
























































What does entropy measure

Laure Saint Raymond

1 From classical thermodynamics to informationtheory

Entropy measures the irrensibilitz

of a transformation
DS z heatflux Q

Âne T

Clausius

Rudolf Clausius, 1865


















































Shannon considered various ways to encode, 

compress, and transmit messages from a data source, and proved in 
his famous source coding theorem that the entropy represents an 
absolute mathematical limit on how well data from the source can be 
losslessly compressed onto a perfectly noiseless channel.




Entropy is related to the Hfunction
measuring thenumber of microscopic
configurationsassociatedto a givenstate

S krslogW Planck

Boltzmann

Entropy can be generalized with a

similar definition to measure the

average levelofsurprise uncertainty
forthepossible outcomes of a randomvariable

H 4 Epf logp IN

Ludwig Boltzmann, 1872

Claude Shannon, 1948
































Kolmogorov proposed the notion of entropy about which it was 
believed that it will allow to distinguish "probabilistic" dynamical 
systems and "deterministic" dynamical systems






































Entropy is then extended to dynamical
systems to measure theirmixingproperties

Htt sup
Eparerin

Htt

whereHIT3 canbeseen astheentropyofthe
randomprocess lawsh Walsh whereThxEEma

Leng tn çyHÊ AÏEintogulikinnini

Sinaï

Depending on the context the notion of entropy
has different definitions
These objects share howeversome features

statistical quantities
makesense only for a complexsystem

additive quantities fortwo independent components

measure the level of desorganization uncertainty
related to mixing properties

Andrei Kolmogorov, 1958










































































2 Close to equilibrium the relative entropy method

Example 1 theBoltzmann equation in incompressible inviscidrégime

Itf v Taf àQQ
f Mlle g Knudsen à Moche

close to local thermodynamic equilibrium f vMf
macroscopicGlow dynamics governedbythe Euler equations

vanishing dissipation in the absence of singularity

Entropy HLA_ffftgf did is a Lyapunov functional

Hf Df ds E HGI

Relativeentropy HAMµ ffflogÇa f Mai dado

controls thedistance f f f Mi en Ilµ
Modulated entropy inequality provides thestability aroundsmooth re

HtftMm il ftMf1ds E Hlflnµ ap ftNulled
lotu u.rutop ne a ap fftpoupodi










































































Example 2 System of interacting parlâtes in mean fieldregime

9 fut E viDaifu f ËMai g fn 0

fi finivit

close to chaotic distribution fnA ouÊ fA xiii
mean slow dynamics

gcvanedtytheUaoovegualimotfevtxf
VaffdvJ.lrfeo

no lessofinformation in the absence of singularity inv

Entropy Hn fn InffologfodkndUn is a

conserved additive quantity

Relativeentropy Hn fnl f
N

controls the distance of
any marginal ff4 to the tensor product for

Modulated entropy inequality provides thestability aroundsmoothf

Hn fr1 f ME fil foot f up Hf Mat





































3 Relaxation towards equilibrium functional inequalities

Example 1 the longtime limit of the Boltzmannequation

a f v f Q f
H ff01M C a

collisions induce relaxation towardslocal equilibrium
transport homogenizes thermodynamic fields
almost exponential relaxation in the absence of

pathologicalvelocity profile

At equilibrium, the entropy is maximal. Thus, starting

close to equilibrium, the evolution is highly constrained.





If the equilibrium is only local, to get some stability,

one needs in addition to control the fluxes.





Entropic convergence results from the combination of

- a local equilibrium (maximal entropy)

- a conservative slow dynamics (no dissipation, therefore no 
possible entropy production) 
 
 
 










































































Entropy entropy production inequality
Cérugnane's conjectureDCf Z C HLf 1Mf
is
wrong in general requins

ketmical assumptions on f

Hypocoercivemechanism can be describedby a systemof
differential inequalities on the lord andglobal relativeentropies

HCfIM H lftMf HChf1M

d H FIM Z DCH z c HAIMfEt

ça
ttHIM Z G HHIM C AlfInf

Example 2 theBoltzmannequation in incompressible viscousregime

Ttf v Taf f QQ
f Mlle ego Knudsen E Moche

close to local thermodynamic equilibrium f vMf
macroscopicGlow dynamics governedbythe Navier Stokesequation

dissipation coming from a weak coupling between

the relaxation andthetransport reminiscent from
hypocoercivity














































Hypocoercivemechanism canbe described by a

multiple caleexpansion

g p iu.ve 0M Eg
g L IT v se lqxu.veOHÉ

Secondorderterms appear in the evolutionequations

ofq u O

Modulated entropy dissipation D f1 g
encodes this process in the stability inequality

When the relaxation is strong enough (in the sense

that it can be quantified by a functional), one can

have entropic stability without being really close to

equilibrium.





Departures from equilibrium can be tracked by

analytical tools (system of ODEs, multiscale analysis)



There is still some rigidity in the system.










































































4 I Out of equilibrium systems instabilitiesandmixing
Example 1 system of hardspheres in lowdensity regimeNE 1

otfn E.vi.lifn O on tai xj Ise specular reflection

fi fKiril
a k

weaklyclose to weakly chaoticdistribution fnA ou ft xiii
mean slow dynamics governedby the Boltzmannequation
lossof information quoted in the

correlations atmy
smallsale

Because microscopic trajectories are unstable in thelimite a

thesystemhas no rigidity it is impossibleto hop track of
all the information

Microscopic uncertainty is transferred in macroscopic
randomness A major issue is to understandwhether
collisions become all independent

No knownsuitable functional framework to encode
themixing responsible forthe décantation












































































Example2 a toy model based on Arnold's catmap

unLt 2 In A u t n A untt nn mods nEN

A la y 2x y deg mods

un loft u lo n 1nsµ Es 1re N

weakly close to a random field
lossof informationencoded in
the initialdata atmy

smallscale

The systemhas no rigidity in the sense that thereis
no deterministic limit as N

Microscopic uncertainty is transferred on macroscopic
randomness The limiting law doesnot depend on

the low ofG Cintrinsic spontaneousstochasticité

the proof ofmixing relies on explicit computations
in Fourier specific to this example















































Spontaneous stochasticity results from the combination of

- instabilities at arbitrary small scales

- stochastic regularization at vanishing scale





Instabilities are expected to create mixing in the phase 
space which is a weak form of relaxation.





We do not know how to use entropy to encode

this weak relaxation.





















































