Mean-field limit of

(non)-exchangeable multi-agent systems

Juan Soler

Departamento de Matemática Aplicada
Universidad de Granada

In collaboration with
Didier Bresch
CNRS, Université Savoie Mont-Blanc
Pierre-Emmanuel Jabin
Pennsylvania State University
David Poyato
Universidad de Granada

Mean-field limit for multi-agent systems
\Longrightarrow Singular (Coulomb) interaction agents Major open problem

Goal:

Mean-field limit for multi-agent systems
\Longrightarrow Singular (Coulomb) interaction agents Major open problem
\Longrightarrow Non-exchangeable agents: Remove Type of cooperations (symmetry) Connetivities of dense graphs

Goal:

Mean-field limit for multi-agent systems
\Longrightarrow Singular (Coulomb) interaction agents Major open problem
\Longrightarrow Non-exchangeable agents: Remove Type of cooperations (symmetry) Connetivities of dense graphs

Results:

Novel hierarchy of observables
New L^{p} estimates of the marginals of the system
Allowing very singular interaction kernels
Non-exchangeable agents on sparse-graphs
\rightarrow New concept of limits: extended graphons

A general class of N -agents interacting system:

$$
\begin{aligned}
& d X_{i}=\sum_{j=1}^{N} w_{i j}^{N} K\left(X_{i}-X_{j}\right) d t+\sqrt{2 \sigma} d W_{i} \\
& X_{i}(0)=X_{i}^{0} \in \mathbb{R}^{d}
\end{aligned}
$$

where

X_{i}	positions/activities
$W_{i j}$	weights/connectivities
W_{i}	N independent Wiener processes
K	interaction kernel

Classical mean-field theory:

$$
\begin{aligned}
& d X_{i}=\frac{1}{N} \sum_{j=1}^{N} K\left(X_{i}-X_{j}\right) d t+\sqrt{2 \sigma} d W_{i} \\
& X_{i}(0)=X_{i}^{0} \in \mathbb{R}^{d}
\end{aligned}
$$

$$
w_{i j} \sim \frac{1}{N} \quad \text { exchangeable particles }
$$

$K \quad$ interaction kernel

$$
\frac{\partial f}{\partial t}+\operatorname{div}(f(K * f)-\sigma \nabla f)=0
$$

Classical mean-field theory: Second order systems

$$
\begin{aligned}
& \frac{d}{d t} X_{i}(t)=V_{i}(t) \\
& d V_{i}(t)=\frac{1}{N} \sum_{j \neq i} K\left(X_{i}-X_{j}\right) d t+\sqrt{2 \sigma} d W_{i}
\end{aligned}
$$

Rigorous limit $\downarrow N \rightarrow \infty$

$$
\frac{\partial f}{\partial t}+v \cdot \nabla_{x} f+K * \rho \cdot \nabla_{v} f=\sigma \Delta_{v} f
$$

Vlasov-Fokker-Planck equation distribution: $f(t, x, v)$ density: $\rho(t, x)=\int f(t, x, v) d v$

Classical mean-field theory: Bibliographic background

$K \in W^{1, \infty} \quad+\quad f$ is smooth enough

McKean 1967, Braun-Hepp 1977, Dobrushin 1979, ...
Neunzert, Sznitmann, ..., Golse
Estimates on the trajectories distance one by one

$$
\left(\frac{1}{N} \mathbb{E}\left(\sum_{i=1}^{N}\left|\left(X_{i}, V_{i}\right)-\left(\bar{X}_{i}, \bar{V}_{i}\right)\right|^{p}\right)\right)^{\frac{1}{p}}
$$

where $\left(\bar{X}_{i}, \bar{V}_{i}\right)$ are N identical copies of

$$
\begin{aligned}
& \frac{d}{d t} \bar{X}(t)=\bar{V}(t) \\
& d \bar{V}(t)=\left(K \star \int f(t, \bar{X}, v) d v\right) d t+\sqrt{2 \sigma} d W
\end{aligned}
$$

Classical mean-field theory: Bibliographic background

$K \in W^{1, \infty} \quad+\quad f$ is smooth enough

McKean 1967, Braun-Hepp 1977, Dobrushin 1979 Neunzert, Sznitmann, ..., Golse

$$
\begin{gathered}
\left\|\mu_{N}-f\right\|_{W^{-1,1}} \leq c e^{t\|\nabla K\|_{L} \infty}\left\|\mu_{N}^{0}-f^{0}\right\|_{W^{-1,1}} \\
\mu_{N}(t, x, v):=\frac{1}{N} \sum_{i=1}^{N} \delta X_{i}(t)(x) \delta v_{i}(t)(v) \\
\quad \text { (empirical measure) }
\end{gathered}
$$

\Longrightarrow This trajectorial approach requieres $K \in W^{1, \infty}$

Classical mean-field theory: Bibliographic background

$K \in W^{1, \infty} \quad+\quad f$ is smooth enough

McKean 1967, Braun-Hepp 1977, Dobrushin 1979 Neunzert, Sznitmann, ..., Golse

$$
\begin{aligned}
&\left\|\mu_{N}-f\right\|_{W^{-1,1}} \leq c e^{t\|\nabla K\|_{L \infty}}\left\|\mu_{N}^{0}-f^{0}\right\|_{W^{-1,1}} \\
& \mu_{N}(t, x, v):=\frac{1}{N} \sum_{i=1}^{N} \delta x_{i(t)}(x) \delta v_{i}(t)(v) \\
& \quad \text { empirical measure) }
\end{aligned}
$$

$$
|K| \leq \frac{c}{|x|^{\theta}}, \theta<1
$$

Hauray-Jabin 2015
\rightarrow only in the deterministic case

\rightarrow in the stochastic case

$d=1$
Hauray-Salem 2019
\rightarrow in the stochastic case
$d=1$
Hauray-Salem 2019
$d>1$: Truncated kernels
Huang-Liu-Pickl 2020, Pickl et al. $\quad \theta<\frac{1}{d}, d=3$
Typically $\phi_{\varepsilon}=\frac{C}{\left(\varepsilon_{N}+|x|\right)^{d-2}}, K_{\varepsilon}=-\nabla \phi_{\varepsilon}, d \geq 3$
where
with the critical scale

$$
\begin{aligned}
\varepsilon_{N} & =N^{-\theta} \\
\theta & =\frac{1}{d}
\end{aligned}
$$

Interaction kernel:

