degrees!), but sometimes they are not, and
mathematicians can operate under the belief that the proofs will eventually be fixed. Numerous examples of some
provisional form of truth are attached to episodes in the mathematical literature, ranging from the gap in Wiles’
original proof of the modularity theorem, several episodes in symplectic geometry, through Mochizuki’s claimed
proof of the ABC conjecture. My point is not to highlight errors, but simply to observe that vibrant fields can
operate without any pretense to absolute certainty. For a recent treatment of what one might call an “epistemology
of mathematical error” I refer the reader to [WW24].

xviiAs I mentioned at the outset, this was supposed to be an introduction to applications of the Morel–Voevodsky
motivic homotopy theory. Voevodsky played a central role in the establishment of this theory, culminating in his
proof of several conjectures including Milnor’s conjecture on the mod 2 norm residue isomorphism, and its gen-
eralization to other primes called the Bloch–Kato conjecture. In the course of these proofs, Voevodsky developed
his approach to “motivic cohomology”, fulfilling part of a conjectural vision of Beilinson and Lichtenbaum.

In the course of lecturing on the Bloch–Kato conjecture, Voevodsky writes [Voe14]: “Only then did I discover
that the proof of a key lemma in my paper contained a mistake and that the lemma, as stated, could not be salvaged.
Fortunately, I was able to prove a weaker and more complicated lemma, which turned out to be sufficient for all
applications. A corrected sequence of arguments was published in 2006.” Coincidentally, I attended these lectures
whilst a graduate student, and they were formative in shaping my mathematical tastes. This anxiety led Voeovdsky
to his Univalent Foundations project and numerous discussions on “certainty” of proof in mathematics.

xviiiFor a mathematical analogy: the micro-changes I am suggesting are analogous to analytic continuation and
are to be distinguished from “revolutions” or “paradigm shifts” in any kind of Kühninan sense.

xixI can take this idea even further, as it seems to apply to mathematicians renderings of the philosophies of their
contemporaries and predecessors. In Poincaré’s review of Hilbert’s Grundlagen he complains about the apparent
diminishment of intuition, whose banishment is remarked upon repeatedly [Poi03]. Indeed, David Rowe, writing
in [Row94] writes about Hilbert criticizing purely axiomatic mathematics. He quotes Hilbert as saying:

Were this viewpoint correct, then mathematics should appear as nothing more than a series of logical
arguments heaped one upon the other. One would find nothing but an arbitrary series of conclusions
driven by the power of logic alone. But in reality nothing of the kind exists; indeed, the concep-
tual structure of mathematics is constantly led by intuition (Anschauung) and experience so that
mathematics for the most part represents a closed structure free of arbitrariness.

This is evidently “later” Hilbert, from roughly 1919, but seems quite far from what Poincaré describes. Never-
theless, it is a strong reading of earlier Hilbert that seems to support the view of Bourbaki’s later projects in the
popular mathematical consciousness of the day.
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Mathematical culture pre-1951
A bundle-theoretic unification..

xxThe ENS undoubtedly looms large in French academic society, and its culture provides background forces
shaping the actions of our protagonists. For an extra-mathematical example, Pierre Bourdieu’s sociology, by his
admission, was “ in reaction to the École Normale” [Rid]. Speaking about pre-1968 French university society in
general, Bourdieu [BC88, p. 142] writes:

It follows that appointment to the professorial body is subject to arbitrary decisions by the diverse
authorities (and especially directors of research groups) whose choices are eventually validated and
ratified by the body as a whole; and consequently that chances of appointment to research posts and
increasingly, posts in higher education tend to depend at least as much on the scope, diversity and
quality of academically profitable social relations (and thereby on place of residence and on social
origins) as on academic capital.

Essentially all of the French mathematical figures in the period we discuss will be attached to the ENS. Moreover,
the over-representation of Normaliens in French mathematics has been analyzed by Bernard Zarca [Zar06], lending
support to the idea that Bourdieu’s analysis applies equally to French mathematics of the period we discuss.

xxiThe scope of this diminishment has been explored in a number of places, especially in histories of Bourbaki,
which is frequently described as a response. Reinhard Siegmund-Schultze describes the situation thus [SS09, p.
250]:

In 1920, when Émile Borel assumed the chair of mathematical physics and the theory of probability
at the Sorbonne, it was generally understood that theoretical physics had fallen behind German de-
velopments by about a generation. The situation in pure and applied mathematics, as in several other
disciplines, was not much better, even though France still had active and recognized researchers in
some sub-disciplines, predominantly in analysis. The most basic problem was man-power. About
half of the generation of young, promising French scientists had been killed on the battlefields
of World War I....Historians agree on the relative decline of geometry in France; an almost total
absence of algebra, number theory, and applied mathematics, and considerable weakness in mathe-
matical physics..