$K=-\nabla \phi$, for a repulsive and nonnegative ϕ

Main example:
Coulombian interactions

$$
\begin{array}{ll}
\rightarrow \phi=-c \ln |x|, & \text { if } d=2 \\
\rightarrow \phi=\frac{c}{|x|^{d-2}}, & \text { if } d \geq 3
\end{array}
$$

For simplicity:

$$
\begin{aligned}
& x_{i} \in \mathbb{T}^{d} \\
& v_{i} \in \mathbb{R}^{d}
\end{aligned}
$$

Classical mean-field theory: Statistical approach

- New object: We put individual trajectories aside

Classical mean-field theory: Statistical approach

- New object: We put individual trajectories aside
- Full joint law at time $t: f_{N}\left(t, x_{1}, v_{1}, \ldots, x_{N}, v_{N}\right)$ satisfies the Liouville equation:

$$
\begin{aligned}
\partial_{t} f_{N}+ & \sum_{i=1}^{N} v_{i} \cdot \nabla_{x_{i}} f_{N} \\
& +\sum_{i=1}^{N} \frac{1}{N} \sum_{j=1}^{N} K\left(x_{i}-x_{j}\right) \cdot \nabla_{v_{i}} f_{N}=\sigma \sum_{i} \Delta_{v_{i}} f_{N},
\end{aligned}
$$

We need velocity decay to control ρ_{N}

Statistical approach

- Introduce a joint law of the "trajectories" as a kind of projection: k-point marginals
- Marginal laws of $X_{1}, V_{1}, \ldots, X_{k}, V_{k}$ at time t :

$$
\begin{aligned}
& f_{k, N}\left(t, x_{1}, v_{1}, \ldots, x_{k}, v_{k}\right)= \\
& \int_{\mathbb{T}^{d}(N-k) \times \mathbb{R}^{d(N-k)}} f_{N}\left(t, x_{1}, v_{1} \ldots, x_{N}, v_{N}\right) d x_{k+1} d v_{k+1} \ldots d x_{N} d v_{N} .
\end{aligned}
$$

Statistical approach

- Introduce a joint law of the "trajectories" as a kind of projection: k-point marginals
- Marginal laws of $X_{1}, V_{1}, \ldots, X_{k}, V_{k}$ at time t :

$$
\begin{aligned}
& f_{k, N}\left(t, x_{1}, v_{1}, \ldots, x_{k}, v_{k}\right)= \\
& \int_{\mathbb{T}_{d(N-k) \times \mathbb{R}^{d(N-k)}}} f_{N}\left(t, x_{1}, v_{1} \ldots, x_{N}, v_{N}\right) d x_{k+1} d v_{k+1} \ldots d x_{N} d v_{N} .
\end{aligned}
$$

The concept of solution for f_{N} are carried over the marginals $f_{k, N}$ and not just the joint law f_{N} so that we also need an appropriate notion of entropy solutions on those marginals

Statistical approach

- Introduce a joint law of the "trajectories" as a kind of projection: k-point marginals
- Marginal laws of $X_{1}, V_{1}, \ldots, X_{k}, V_{k}$ at time t :

$$
\begin{aligned}
& f_{k, N}\left(t, x_{1}, v_{1}, \ldots, x_{k}, v_{k}\right)= \\
& \int_{\mathbb{T}^{d}(N-k) \times \mathbb{R}^{d(N-k)}} f_{N}\left(t, x_{1}, v_{1} \ldots, x_{N}, v_{N}\right) d x_{k+1} d v_{k+1} \ldots d x_{N} d v_{N} .
\end{aligned}
$$

The concept of solution for f_{N} are carried over the marginals $f_{k, N}$ and not just the joint law f_{N} so that we also need an appropriate notion of entropy solutions on those marginals

- Question: $f_{k, N} \rightharpoonup f^{\otimes k} ?$

$$
\begin{aligned}
\partial_{t} f_{k, N} & +\sum_{i=1}^{k} v_{i} \cdot \nabla_{x_{i}} f_{k, N}+\sum_{i \leq k} \frac{1}{N} \sum_{j \leq k} K\left(x_{i}-x_{j}\right) \cdot \nabla_{v_{i}} f_{k, N} \\
& +\frac{N-k}{N} \sum_{i \leq k} \nabla_{v_{i}} \cdot \int_{\mathbb{T}^{d} \times \mathbb{R}^{d}} f_{k+1, N} K\left(x_{i}-x_{k+1}\right) d x_{k+1} d v_{k+1} \\
& =\sigma \sum_{i \leq k} \Delta_{v_{i}} f_{k, N}
\end{aligned}
$$

Critical new idea
the new term has the same scaling as
the convolution at the limit
Moment propagation:

$$
e^{\sum_{i \leq k}\left(1+\left|v_{i}\right|^{2}\right)}
$$

$$
\begin{aligned}
\partial_{t} f_{k, N} & +\sum_{i=1}^{k} v_{i} \cdot \nabla_{x_{i}} f_{k, N}+\sum_{i \leq k} \frac{1}{N} \sum_{j \leq k} K\left(x_{i}-x_{j}\right) \cdot \nabla_{v_{i}} f_{k, N} \\
& +\frac{N-k}{N} \sum_{i \leq k} \nabla_{v_{i}} \cdot \int_{\mathbb{T}^{d} \times \mathbb{R}^{d}} f_{k+1, N} K\left(x_{i}-x_{k+1}\right) d x_{k+1} d v_{k+1} \\
& =\sigma \sum_{i \leq k} \Delta_{v_{i}} f_{k, N}
\end{aligned}
$$

Critical new idea
the new term has the same scaling as the convolution at the limit

Moment propagation:

$$
e^{e_{k}\left(x_{1}, v_{1}, \ldots, x_{k}, v_{k}\right)}=e^{\sum_{i \leq k}\left(1+\left|v_{i}\right|^{2}\right)+\frac{1}{N} \sum_{i, j \leq k} \phi\left(x_{i}-x_{j}\right)}
$$

$$
\begin{aligned}
\partial_{t} f_{k, N} & +\sum_{i=1}^{k} v_{i} \cdot \nabla_{x_{i}} f_{k, N}+\sum_{i \leq k} \frac{1}{N} \sum_{j \leq k} K\left(x_{i}-x_{j}\right) \cdot \nabla_{v_{i}} f_{k, N} \\
& +\frac{N-k}{N} \sum_{i \leq k} \nabla_{v_{i}} \cdot \int_{\mathbb{T}^{d} \times \mathbb{R}^{d}} f_{k+1, N} K\left(x_{i}-x_{k+1}\right) d x_{k+1} d v_{k+1} \\
& =\sigma \sum_{i \leq k} \Delta_{v_{i}} f_{k, N}
\end{aligned}
$$