xxiiFor color, let us give an (incomplete) list of notable Normaliens from around the same time. Outside of
mathematics a list of people who finished around the time of Cartan and Weil includes: Georges Canguilhem
(1924), Alfred Kastler (1921), Maurice Merleau-Ponty (1926), Louis Neél (1924), Yves Rocard (1922), Jean-Paul
Sartre (1924) and André Weil’s sister Simone Weil. Other notable Normaliens in mathematics, many of whom will
appear later in the story, include Claude Chevalley, Jean Delsarte, Jean Dieudonné, Paul Dubreil, Marie-Louise
Dubreil-Jacotin, Charles Ehresmann, Jacques Herbrand, Jean Leray, Charles Pisot, and René de Possel.

xxiiiTo add some depth to the scene around this visit, we turn to [GP12, Chapters 6-7] about Volterra’s life.
Mussolini had come to power in 1922 and was prime minister by November of that year. Volterra worried greatly
about the political situation in the wake of Mussolini’s rise partly because of his (Volterra’s) role in Italian and
international science and mathematics, but also, Volterra being Jewish, because of rising tides of Fascist anti-
semitism. Volterra was elected to the Accademia dei Lincei one of the oldest and most prestigious European
scientific institutions having Galileo as a member in 1923. Around the same time he was president of the National
Research Council and was the European referent for international arm of the Rockefeller foundation (the vaguely
named International Education Board) [GP12, p. 113].

The political situation was tense by the time of Weil’s visit. Weil mentions the assasination of Giacomo
Matteoti by Mussonlini’s blackshirts, which took place in June 1924 and Benedetto Croce. At this time, Giovanni
Gentile who was the first Minister of Education in the first Mussolini fascist government wrote the Manifesto
Gentile, which was an attempt to solicit intellectuals’ adherence to the fascist movement. Croce, an Italian senator,
drafted the intellectuals response to this document.

By the time of Weil’s visit and Volterra had “carried out his final duties as president of the Accademia dei
Lincei and the National Research Council” by June 1925 [GP12, p. 125]. Against this backdrop, Weil arrives and
reminisces of Volterra:
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Though probably a less universal mathematician than Hadamard, he was an admirable man in all
respects. The king had named him Senator for life; he and Croce were the two senators who, until
the bitter end, come what may, voted against the Fascists.

Weil also recalls spending considerable time with Volterra’s son Edoardo, who was roughly his age and about
Volterra himself listening to his “shapeless” ideas about mathematics [Wei92, pp. 47-8]. During this period,
Weil reminisces also about meetings with O. Zariski, and F. Severi, as well as about Severi’s views on Lefschetz:
Severi compared Poincaré to an eagle and Lefschetz to a Hawk (Lefschetz’s famous Analysis Situs paper had just
been published in 1924). Severi’s interactions with politics at precisely this period led to fascist investigation “for
alleged administrative irregularities” in his role as Rector of the University of Rome [Gue23, p. 65] (he had been
appointed by Gentile). Famously, Severi later became a fascist in the early 1930s [Gue23], though Volterra refused
to take the fascist oath, a fact even remarked upon in BAMS [Vol32, p. 337]

xxivIn [Bea94], Liliane Beaulieu aims to dispel some myths about the early history of Bourbaki, which have some
bearing on what I say in what follows. I will quote some of Dieudonné’s discussion on the aims of Bourbaki
below in the famous “Architecture” [Bou50], but Beaulieu argues [Bea94, p. 242] “this vision, however, did not
prevail at the outset of the Bourbaki venture. One may say that the often quoted “Architecture” article distorts the
historical perspective to some extent by projecting Bourbaki’s later hallmark onto the aims and concerns of the
team at its inception.” Nevertheless, I still believe that it is this stronger interpretation of the Bourbaki ideology
that is reflected in the attitudes of the generation of mathematicians in the late 1940s and early 1950s that are
crucial to the narrative.

xxvThis goal hides numerous simmering tensions. Before World War I, Poincaré was a huge figure in French
mathematics, and French intellectual society more generally. Poincaré, having attended and taught at École Poly-
technique, self-identified repeatedly as a “Polytechnicien”. Other prominent French mathematicians of this period
who were Polytechniciens included Charles Hermite and Paul Painlevé. The École normale was slowly becoming
more prominent during the period just before World War I, but this change portends a tension between Polytech-
niciens and Normaliens. Furthermore, the seeds of an “applied” vs. “pure” battle are seemingly planted in this
era. In the figure of Poincaré in particular, as compared to Bourbaki more generally, I can see a tension between
“intuitive” and “formalist” mathematics as well.

xxviWeil himself subscribed to some kind of “great-man” view of history, writing [Wei92]:

I had become convinced that what really counts in the history of humanity are the truly great minds,
and that the only way to get to know these minds was through direct contact with their works. I have
since learned to modify this judgment quite a bit, though I have never really let go of it completely.

In H. Spencer’s description [Spe74, p. 31]:

The lessons given to every civilized child tacitly imply, like the traditions of the uncivilized and
semi-civilized, that throughout the past of the human race, the doings of conspicuous persons have
been the only things worthy of remembrance.

However, Spencer counters with [Spe74, p. 34-35]

then you must admit that the genesis of the great man depends on the long series of complex influ-
ences which has produced the race in which he appears, and the social state into which that race has
slowly grown.

One wonders if this admission of social factors is what Weil means when he speaks of “modified judgment.”
xxviiBy 1948-49, Weil was arguably one of the most important mathematicians on the scene. One testament to this

appears in the discussions around the award of the 1950 Fields Medals as discussed in [Bar]. Among other things,
Barany argues that the age-limit now more or less formally imposed on the awards of the fields medal turned
on whether the 1950 award would or would not be awarded to Weil. He remarks: “ Bohr cryptically suggested
that a cut-off of 42 “would be a rather natural limit of age”.” He citing some strong opinions of other committee
members that came to light during the discussion: Alfhors worried that to give a medal to Weil would be “maybe
even disastrous” because “it would make the impression that the Committee has tried to designate the greatest
mathematical genius.” Damodar Kosambi thought it would be “ridiculous” to deny him a medal. Hodge worried
“whether we might be shirking our duty” if Weil did not win.
xxviiiCartan, writing in [Car80], has this to say about Bourbaki’s historical interludes:



122 NOTES

The “Notes Historiques” and “Fascicules de Résultats” deserve special mention. Bourbaki often
places an historical report at the end of a chapter. Some of them are quite brief, while others are
detailed commentaries. Each pertains to the whole matter treated in the chapter. There are never
any historical references in the text itself, for Bourbaki never allowed the slightest deviation from
the logical organization of the work. It is only in the historical report that Bourbaki explains the
connection between his text and traditional mathematics and such explanations often reach far back
into the past. It is interesting to note that the style of the “Notes Historiques” is vastly different from
that of the rigorous canon of the rest of Bourbaki’s text. I can imagine that the historians of the
future will be hard put to explain the reasons for these stylisticdeviations.

This note is translated from German, but what is one to make of Cartan’s implicit distinction between Bourbaki’s
presentation and “traditional mathematics”? At its inception, Bourbaki was certainly an avant-garde institution,
but by the time this was written, many aspects of Bourbaki’s terminology and choice of presentation had become
widely accepted.

xxixWeil had his own strong opinions about how the history of science should be written. He wrote [Wei80, p.
231-32]:

How much mathematical knowledge should one possess in order to deal with mathematical history?
According to some, little more is required than what was known to the authors one plans to write
about; some go so far as to say that the less one knows, the better one is prepared to read those
authors with an open mind and avoid anachronisms. Actually the opposite is true. An understanding
in depth of the mathematics of any given period is hardly ever to be achieved without knowledge
extending far beyond its ostensible subject-matter. More often than not, what makes it interesting
is precisely the early occurrence of concepts and methods destined to emerge only later into the
conscious mind of mathematicians; the historian’s task is to disengage them and trace their influence
or lack of influence on subsequent developments.

When Weil writes “interesting” here, he means it, I believe, in the same sense I mean it: interesting to other
mathematicians. Corry writes about Weil’s ICM discussion: “Clearly, his main point was not to discuss the “why”
or “how,” as his title had it, but rather the “who”” [Cor, p. 200].

xxxThucydides himself has been criticized as “an artist who responds to, selects and skillfully arranges his ma-
terial, and develops its symbolic and emotional potential” [Con84, pp. 231-32]. Connor also writes [Con84, p.
233]: “Thucydides authority can intimidate, especially at this remove when so much evidence has disappeared,
when alternative and dissenting versions of events have been lost, when many controversies of his age have been
forgotten.” This sentiment seems almost equally applicable to Bourbaki’s history project.

xxxiOne might also lob the criticism of Thucydides above at Weil himself; Weil mentions Thucydides twice in his
autobiography [Wei92, p. 27 and 54]. At the beginning of his 1950 ICM address [Wei52], Weil writes:

There appears to have been a certain feeling of rivalry, both scientific and personal, between Dedekind
and Kronecker during their life-time; this developed into a feud between their followers, which
was carried on until the partisans of Dedekind, fighting under the banner of the “purity of alge-
bra”, seemed to have won the field, and to have exterminated or converted their foes. Thus many
of Kronecker’s far-reaching ideas and fruitful results now lie buried in the impressive but seldom
opened volumes of his Complete Works. While each line of Dedekind’s XIth Supplement, in its
three successive and increasingly “pure” versions, has been scanned and analyzed, axiomatized and
generalized, Kronecker’s once famous Grundzuge are either forgotten, or are thought of merely
as presenting an inferior (and less pure) method for achieving part of the same results, viz., the
foundation of ideal-theory and of the theory of algebraic number-fields.

Is there any doubt that this is written to elicit sympathy for a historical figure or with whom Weil’s sympathies lie?
The homological style..
xxxiiTucker closes his review with the comment:

The book contains no real bibliography; it has merely a list of topological texts and one of works
which bear directly on individual sections of the book and influenced their composition. References
to the literature through footnotes have been reduced to a minimum. Certain concepts and proofs
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have been designated by the names of their originators, but otherwise the authors have resolutely
refrained from attempting to trace notions back to their sources. The introduction to the book
embraces a short history of the development of topology and a survey of the relations of topology
to neighboring branches of mathematics, as well as a discussion of the authors’ program.