Critical new idea
the new term has the same scaling as the convolution at the limit:
\Longrightarrow behaves well with (weighted) L^{p} norms

$$
\left\|f_{k, N}\right\|_{L_{\lambda(t) e_{k}}^{q}}^{q}=\int_{\mathbb{T}^{k d} \times \mathbb{R}^{k d}}\left|f_{k, N}\right|^{q} e^{\lambda(t) e_{k}}
$$

$$
e_{k}\left(x_{1}, v_{1}, \ldots, x_{k}, v_{k}\right)=\sum_{i \leq k}\left(1+\left|v_{i}\right|^{2}\right)+\frac{1}{N} \sum_{i, j \leq k} \phi\left(x_{i}-x_{j}\right)
$$

$$
\begin{aligned}
\partial_{t} f_{k, N} & +\sum_{i=1}^{k} v_{i} \cdot \nabla_{x_{i}} f_{k, N}+\sum_{i \leq k} \frac{1}{N} \sum_{j \leq k} K\left(x_{i}-x_{j}\right) \cdot \nabla_{v_{i}} f_{k, N} \\
& +\frac{N-k}{N} \sum_{i \leq k} \nabla_{v_{i}} \cdot \int_{\mathbb{T}^{d} \times \mathbb{R}^{d}} f_{k+1, N} K\left(x_{i}-x_{k+1}\right) d x_{k+1} d v_{k+1} \\
& =\sigma \sum_{i \leq k} \Delta_{v_{i}} f_{k, N}
\end{aligned}
$$

Avoid loosing a derivative in v_{i}

$$
\begin{aligned}
\partial_{t} f_{k, N} & +\sum_{i=1}^{k} v_{i} \cdot \nabla_{x_{i}} f_{k, N}+\sum_{i \leq k} \frac{1}{N} \sum_{j \leq k} K\left(x_{i}-x_{j}\right) \cdot \nabla_{v_{i}} f_{k, N} \\
& +\frac{N-k}{N} \sum_{i \leq k} \nabla_{v_{i}} \cdot \int_{\mathbb{T}^{d} \times \mathbb{R}^{d}} f_{k+1, N} K\left(x_{i}-x_{k+1}\right) d x_{k+1} d v_{k+1} \\
& =\sigma \sum_{i \leq k} \Delta_{v_{i}} f_{k, N}
\end{aligned}
$$

Avoid loosing a derivative in v_{i}
In parallel:

- Lacker (2021) studies the propagation of marginals on 1st (2nd) order systems with non-degenerate diffusion using the relative entropy, but require interaction kernels K in some exponential Orlicz space
- Jabin-Poyato-S, 2021, for non-exchangeable systems

New results: $d=2,3$.
Assume $K \in L^{p}\left(\mathbb{T}^{d}\right), p>1$, and define

$$
\lambda(t)=\frac{1}{\Lambda(1+t)}, \quad L=\frac{C}{\lambda(1)^{\theta}}\|K\|_{L^{p}}^{q}, \quad q>p^{\prime} .
$$

Consider a renormalized solution f_{N} to the Liouville eq satisfying the Gaussian decay
with $f_{N}^{0} \in L^{\infty}\left(\mathbb{T}^{d N} \times \mathbb{R}^{d N}\right)$, such that
$\int_{\mathbb{T}^{k d} \times \mathbb{R}^{k d}}\left|f_{k, N}^{0}\right|{ }^{q} e^{\lambda(0)} e_{k} \leq F_{0}^{k}, \quad \sup _{t \leq 1} \int_{\mathbb{T}^{N d} \times \mathbb{R}^{N d}}\left|f_{N}\right|^{q} e^{\lambda(t) e_{N}} \leq F^{N}$

New results: $d=2,3$.
Assume $K \in L^{p}\left(\mathbb{T}^{d}\right), p>1$, and define

$$
\lambda(t)=\frac{1}{\Lambda(1+t)}, \quad L=\frac{C}{\lambda(1)^{\theta}}\|K\|_{L^{p}}^{q}, \quad q>p^{\prime} .
$$

Consider a renormalized solution f_{N} to the Liouville eq satisfying the Gaussian decay
with $f_{N}^{0} \in L^{\infty}\left(\mathbb{T}^{d N} \times \mathbb{R}^{d N}\right)$, such that

$$
\int_{\mathbb{T}^{k d} \times \mathbb{R}^{k d}}\left|f_{k, N}^{0}\right|^{q} e^{\lambda(0)} e_{k} \leq F_{0}^{k}, \quad \sup _{t \leq 1} \int_{\mathbb{T}^{N d} \times \mathbb{R}^{N d}}\left|f_{N}\right|^{q} e^{\lambda(t) e_{N}} \leq F^{N}
$$

Then, one has that

$$
\sup _{t \leq T} \int_{\mathbb{T}^{k d} \times \mathbb{R}^{k d}}\left|f_{k, N}\right|^{q} e^{\lambda(t)} e_{k} \leq 2^{k} F_{0}^{k}+F^{k} 2^{2 k-N-1}
$$

New results (Bresch, Jabin \& JS)

Assume that ($\mathrm{d}=2$)

- $K=-\nabla \phi \in L^{p}\left(\mathbb{T}^{d}\right)$, for some $p>1$,
- $\int_{\mathbb{T}^{d}} e^{\theta \phi(x)} d x<+\infty, \quad \theta>0$,
- Let f be the unique smooth solution to the Vlasov equation with initial data $f^{0} \in C^{\infty}\left(\mathbb{T}^{d} \times \mathbb{R}^{d}\right) \& \int_{\mathbb{T}^{d} \times \mathbb{R}^{d}} f^{0} e^{\beta|v|^{2}}<\infty$
- $f_{k, N}^{0} \rightharpoonup\left(f^{0}\right)^{\otimes k} \quad$ in $\quad L^{1}, \quad f^{\otimes k}=\prod_{i=1}^{k} f\left(t, x_{i}, v_{i}\right)$
- $\left\|f_{k, N}^{0}\right\|_{L^{\infty}\left(\mathbb{T}^{d N} \times \mathbb{R}^{d N}\right)} \leq M^{k}, \quad$ for some $\quad M>0, \forall k<N$

New results (Bresch, Jabin \& JS)
Assume that ($\mathrm{d}=2$)