I get the sense that Alexandroff and Hopf just want to get back to “proving theorems”. Developments were too
rapid and a history could be written later. For a book that has retrospectively been so influential, this undoubtedly
had the effect of burying sources of points of view.
xxxiiiA related direction appears in Tucker’s review of two books [Tuc35a]. Tucker refers to the contents of
Steinitz’s Vorlesungen Uber die Theorie der Polyeder unter Einschluss der Elemente der Topologie [SR76] as:

an isolated chapter of geometry which bears little relation to the main stream of contemporary
topological research, but which stands by itself, firm in its own intrinsic worth. It deals with a
question almost as old as analysis situs itself–the combinatorial classification of ordinary polyhedra.

This strikes me as encapsulating the fashions of topology at the time, at least in Princeton, rather explicitly.
A cartographic view..
xxxivThe source of the Eilenberg–Mac Lane collaboration is recounted in other sources, with varying degrees of
detail and emphasis. For example, the treatment in [McL20] summarizes the episode thus:

He published on several topics in his early career including logic but focused on technical problems
in algebra aimed at number theory. His solution to one of these was a strange family of groups.
Samuel Eilenberg knew these same groups solve a problem in topology. When Eilenberg (who, by
the way, liked philosophy a great deal less than Mac Lane did) learned of Mac Lane’s result, the two
of them agreed this could not be a coincidence. They set out to find the connection.

And views this as the primordial source of category theory. For our treatement, it will be important to separate the
two conceptions.
xxxvEinstein was one of the first to use the terminology “unified” in physics viz his search, beginning in the 1920s

for a theory that unified general relativity and electro-magnetism. Higher-dimensional approaches to this problem
appeared around the same time: the so-called Kaluza-Klein models. Where did this terminology come from? Did
it create “unification” talk in mathematics, did it come from elsewhere?
xxxviWhile this has undoubtedly been discussed elsewhere, it seems to me that given the time period in which
all of this mathematics was invented, this beautiful, orderly, unified structure provided a stark counterpoint to the
external chaos of the world.
xxxviiThe introduction to [EML45] closes with the following (bold?) self-assessment of the theory:

The invariant character of a mathematical discipline can be formulated in these terms. Thus, in
group theory all the basic constructions can be regarded as the definitions of co- or contravariant
functors, so we may formulate the dictum: The subject of group theory is essentially the study of
those constructions of groups which behave in a covariant or contravariant manner under induced
homomorphisms. More precisely, group theory studies functors defined on well specified categories
of groups, with values in another such category.
This may be regarded as a continuation of the Klein Erlanger Programm, in the sense that a ge-
ometrical space with its group of transformations is generalized to a category with its algebra of
mappings.

McLarty argues [McL20, p. 217] that the later conceptions of categories and functors competed with Bourbaki’s
ideas of structure, and the latter were to some extent, abandoned.

xxxviiiThe separation of the publication of Annals of Math Studies from Annals of Mathematics is discussed in some
interviews with Al Tucker [Tuc]. He recalls:

The Annals Studies was started in a rather strange way. At that time the Annals of Mathematics had
a surplus of papers, and the editors felt that they were plagued especially by long papers, papers of
a hundred pages or so. At that time the Annals had a total page count for the year of perhaps 700
or 800 pages, and so two or three 100-page papers took up almost half of a year’s production. So it
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was decided, largely by Lefschetz, that the formalizing of the Princeton Mathematical Notes could
be combined with a means of publishing long papers or perhaps monographs consisting of several
papers on a single topic. And this was the reason for the name Annals of Mathematics Studies, to
enable the editors of the Annals of Mathematics to transfer long papers or groups of papers to the
Studies. That’s the reason for the title.

xxxixFrom [BHMM15, p. 1043]: “In the Spring of 1954, Samuel Eilenberg came from Columbia University on
a visit to the Hebrew University in Jerusalem. (At the time, Eilenberg was already one of the leading figures in
algebraic toplogy, due to his work with Saunders Mac Lane and the influential Foundations of Algebraic Topology
which he had just written with Norman Steenrod.) Kan knocked Eilenberg’s hotel room door, and explained his
simplicial description of homotopy groups. Eilenberg asked him if he could prove the homotopy addition theorem,
and Kan returned a week later with a proof. Eilenberg told Kan that he had a thesis there, engineered an ad hoc
arrangement giving Kan the status of graduate student at the Hebrew University, and in the summer of 1954 Kan
submitted his thesis. He formally received his PhD in 1955.”
The local to global..

xlLet us take a moment to understand that Weil is processing all of this information from Brazil, with appar-
ently limited access to mathematical journals. One has to imagine that he is using the resources to which he has
access, Cartan’s letters to effectively recreate these ideas. The frustrations of this method are probably clear and
summarized in Weil’s letter from the 14th of March [CW11, p. 204]116

There is no hope for me of seeing Leray’s memoirs before my return to France, unless you send
them to me (on the question of French periodicals, as with everything else, poor Madame Mineur,
on whom we had pinned such high hope, turned out to be useless). For the Great Work, I believe
that it is hardly worth the trouble and expense of sending it (it will be good time in October), but you
could well buy the issues of the C.R. where you say that his notes on variable coefficients appear,
and send me the notes in question in your next letter.