- $K=-\nabla \phi \in L^{p}\left(\mathbb{T}^{d}\right)$, for some $p>1$,
- $\int_{\mathbb{T}^{d}} e^{\theta \phi(x)} d x<+\infty, \quad \theta>0$,
- Let f be the unique smooth solution to the Vlasov equation with initial data $f^{0} \in C^{\infty}\left(\mathbb{T}^{d} \times \mathbb{R}^{d}\right) \& \int_{\mathbb{T}^{d} \times \mathbb{R}^{d}} f^{0} e^{\beta|v|^{2}}<\infty$
- $f_{k, N}^{0} \rightharpoonup\left(f^{0}\right)^{\otimes k}$ in $L^{1}, \quad f^{\otimes k}=\prod_{i=1}^{k} f\left(t, x_{i}, v_{i}\right)$
- $\left\|f_{k, N}^{0}\right\|_{L^{\infty}\left(\mathbb{T}^{\mathbb{N} N} \times \mathbb{R}^{\mathbb{R} N}\right)} \leq M^{k}$, for some $M>0, \forall k<N$

Then, there exists T^{*} such that

$$
f_{k, N} \rightharpoonup f^{\otimes k}, \text { in } L_{l o c}^{q}\left(\left[0, T^{\star}\right] \times \mathbb{T}^{k d} \times \mathbb{R}^{k d}\right)
$$

Strong propagation of Chaotic/Tensorized law

Remarks

- The results are valid only for finite time.

Remarks

- The results are valid only for finite time.

Global and uniform estimates
\rightarrow Alexis Béjar-López \leftarrow Jabin, JS

Remarks

- The results are valid only for finite time.

Global and uniform estimates
\rightarrow Alexis Béjar-López \leftarrow Jabin, JS

- The result does not provide direct quantitative convergence estimates on the marginals $f_{k, N}-f^{\otimes k}$.

Quantitative estimate for the case $K \in L^{2}$.

Remarks

- The results are valid only for finite time.

Global and uniform estimates
\rightarrow Alexis Béjar-López \leftarrow Jabin, JS

- The result does not provide direct quantitative convergence estimates on the marginals $f_{k, N}-f^{\otimes k}$.

Quantitative estimate for the case $K \in L^{2}$.

- Extension to the stochastic case of mildly singular kernels

Remarks

- The results are valid only for finite time.

Global and uniform estimates
\rightarrow Alexis Béjar-López \leftarrow Jabin, JS

- The result does not provide direct quantitative convergence estimates on the marginals $f_{k, N}-f^{\otimes k}$.

Quantitative estimate for the case $K \in L^{2}$.

- Extension to the stochastic case of mildly singular kernels
- Does not apply directly in $d \geq 3$ to i.i.d. X_{i}^{0} as $\int e^{\lambda \phi(x)} d x=+\infty, \forall \lambda>0$, if $\phi=\frac{c}{|x|^{d-2}}$.

New results: First order systems

$$
d X_{i}(t)=\frac{1}{N} \sum_{j \neq i} K\left(X_{i}-X_{j}\right) d t+\sqrt{2 \sigma} d W_{i}
$$

$$
\frac{\partial f}{\partial t}+\operatorname{div}(f(K * f)-\sigma \nabla f)=0
$$

Applications:

- Keller-Segel, Euler / Navier-Stokes

Fetecau, Huang-Liu, Pickl, Bresch-Jabin-Wang,...
Chorin, Goodman, Beale-Majda, Cottet, Fournier, S., Hauray, Jabin-Wang, Wynter, Rosenzweig, Duerinckx, Serfaty $\left(u \in W^{1, \infty}\right), \ldots$

New results: First order models (Bresch, Jabin \& JS).

Assume that

- $K \in L^{p}\left(\mathbb{T}^{d}\right), \quad$ for some $p>1, \quad K \sim \frac{1}{|x|^{s}} s<d$
- $(\operatorname{div} K)_{-} \in L^{\infty}\left(\mathbb{T}^{d}\right)$,
- Let f be the unique smooth solution to the transport equation with initial data $f^{0} \in C^{\infty}\left(\mathbb{T}^{d}\right)$,
- $f_{k, N}^{0} \rightharpoonup\left(f^{0}\right)^{\otimes k}$ in L^{1},
- $\left\|f_{k, N}^{0}\right\|_{L^{\infty}\left(\mathbb{T}^{d N}\right)} \leq M^{k}$, for some $\quad M>0, \forall k<N$

New results: First order models (Bresch, Jabin \& JS).

Assume that

- $K \in L^{p}\left(\mathbb{T}^{d}\right), \quad$ for so
- $(\operatorname{div} K)_{-} \in L^{\infty}\left(\mathbb{T}^{d}\right)$,
- Let f be the unique smooth solution to the transport equation with initial data $f^{0} \in C^{\infty}\left(\mathbb{T}^{d}\right)$,
- $f_{k, N}^{0} \rightharpoonup\left(f^{0}\right)^{\otimes k}$ in L^{1},
- $\left\|f_{k, N}^{0}\right\|_{L^{\infty}\left(\mathbb{T}^{d N}\right)} \leq M^{k}$, for some $M>0, \forall k<N$

Then, there exists T^{*} such that

$$
f_{k, N} \rightharpoonup f^{\otimes k}, \quad \text { in } L_{l o c}^{q}\left(\left[0, T^{\star}\right] \times \mathbb{T}^{k d}\right)
$$

\Longrightarrow Strong propagation of chaos

Non-exchangeable systems:
A prototype to study non-exchangeable systems is

$$
d X_{i}=\sum_{j=1}^{N} w_{i j}^{N} K\left(X_{i}-X_{j}\right) d t+\sqrt{2 \sigma} d W_{i},
$$

where

$$
\begin{array}{ll}
\frac{1}{N} \rightarrow w_{i j}^{N} & \begin{array}{l}
\text { non-necessarily symmetric } \\
\\
\\
\text { interaction weights }
\end{array}
\end{array}
$$

Assumptions on the interaction weights:
Objective: stay within the mean-field limit

$$
\max _{1 \leq i \leq N} \sum_{j=1}^{N}\left|w_{i j}^{N}\right|=O(1) \quad \begin{aligned}
& \text { Total interaction with any } \\
& \text { object must be finite }
\end{aligned}
$$

$\max _{1 \leq i, j \leq N}\left|W_{i j}^{N}\right| \xrightarrow{N \rightarrow \infty} 0$
Individual coefficients
should be small

Some examples:

Brain neural networks

Many neurons: Human brains contain $\sim 86 \cdot 10^{9}$ neurons.
Sparseness \& modularity: Each neuron has synaptic connections with only $7 \cdot 10^{3}$ neurons. Human Connectome is organized into structural cores and modules.