Gabrielle Mineur had been cultural attaché at the French Embassy in Brazil since January 1945, and had also
worked at the CNRS [CW11, p. 542]. The correspondence also contains an extract from a letter from Weil to Yves
Rocard [CW11, p. 55] that is even more direct about Mme. Mineur:117

I don’t understand anything that has happened to her since she was in Brazil: she was once so
active, and so intelligently active, no longer responds to anyone’s letters, has failed in everything we
expected of her, and is to the point of no longer even warning us of her presence in San Paulo when
she comes there. I presume that, on the one hand, the rotten atmosphere of the embassy will have
rubbed off on her and that on the other hand the summer of Rio will have taken away all her powers
of reaction.

Projective modules
xliMac Lane includes [Mac56, p. 623] a fascinating personal opinion about editorial choices made by Cartan-

Eilenberg as regards the material to be included in their book:

116Il n’y a aucun espoir pour moi de voir les memoires de Leray avant mon retour en France, a moins que tu
ne me les envoies (sur la question des periodiques francais, comme sur tout le reste, la pauvre Mme Mineur, sur
laquelle nous avions fonde de si grands-espoirs, s’est montree d’une nullite total). Pour le Grand Oeuvre, je crois
que ca ne vaut guere la peine et les frais d’un envoi (il sera bien temps en octobre), mais tu pourrais bien acheter les
numeros des C.R. ou tu dis qu’ont paru ses notes sur les coefficients variables, et m’envoyer les notes in question
dans ta prochaine lettre.

117Je ne comprends rien a ce qui lui arrive depuis qu’elle est au Bresil: elle autrefois si active, et si intelligemment
active, ne repond plus aux lettres de qui que ce soit, a echoue dans tout ce que nous attendions d’elle, et en est
au point de ne meme plus nous avertir de sa presence a San Paulo quand elle y vient. Je presume que, d’une part
l’atmosphere de pourriture de l’ambassade aura deteint sur elle et que d’autre part l’ete de Rio lui aura ote tous ses
pouvoirs de reaction.
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The reviewer might also add his strictly personal opinion that the authors have not kept sufficiently
in mind the distinction between a research paper and a book : a good research paper presents a
promising new idea when it is hot—and when nobody knows for sure that it will turn out to be
really useful; a good research book presents ideas (still warm) after their utility has been established
in the hands of several workers. This book contains too large a proportion of shiny new ideas
which have nothing to recommend them but their heat and promise...The reviewer is not claiming
that...these...notions will not later have significant...uses: some of them will, but until that time
comes their presence clutters up the book. Another danger of shiny new notions is that sometimes
the shine proves illusory.

Where do projective modules fall on the spectrum suggested by this description?
xliiRather than go into detail about these notions, we mention here only some references. In the spirit of the work

of Cartan–Eilenberg, arguably the “earliest” of these novel cohomology theories is that for Lie algebras as it was
studied by Elie Cartan [Car30]: he considered a complex of left-invariant differential forms on a compact connected
Lie group in order to determine its Betti numbers (here Poincaré polynomial) of such a space. Such computations
were very much of interest in the 1920s and 1930s. Cartan’s result was also a precursor to de Rham’s theorem
allowing a description of Betti numbers of manifold in terms of differential forms. As we have seen de Rham’s
theorem was a motivating force in all of the developments of axiomatic cohomology theories because it did not fit
into the framework of initial axiomatizations. Cartan’s theory underwent a first modernization in [CE48] and later
in [Kos50]; the latter also containing a good amount of information regarding Koszul’s understanding of Leray’s
theory of spectral sequences.

The (co)homology theory for groups mentioned here was the cohomology theory of discrete groups invented
by Eilenberg–Mac Lane [EML86], which we discussed as inspiration for the invention of functoriality. This theory
had a resurgence in the early 1950s as it was coupled to arithmetic ideas arising in Galois theory and class field
theory.

The (co)homology theory for associative algebras was that of Hochschild [Hoc45, Hoc46], building on earlier
results of his thesis, which eventually was published as [Hoc42]. This theory is rather special, as Hochschild
observes in [Hoc45]: low-dimensional cases were apparently studied in unpublished results of J.H.C. Whitehead,
and cohomology is degenerate in the sense that higher cohomology is determined by what happens in degree 1.
Hochschild mentions a cohomological characterization of separability of an algebra.

In modern terms, all of these (co)homology theories are obtained by taking (co)homology of explicit com-
plexes, and the “unification” that Cartan and Eilenberg speak of amounts to treating them all as derived functors.
Bourbaki’s algebra..

xliiiRegarding the evolution of Bourbaki’s algebra treatise, we refer the reader to the discussion in [Bea94, pp.
247-249]. The initial foray into algebra is described as “timid” as Bourbaki “did not want to rewrite van der
Waerden’s” text. It was only the first chapter on “Algebraic structures” that was published in 1942. The chapters
on linear and multilinear algebra were conceived later and published after 1945, though many decisions on the
treatment had been made by 1942-43.

xlivA metaphor that I’d like to propose here is that these two developments of tensor products are examples of
something like “convergent evolution” in biology. We can think of two species of tensor products ⊗ANT and
⊗B due to Artin–Nesbitt–Thrall and Bourbaki. These two species exhibit similar morphological features, say
interpreted in terms of the kinds of results that are established about them, but the similarity of those features
is likely not due to any direct link between them: neither evolved from the other because of the psychological
separation imposed by WWII and the lack of available channels of communication. Bourbaki’s theory ends up
considerably more developed (it is successful), whereas ⊗ANT is its own evolutionary endpoint in some sense
(even the notation disappears).

xlvSince our analysis here turns on ideas of Chevalley’s mathematical style, it is useful to keep in mind that
Chevalley had himself written on “mathematical styles” in 1935 [Che35]. Two points from this essay seem quite
relevant to me. First, Chevalley asserts that authorial style not withstanding, different eras have recognizable styles
that are influenced by strong mathematical personalities:118

118Le style mathématique, tout comme le style littéraire, ne va pas sans subir d’une époque à l’autre d’importantes
fluctuations. Sans doute, chaque auteur possède-t-il un style proper; mais on peut apercevoir à chaque époque une
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Mathematical style, like literary style, cannot but undergo significant fluctuations from one period
to another. No doubt, each author has his own style; but one can perceive in each period a general
tendency that is quite recognizable. This style undergoes, from time to time, under the influence of
powerful mathematical personalities, revolutions that influence writing, and therefore thought, for
the periods that follow.

Chevalley goes on to illustrate an example of the matheamtical style of an epoch by discussion Weierstrass and
what has been called by other Bourbaki members “epsilontics”. As regards the rise of “epsilontics” he explains
that this new style arose from criticisms of lack of rigor around arguing with infinitesimals. But Chevalley’s essay
then turns to the existence of a new style, arising again from criticisms of the old style; I find his stated reasons
fascinating [Che35, pp. 379-80]: 119

We can therefore say that the constructive definitions of analysis, if they were the first to permit rig-
orous reasoning, have often had the effect of deeply hiding the nature of what they sought to define
or of unduly confusing mathematical domains that were in reality distinct from one another. From
there result the unnecessary complications that are encountered in many classical demonstrations,
due to the use of methods having nothing to do with the expected result, one could say: of methods
not admitting the same group of transformations as the result.

Thus, Chevalley is perfectly aware that particular choices of abstract definitions can obscure meaning. In light
of what we have just read, is it thus the case that this is just an early view of Chevalley that matures into the
“formalist” perspective we describe Bourbaki as having? I think that is not the case: Chevalley viewed the level of
abstraction he used as illuminating. Moreover, the later Bourbaki style was in fact representative of the style of an
era in Chevalley’s sense, undoubtedly under the influence of a number of strong mathematical personalities.

xlviIt is worth saying a word about what a “diagrammatic argument” looks like. A nice example of this kind of
thing can be seen in the 5-lemma, which appears as [CE99, Proposition 1.1]. The proof of this result as given in
Cartan and Eilenberg is perfectly fine, but usually one performs this by means of a “diagram chase”. If you haven’t
seen this before, it makes sense to watch a video of its performance, of which you can find many.
On the axiomatic..

xlviiOne speculation, which I think plays rather well with the discussion from the introduction is that this axiomatic
aesthetic, coupled with the place Bourbaki held in the mathematical community of the day, was reason enough for
people to start studying any mathematical notion. Thus, people may have started studying projective modules in
their own right with no further impetus (examples of this abound in the literature). A vote in this spirit comes from
commentary of H. Behnke on Cartan’s description of Bourbaki from [Car59]. He writes:120

I would like to address two questions that will certainly occur to listeners who are not privy to the
current development of mathematics. 1. To what extent does Bourbaki’s work already influence
mathematical life in Germany?

After some general remarks, Behnke writes a testimonial to the influence of Bourbaki in Germany:121

tendance générale assez bien reconnaissable. Ce style subit, de temps à autre, sous l’influence de personnalités
mathématiques puissantes, des révolutions qui infléchissent l’écriture, et donc la pensée, pour les périodes qui
suivent.

119“On peut donc dire que les définitions constructives de l’analyse, si elles ont les premières permis les raison-
nements rigoureux, ont eu souvent l’effet de cacher profondément la nature de ce q’uelles cherchaient à définir
ou de confondre indûment des domaines mathématiques en réalité distincts les uns des autres. De là résultent
les complications inutiles qui se rencontrent dans beaucoup de démonstrations classiques, du fait de l’emploi de
méthodes n’ayant rien à voir avec le résultat escompté, on pourrait dire : de méthodes n’admettant pas le même
groupe de transformations que le résultat.

120Ich möchte zu zwei Fragen sprechen, die sich dem in die heutige Entwicklung der Mathematik nicht eingewei-
hten Zuhörer sicherlich aufdrängen. 1. Wie weit beeinflußt das Werk Bourbakis heute schon das mathematische
Leben in Deutschland?