Synchronization: emerges as a consequence of the interplay of the local dynamics in regions with large intra connectivity and the topology of non-symmetric connectivities.

Some examples:

Agents on a graph

Brain structure, Epidemiology, Machine Learning, ...
Sparseness: We don't expect to have many interactions $w_{i j}=0$ for most i, j.

There is another scale within the graph: $\forall i$, the number $\# j$ of order N^{θ} such that $w_{i j} \sim \frac{1}{N^{\theta}}$
$\Longrightarrow w_{i j}$ satisfy the assumptions and the law of large numbers still applies

How different is the study of the mean-field limit of the classical case with respect to this context?

Strategies regarding the structure of $w_{i j}$: simple structure
For $w_{i j}=m_{j}$, define

$$
\nu_{N}=\sum_{j=1}^{N} m_{j} \delta\left(x-X_{j}\right)
$$

which verifies (symmetrization)

$$
\frac{\partial \nu_{N}}{\partial t}+\operatorname{div}\left(\left(K \star \nu_{N}\right) \nu_{N}\right)=\sigma \Delta \nu_{N}
$$

\Longrightarrow In Fluid Mechanics gives the total vorticity,
but ν_{N} can lose the probability measure character and modulated energy techniques could give problems.

Strategies regarding the structure of $w_{i j}$: simple structure
For $w_{i j}=m_{j}$, define

$$
\nu_{N}=\sum_{j=1}^{N} m_{j} \delta\left(x-X_{j}\right)
$$

which verifies (symmetrization)

$$
\frac{\partial \nu_{N}}{\partial t}+\operatorname{div}\left(\left(K \star \nu_{N}\right) \nu_{N}\right)=\sigma \Delta \nu_{N}
$$

\Longrightarrow In Fluid Mechanics gives the total vorticity,
but ν_{N} can lose the probability measure character and modulated energy techniques could give problems.

For m_{j} random and i.i.d. Then $m_{j} \sim \frac{1}{N}$
Defining $\tilde{X}_{j}=m_{j} X_{j} \Longrightarrow$ case of exchangeable systems extend the entropy approaches

Strategies regarding the structure of $w_{i j}^{N}$:

When $w_{i j}^{N}$ do not have any simple structure

- It no longer seems possible to define an empirical measure
\rightsquigarrow Try to incorporate $w_{i j}^{N}$ as part of the state Can we write

$$
w_{i j}^{N}=w\left(w_{i j}^{N}\right)=w\left(\xi_{i}, \xi_{j}\right), \quad \xi_{j} \in[0,1]
$$

for some distribution of ξ_{j} and some kernel w ?
\Longrightarrow we go back to a classical mean-field context for which the regularity of w is crucial

Strategies regarding the structure of $w_{i j}^{N}$:
We would like to solve the mean-field limit equation associated with this new kernel

$$
\begin{aligned}
& \partial_{t} \bar{f}(t, x, \xi) \\
& +\operatorname{div}_{x}\left(\bar{f}(t, x, \xi) \int_{0}^{1} w(\xi, \zeta) \int_{\mathbb{R}^{d}} K(x-y) \bar{f}(t, d y, d \zeta)\right) \\
& =\sigma \Delta \bar{f}(t, x, \xi)
\end{aligned}
$$

Strategies regarding the structure of $w_{i j}^{N}$:
We would like to solve the mean-field limit equation associated with this new kernel

$$
\begin{aligned}
& \partial_{t} \bar{f}(t, x, \xi) \\
& +\operatorname{div}_{x}\left(\bar{f}(t, x, \xi) \int_{0}^{1} w(\xi, \zeta) \int_{\mathbb{R}^{d}} K(x-y) \bar{f}(t, d y, d \zeta)\right) \\
& =\sigma \Delta \bar{f}(t, x, \xi)
\end{aligned}
$$

- There is no initial data
- We are not interested in \bar{f}, but in $\int_{0}^{1} \bar{f}(t, x, d \xi)$ which should be the limit of the "empirical measure"
- Need for an analytical context: Graph Theory

Graphons as dense graph limits (Lovasz, Szegedy, '06)
Large-scale limits of symmetric dense graphs
Let $G=\left(V, E, W_{N}\right)$ a finite graph with vertex $V=\llbracket 1 ; N \rrbracket$, edges E, and adjacency matrix $W_{N}=\left(w_{i j}^{N}\right)_{i j}$

Graphons as dense graph limits (Lovasz, Szegedy, '06)
Large-scale limits of symmetric dense graphs
Let $G=\left(V, E, W_{N}\right)$ a finite graph with vertex $V=\llbracket 1 ; N \rrbracket$,
edges E, and adjacency matrix $W_{N}=\left(W_{i j}^{N}\right)_{i j}$
From $w_{i j}^{N}$ we construct a piecewise constant function w_{N}^{G}

$$
w_{N}^{G}(\xi, \zeta)=\sum_{i, j=1}^{N} w_{i j}^{N} \mathbb{1}_{\left[\frac{i-1}{N}, \frac{i}{N}\right)}(\xi) \mathbb{1}_{\left[\frac{i-1}{N}, \frac{j}{N}\right)}(\zeta)
$$

After permutation of indexes
$w_{N}^{G} \rightarrow w \in L^{\infty}\left([0,1]^{2}\right)$, w symmetric, for dense graphs $\left|E\left(G_{N}\right)\right| \approx\left|V\left(G_{N}\right)\right|^{2}$.

Graphons as dense graph limits (Lovasz, Szegedy, '06)
Large-scale limits of symmetric dense graphs
Let $G=\left(V, E, W_{N}\right)$ a finite graph with vertex $V=\llbracket 1 ; N \rrbracket$, edges E, and adjacency matrix $W_{N}=\left(w_{i j}^{N}\right)_{i j}$

- $w_{N}^{G} \rightarrow w \in\left\{L^{\infty}\left([0,1]^{2}\right), w\right.$ symmetric $\} \equiv$ Graphons, for dense graphs $\left|E\left(G_{N}\right)\right| \approx\left|V\left(G_{N}\right)\right|^{2}$.
- The cut metric: $\delta_{\square}\left(w, w_{N}^{G}\right)$
there exists a measure preserving map ϕ_{N} on $[0,1]$ st

$$
\left\|w-w_{\phi_{N}(i), \phi_{N}(j)}^{N}\right\|_{L^{\infty} \rightarrow L^{1}} \stackrel{N \rightarrow \infty}{\longrightarrow} 0
$$

What about mean-field limits on symmetric dense graphs?