121Nun zum Punkt 1: Bourbakis derzeitiger Einfluß in Deutschland. Dieser Einfluß ist viel größer, als er vom
Herrn Vortragenden aus Bescheidenheit dargestellt wurde. Dieser Einfluß begann sich vor gut 5 Jahren zunächst
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Now to point 1: Bourbaki’s current influence in Germany. This influence is much greater than the
lecturer modestly presented. This influence first began to make itself felt in topology a good five
years ago. In topology we have had the brilliant standard work by P. Alexandroff and Heinz Hopf
since 1935. We had just gotten used to relying on the concepts introduced there when Bourbaki
came along with his new topology, with his different concept of compactness, with his filters and
his uniform structures. The youngest generation began to rely more and more on this structure of
topology, and now it has almost become a matter of course that Bourbaki’s concepts and terminology
are used in topology. The lectures in all disciplines - at least here in Münster - are already influenced
by this. For example, it is already clearly noticeable in the second part of the introductory lecture on
infinitesimal calculus. But the higher the level of the lectures and the younger the lecturers, the more
noticeable this influence becomes. It is particularly evident in our latest dissertations. Bourbaki’s
uniform structures have been used with great success in research.
Of course, Bourbaki is not promoted to students. And yet our really good students practically
“devour” Bourbaki’s books. It is considered good form for them to read Bourbaki and to use his
terminology without hesitation.

Behnke continues about the participation of students in the Bourbaki seminar, but Behnke was an early collaborator
of Cartan, and Behnke’s students included Hirzebruch, Grauer, Remmert, and Stein, who would all further develop
Cartan’s complex analytic ideas and the theory of coherent analytic sheaves. Certainly at Princeton and the Institute
for Advanced Study, granted the presence of Artin, Borel and Weil by the late 1950s, that the influence of Bourbaki
here among students was comparable, even if more complicated.
Fiber bundles and..
xlviiiAccording to Matsumura [Mat89, p. 8], the result which I have referred to as “Nakayama’s lemma” was

attributed by Nakayama himself to W. Krull and G. Azumaya. The proof given there uses a “determinant trick”,
which seems exactly the kind of argument that Bourbaki would have avoided. Nakayama established the result in
[Nak51, I], where it is stated as a generalization of a result of Azumaya from [Azu51, Theorem 5], and no mention
is made of Krull’s results.

xlixThis instance is by no means isolated: one could analyze many other proofs in [Ser55] similarly. Let me give
two examples to illustrate this.

• Serre’s use of sheaves mentions Leray’s published treatments, but granted what we have said about the
reception of Leray’s treatment of sheaves (see Section 2.4) it seems hard to believe that those not familiar
with Cartan’s revision would be able to process this discussion. Once again, Cartan’s revised view of
sheaves was only available in polycopies of exposes from the Cartan seminar whose distribution we also
discussed.

• Serre makes free use of Cartan and Eilenberg’s homological algebra in his treatment of sheaf cohomology,
in particular, he makes implicit use of the spectral sequence of a double complex; once again, treatments of
these ideas are perhaps most easily found in the Cartan seminar.

It seems impossible for me to imagine the audience of Serre’s text as anything but a small group of mathematicians.

in der Topologie bemerkbar zu machen. In der Topologie haben wir seit 1935 das glänzende Standardwerk von
P. Alexandroff und Heinz Hopf. Wir hatten uns gerade daran gewöhnt, auf die dort eingeführten Begriffe uns zu
stützen, da kam Bourbaki mit seiner neuen Topologie, mit seinem anderen Begriff der Kompaktheit, mit seinen
Filtern und seinen uniformen Strukturen. Die jüngste Generation begann immer mehr, sich auf diesen Aufbau der
Topologie zu stützen, und jetzt ist es schon beinahe selbstverständlich geworden, daß man sich in der Topologie
der Begriffe und Terminologien von Bourbaki bedient. Die Vorlesungen in allen Disziplinen - wenigstens bei uns
in Münster - werden schon davon beeinflußt. Es ist z. B. schon deutlich im 2. Teil der Anfängervorlesung zur
Infinitesimalrechnung zu spüren. Aber je höher die Vorlesungen und je jünger die Dozenten sind, um so mehr
macht sich dieser Einfluß bemerkbar. Besonders deutlich ist er auch bei unseren letzten Dissertationen. Gerade
jetzt sind bei uns Bourbakis uniforme Strukturen mit großem Erfolg in der Forschung benutzt worden.

Bei den Studenten wird natürlich gar nicht für Bourbaki geworben. Und doch werden von unseren wirklich
guten Studenten die Bücher von Bourbaki geradezu “gefressen”. Es gehört bei ihnen zum guten Ton, Bourbaki zu
lesen und sich seiner Terminologie rücksichtslos zu bedienen.
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points in the conception of mathematics, Translated from the 1996 German original by Abe Shenitzer with the editorial assistance
of the author, Hardy Grant and Sarah Shenitzer, Reprint of the 1999 English edition [MR1683937]. 25
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[Ler42b] J. Leray. Les équations dans les espaces topologiques. C. R. Acad. Sci. Paris, 214:897–899, 1942. 63

[Ler42c] J. Leray. L’homologie d’un espace topologique. C. R. Acad. Sci. Paris, 214:839–841, 1942. 63
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[Ler50] J. Leray. L’anneau spectral et l’anneau filtré d’homologie d’un espace localement compact et d’une application continue. J. Math.
Pures Appl. (9), 29:1–80, 81–139, 1950. 76