Medvedev '18-'19

- For any graphon w, we can find finite graphs G_{N} approximating $0 \leq w \leq 1$, with weights

$$
w_{i j}^{N}=N \int_{\left[\frac{i-1}{N}, \frac{i}{N}\right) \times\left[\frac{i-1}{N}, \frac{j}{N}\right)} w(\xi, \zeta) d \xi d \zeta,
$$

What about mean-field limits on symmetric dense graphs?

Medvedev '18-'19

- For any graphon w, we can find finite graphs G_{N} approximating $0 \leq w \leq 1$, with weights

$$
\begin{aligned}
& w_{i j}^{N}=N \int_{\left[\frac{i-1}{N}, \frac{i}{N}\right) \times\left[\frac{i-1}{N}, \frac{j}{N}\right)} w(\xi, \zeta) d \xi d \zeta, \\
& w_{N}^{G} \xrightarrow{N \rightarrow \infty} w \text { in } L^{1}\left([0,1]^{2}\right) \Longrightarrow \delta_{\square}\left(w, w_{N}^{G}\right) \rightarrow 0
\end{aligned}
$$

- $K \in W^{1, \infty}$
- Stability estimate:
$\frac{d}{d t} \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|f_{N}-f\right| d x d \xi \leq C_{1} \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|f_{N}-f\right| d x d \xi+C_{2}\left\|w_{N}^{G}-w\right\|_{L^{\infty} \rightarrow L^{1}}$

What about mean-field limits on symmetric dense graphs?

Medvedev '18-'19

- For any graphon w, we can find finite graphs G_{N} approximating $0 \leq w \leq 1$, with weights

$$
\begin{aligned}
& w_{i j}^{N}=N \int_{\left[\frac{i-1}{N}, \frac{i}{N}\right) \times\left[\frac{i-1}{N}, \frac{j}{N}\right)} w(\xi, \zeta) d \xi d \zeta, \\
& w_{N}^{G} \xrightarrow{N \rightarrow \infty} w \text { in } L^{1}\left([0,1]^{2}\right) \Longrightarrow \delta_{\square}\left(w, w_{N}^{G}\right) \rightarrow 0
\end{aligned}
$$

- $K \in W^{1, \infty}$
$\Longrightarrow \mu_{N} \rightharpoonup \int_{0}^{1} f(t, x, \xi) d \xi$ and f satisfies
$\partial_{t} f(t, x, \xi)+\operatorname{div}_{x}\left(f(t, x, \xi) \int_{0}^{1} \int_{\mathbb{R}^{d}} w(\xi, \zeta) K(x-y) f(t, y, \zeta) d y d \zeta\right)=0$

What about mean-field limits on symmetric dense graphs?

Medvedev '18-'19

- For any graphon w, we can find finite graphs G_{N} approximating $0 \leq w \leq 1$, with weights

$$
\begin{aligned}
& w_{i j}^{N}=N \int_{\left[\frac{i-1}{N}, \frac{i}{N}\right) \times\left[\frac{i-1}{N}, \frac{j}{N}\right)} w(\xi, \zeta) d \xi d \zeta, \sup _{i, j} N\left|w_{i j}^{N}\right|=O(1) \\
& w_{N}^{G} \xrightarrow{N \rightarrow \infty} w \operatorname{in} L^{1}\left([0,1]^{2}\right) \Longrightarrow \delta_{\square}\left(w, w_{N}^{G}\right) \rightarrow 0
\end{aligned}
$$

- $K \in W^{1, \infty}$
$\Longrightarrow \mu_{N} \rightharpoonup \int_{0}^{1} f(t, x, \xi) d \xi$ and f satisfies
$\partial_{t} f(t, x, \xi)+\operatorname{div}_{x}\left(f(t, x, \xi) \int_{0}^{1} \int_{\mathbb{R}^{d}} w(\xi, \zeta) K(x-y) f(t, y, \zeta) d y d \zeta\right)=0$

What about mean-field limits on sparse graphs, $\left|E\left(G_{N}\right)\right| \approx\left|V\left(G_{N}\right)\right|$?

- $\sup _{N \in \mathbb{N}} \max _{i} \sum_{j}\left|w_{i j}^{N}\right|+\max _{j} \sum_{i}\left|w_{i j}^{N}\right| \leq C \quad \lim _{N \rightarrow \infty} \max _{i, j}\left|w_{i j}^{N}\right|=0$.
- $K \in W^{1,1} \cap W^{1, \infty}$
- X_{i}^{0} independent (but not i.i.d.) st their laws f_{i}^{0} verify

$$
\sup _{N \in \mathbb{N}} \max _{i}\left\{\int_{\mathbb{R}^{d}}|x|^{2} f_{i}^{0}(x) d x,\left\|f_{i}^{0}\right\|_{W^{1,1} \cap W^{1, \infty}}\right\}<\infty
$$

What about mean-field limits on sparse graphs, $\left|E\left(G_{N}\right)\right| \approx\left|V\left(G_{N}\right)\right|$?

- $\sup _{N \in \mathbb{N}} \max _{i} \sum_{j}\left|w_{i j}^{N}\right|+\max _{j} \sum_{i}\left|w_{i j}^{N}\right| \leq C, \quad \lim _{N \rightarrow \infty} \max _{i, j}\left|w_{i j}^{N}\right|=0$.
- $K \in W^{1,1} \cap W^{1, \infty}$
- X_{i}^{0} independent (but not i.i.d.) st their laws f_{i}^{0} verify

$$
\sup _{N \in \mathbb{N}} \max _{i}\left\{\int_{\mathbb{R}^{d}}|x|^{2} f_{i}^{0}(x) d x,\left\|f_{i}^{0}\right\|_{W^{1,1} \cap W^{1, \infty}}\right\}<\infty
$$

\Longrightarrow the mean-field limit is described by (extended graphon)

$$
\begin{aligned}
& w \in L_{\xi}^{\infty}\left([0,1], \mathcal{M}_{\zeta}([0,1])\right) \cap L_{\zeta}^{\infty}\left([0,1], \mathcal{M}_{\xi}([0,1])\right) \\
& f \in L_{t, \xi}^{\infty}\left([0, T] \times[0,1], W_{x}^{1,1} \cap W_{x}^{1, \infty}\left(\mathbb{R}^{d}\right)\right) \\
& \lim _{k \rightarrow \infty} \sup _{0 \leq t \leq T} \mathbb{E} W_{1}\left(\frac{1}{N_{k}} \sum_{i=1}^{N_{k}} \delta x_{i}(t), \int_{0}^{1} f(t, \cdot, \xi) d \xi\right)=0 .
\end{aligned}
$$

Idea of the proof

Propagation of independence

$$
\begin{gathered}
\frac{d \bar{X}_{i}}{d t}=\sum_{j=1}^{N} w_{i j} \int_{\mathbb{R}^{d}} K\left(\bar{X}_{i}-y\right) \bar{f}_{j}(t, y) d y, \\
\bar{X}_{i}(0)=X_{i}^{0} \quad \text { (independent) } \\
\bar{f}_{i}(t, \cdot)=\operatorname{Law}\left(\bar{X}_{i}(t)\right) \text { verify } \\
\partial_{t} \bar{f}_{i}+\operatorname{div}_{x}\left(\bar{f}_{i}(t, x) \sum_{j=1}^{N} w_{i j} \int_{\mathbb{R}^{d}} K(x-y) \bar{f}_{j}(t, d y)\right)=0, \\
\bar{f}_{i}(0, x)=f_{i}(0, x) . \\
\Longrightarrow \mathbb{E} W_{1}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}(t)}, \frac{1}{N} \sum_{i=1}^{N} \bar{f}_{i}(t, \cdot)\right) \leq C_{1}(t) \max _{i, j}\left|w_{i j}\right|^{1 / 2}+\frac{C_{2}(t)}{N^{\theta} \theta_{d}} .
\end{gathered}
$$

Consequences of the propagation of independence:

- For general connectivities $w_{i j}^{N}$,
\nRightarrow the limit of the corresponding 1-particle distribution

$$
\frac{1}{N} \sum_{i=1}^{N} \bar{f}_{i}(t, x)
$$

- The equation for 1-particle distribution evolves
a kind of 2-particle distribution

$$
\frac{1}{N^{2}} \sum_{i, j=1}^{N} w_{i j}^{N} \bar{f}_{i}(t, x) \bar{f}_{j}(t, x)
$$

\Longrightarrow There is a hierarchy of equations indexed by trees

Graphon-like reformulation

- We can recast the equation for \bar{f}_{i} using graphons:

$$
\begin{aligned}
& w_{N}(\xi, \zeta):=\sum_{i, j} N w_{i j}^{N} \mathbb{1}_{\left[\frac{i-1}{N}, \frac{i}{N}\right)}(\xi) \mathbb{1}_{\left[\frac{j-1}{N}, \frac{j}{N}\right)}(\zeta), \\
& f_{N}(x, \xi):=\sum_{i} \bar{f}_{i}(t, x) \mathbb{1}_{\left[\frac{i-1}{N}, \frac{j}{N}\right)}(\xi) .
\end{aligned}
$$

- $\left(w_{N}, f_{N}\right)$ is a solution of the generalized Vlasov equation

$$
\partial_{t} f_{N}(t, x, \xi)+\operatorname{div}_{x}\left(f_{N}(t, x, \xi) \int_{0}^{1} w_{N}(\xi, \zeta) \int_{\mathbb{R}^{d}} K(x-y) f_{N}(t, d y, d \zeta)\right)=0
$$

Graphon-like reformulation

- We can recast the equation for \bar{f}_{i} using graphons:

$$
\begin{aligned}
& w_{N}(\xi, \zeta):=\sum_{i, j} N w_{i j}^{N} \mathbb{1}_{\left[\frac{i-1}{N}, \frac{i}{N}\right)}(\xi) \mathbb{1}_{\left[\frac{j-1}{N}, \frac{j}{N}\right)}(\zeta), \\
& f_{N}(x, \xi):=\sum_{i} \bar{f}_{i}(t, x) \mathbb{1}_{\left[\frac{i-1}{N}, \frac{i}{N}\right)}(\xi) .
\end{aligned}
$$

- $\left(w_{N}, f_{N}\right)$ is a solution of the generalized Vlasov equation

$$
\partial_{t} f_{N}(t, x, \xi)+\operatorname{div}_{x}\left(f_{N}(t, x, \xi) \int_{0}^{1} w_{N}(\xi, \zeta) \int_{\mathbb{R}^{d}} K(x-y) f_{N}(t, d y, d \zeta)\right)=0
$$

Q1) Compactness of $\left(w_{N}, f_{N}\right)$
Q2) Identification of the limit (w, f) in an appropriate topology.
Q3) The limit (w, f) satisfies the generalized Vlasov equation
\rightsquigarrow New compactness result in the spirit of Lovasz \& Szegedy.

New hierarchy of observables

- For finite tree T (and not any arbitrary graph), we define

$$
\tau\left(T, w_{N}, f_{N}\right)\left(t, x_{1}, \ldots, x_{|T|}\right)
$$

$$
=\int_{[0,1]^{T T \mid}} \prod_{(k, l) \in \mathcal{E}(T)} w_{N}\left(\xi_{k}, \xi_{l}\right) \prod_{m=1}^{|T|} f_{N}\left(t, x_{m}, \xi_{m}\right) d \xi_{1} \ldots d \xi_{|T|}
$$

These observables include the 1-particle distribution for the tree $T=T_{1}$ with only one vertex:

$$
\tau\left(T_{1}, w_{N}, f_{N}\right)(t, x)=\frac{1}{N} \sum_{i=1}^{N} \bar{f}_{i}(t, x) .
$$

- Our observables completely entangle the kernel with the initial conditions

New hierarchy of observables

- A critical point is that these observables solve an independent hierarchy of equations

$$
\partial_{t} \tau\left(T, w_{N}, f_{N}\right)
$$

$+\sum_{i=1}^{|T|} \operatorname{div}_{x_{i}}\left(\int_{\mathbb{R}^{d}} K\left(x_{i}-z\right) \tau\left(T+i, w_{N}, f_{N}\right)\left(t, x_{1}, \ldots, x_{|T|}, z\right) d z\right)=0$
where $T+i$ denotes the tree obtained from T by adding a leaf on the i-th vertex

- They naturally extend the notion of marginals, and hierarchy of marginals to non-exchangeable systems If the particles were exchageable, observables would depend only on the number of nodes \rightarrow classical hierarchy