[Ler80] J. Leray. My friend Julius Schauder. In Numerical solution of highly nonlinear problems (Sympos. Fixed Point Algorithms and
Complementarity Problems, Univ. Southampton, Southampton, 1979), pages 427–439. North-Holland, Amsterdam-New York,
1980. 61, 62

[Ler14] J. Leray. Selected papers/Oeuvres scientifiques. II. Springer Collected Works in Mathematics. Springer, Heidelberg; Société
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à Bruxelles, 1953, pages 57–68. Georges Thone, Liège, 1953. 101
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[SGA70] Schémas en groupes. I: Propriétés générales des schémas en groupes. Lecture Notes in Mathematics, Vol. 151. Springer-Verlag,
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[Sti12] J. Stillwell. Poincaré and the early history of 3-manifolds. Bull. Amer. Math. Soc. (N.S.), 49(4):555–576, 2012. 39

[Str42] D. J. Struik. On the sociology of mathematics. Science and Society, 6:58–70, 1942. 8

[Tao07] T. Tao. What is good mathematics? Bull. Amer. Math. Soc. (N.S.), 44(4):623–634, 2007. 9

[TGH06] L. Thurgood, M. J. Golladay, and S.T. Hill. U.S. Doctorates in the 20th Century; Special Report. National Science Foundation,
Washington, DC, 2006. 52

[Thu94] W. P. Thurston. On proof and progress in mathematics. Bull. Amer. Math. Soc. (N.S.), 30(2):161–177, 1994. 5

[TT90] R. W. Thomason and T. Trobaugh. Higher algebraic K-theory of schemes and of derived categories. Appendix A: Exact categories
and the Gabriel-Quillen embedding. Appendix B: Modules versus quasi-coherent modules. Appendix C: Absolute noetherian
approximation. Appendix D: Hypercohomology with supports. Appendix E: The Nisnevich topology. Appendix F: Invariance
under change of universe. The Grothendieck Festschrift, Collect. Artic. in Honor of the 60th Birthday of A. Grothendieck. Vol.
III, Prog. Math. 88, 247-435. Appendix A: 398-408; appendix B: 409-417; appendix C: 418-423; appendix D: 424-426; appendix
E: 427-430; appendix F: p. 431 (1990)., 1990. 5

[Tuc] The career of albert tucker: An oral history project. https://cerv.one/essays/albert_tucker.html. Accessed:
2024-Oct-15. 58, 123

[Tuc33] A. W. Tucker. An abstract approach to manifolds. Ann. of Math. (2), 34(2):191–243, 1933. 43

[Tuc35a] A. W. Tucker. Book Review: Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie // Book
Review: Lehrbuch der Topologie. Bull. Amer. Math. Soc., 41(7):468–471, 1935. 40, 78, 123

[Tuc35b] A. W. Tucker. The topological congress in Moscow. Bull. Amer. Math. Soc., 41(11):764, 1935. 44

[Tuc36a] A. W. Tucker. Book Review: Topologie. Bull. Amer. Math. Soc., 42(11):782–784, 1936. 44

[Tuc36b] A. W. Tucker. Cell spaces. Ann. of Math. (2), 37(1):92–100, 1936. 43

[VA13] O. Veblen and J. W. Alexander, II. Manifolds of n dimensions. Ann. of Math. (2), 14(1-4):163–178, 1912/13. 45
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[Č37] E. Čech. On bicompact spaces. Ann. of Math. (2), 38(4):823–844, 1937. 63

https://cerv.one/essays/albert_tucker.html


137 REFERENCES

[vdW30] B. L. van der Waerden. Moderne Algebra. Bd. I. Unter Benutzung von Vorlesungen von E. Artin und E. Noether., volume 23 of
Grundlehren Math. Wiss. Springer, Cham, 1930. 40

[VdW31] B. L. Van der Waerden. Moderne Algebra. Bd. II. Unter Benutzung von Vorlesungen von E. Artin und E. Noether., volume 24 of
Grundlehren Math. Wiss. Springer, Cham, 1931. 40

[vdW75] B. L. van der Waerden. On the sources of my book moderne algebra. Historia Math., 2:31–40, 1975. 40

[Veb31] O Veblen. Analysis Situs. American Mathematical Society, New York, NY, 2nd edition, 1931. 39, 43

[Ven24] A. Venkatesh. Some thoughts on automation and mathematical research. Bull. Amer. Math. Soc. (N.S.), 61(2):203–210, 2024. 9

[vN47] J. von Neumann. The mathematician. In The Works of the Mind, pages 180–196. Univ. Chicago Press, Chicago, IL, 1947. Edited
for the Committee on Social Thought by Robert B Heywood. 50

[Voe14] V. Voevodsky. The origins and motivations of univalent foundations. https://www.ias.edu/ideas/2014/
voevodsky-origins, 2014. Accessed: 2024-Nov-19. 119

[Vol32] Notes. Bull. Amer. Math. Soc., 38(5):336–342, 1932. 121
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