New hierarchy of observables

- A critical point is that these observables solve an independent hierarchy of equations

$$
\partial_{t} \tau\left(T, w_{N}, f_{N}\right)
$$

$+\sum_{i=1}^{|T|} \operatorname{div}_{x_{i}}\left(\int_{\mathbb{R}^{d}} K\left(x_{i}-z\right) \tau\left(T+i, w_{N}, f_{N}\right)\left(t, x_{1}, \ldots, x_{|T|}, z\right) d z\right)=0$
where $T+i$ denotes the tree obtained from T
by adding a leaf on the i-th vertex

- The kernel w does not appear explicitly in this equation, it only appears in the definition of observable

New hierarchy of observables

- A critical point is that these observables solve an independent hierarchy of equations

$$
\begin{aligned}
& \partial_{t} \tau\left(T, w_{N}, f_{N}\right) \\
& \quad+\sum_{i=1}^{|T|} \operatorname{div}_{x_{i}}\left(\int_{\mathbb{R}^{d}} K\left(x_{i}-z\right) \tau\left(T+i, w_{N}, f_{N}\right)\left(t, x_{1}, \ldots, x_{|T|}, z\right) d z\right)=0
\end{aligned}
$$

where $T+i$ denotes the tree obtained from T by adding a leaf on the i-th vertex

- We don't prove the convergence of f_{N} to f in a direct sense. This must be inferred from the convergence of $\tau\left(T, w_{N}, f_{N}\right)$ that gives the correct topology for the convergence
\Longrightarrow we only need that $\tau\left(T, w_{N}, f_{N}\right)\left(t=0, x_{1}, \ldots, x_{|T|}\right)$ converges

New hierarchy of observables

- A critical point is that these observables solve an independent hierarchy of equations
$\partial_{t} \tau\left(T, w_{N}, f_{N}\right)$
$+\sum_{i=1}^{|T|} \operatorname{div}_{x_{i}}\left(\int_{\mathbb{R}^{d}} K\left(x_{i}-z\right) \tau\left(T+i, w_{N}, f_{N}\right)\left(t, x_{1}, \ldots, x_{|T|}, z\right) d z\right)=0$
where $T+i$ denotes the tree obtained from T by adding a leaf on the i-th vertex
- In our strategy there are two types of limits:

1) Propagation of independence, limit of zero correlation: the coupled system: the PDE for \bar{f}_{i} and the DS for \bar{X}_{i}
2) Push the graph to infinity: the limit of $\lim _{N \rightarrow \infty} \tau\left(T, w_{N}, f_{N}\right)$

What about the metric to estimate compactness? Stability

- For $\lambda>0$ and any $w, \tilde{w} \in L_{\xi}^{\infty} \mathcal{M}_{\zeta} \cap L_{\zeta}^{\infty} \mathcal{M}_{\xi}$
$f^{0}, \tilde{f}^{0} \in L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap W_{x}^{1, \infty}\right)$, we define

$$
\mathcal{D}_{\lambda}\left(\left(w, f^{0}\right),\left(\tilde{w}, \tilde{f}^{0}\right)\right)=\sup _{\operatorname{trees} T} \lambda^{|T| / 2}\left\|\tau\left(T, w, f^{0}\right)-\tau\left(T, \tilde{w}, \tilde{f}^{0}\right)\right\|_{L^{2}\left(\mathbb{R}^{d|\tau|}\right)}
$$

What about the metric to estimate compactness? Stability

- For $\lambda>0$ and any $w, \tilde{w} \in L_{\xi}^{\infty} \mathcal{M}_{\zeta} \cap L_{\zeta}^{\infty} \mathcal{M}_{\xi}$
$f^{0}, \tilde{f}^{0} \in L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap W_{x}^{1, \infty}\right)$, we define

$$
\mathcal{D}_{\lambda}\left(\left(w, f^{0}\right),\left(\tilde{w}, \tilde{f}^{0}\right)\right)=\sup _{\text {trees } T} \lambda^{|T| / 2}\left\|\tau\left(T, w, f^{0}\right)-\tau\left(T, \tilde{w}, \tilde{f}^{0}\right)\right\|_{L^{2}\left(\mathbb{R}^{d|T|}\right)}
$$

- Stability:

$$
f, \tilde{f} \in L_{t}^{\infty}\left(\left[0, t_{*}\right] ; L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap W_{x}^{1, \infty}\right)\right) \text { unique solutions of }
$$

$$
\partial_{t} f(t, x, \xi)+\operatorname{div}_{x}\left(f(t, x, \xi) \int_{0}^{1} \int_{\mathbb{R}^{d}} w(\xi, \zeta) K(x-y) f(t, y, \zeta) d y d \zeta\right)=0
$$

$$
\Longrightarrow\left\|\int_{0}^{1} f d \xi-\int_{0}^{1} \tilde{f} d \xi\right\|_{L_{t}^{\infty}\left(\left[0, t_{t}\right], L_{x}^{2}\right)} \lesssim \frac{1}{\left(\ln \left|\ln \mathcal{D}_{\lambda}\left(\left(w, f^{0}\right),\left(\tilde{w}, \tilde{f}^{0}\right)\right)\right|\right)_{+}^{\frac{1}{2}}}
$$

Compactness result towards extended graphons

- Consider $w_{N} \in L_{\xi}^{\infty} \mathcal{M}_{\zeta} \cap L_{\zeta}^{\infty} \mathcal{M}_{\xi}$ and $f_{N} \in L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap W_{x}^{1, \infty}\right)$

$$
\sup _{N \in \mathbb{N}}\left\|w_{N}\right\|_{L_{\xi}}^{\infty} \mathcal{M}_{\zeta} \cap L_{\xi}^{\infty} \mathcal{M}_{\xi}<\infty, \quad \sup _{N \in \mathbb{N}}\left\|f_{N}\right\|_{L_{\xi}^{\infty}\left(w_{x}^{1,1} \cap W_{x}^{1, \infty}\right)}<\infty
$$

- Then, there is a subsequence $\left\{N_{k}\right\}_{k \in \mathbb{N}}$ and there are $w \in L_{\xi}^{\infty} \mathcal{M}_{\zeta} \cap L_{\zeta}^{\infty} \mathcal{M}_{\xi}$ and $f \in L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap W_{x}^{1, \infty}\right) s t$

$$
\tau\left(T, w_{N_{k}}, f_{N_{k}}\right) \rightarrow \tau(T, w, f) \quad \text { in } \quad L_{\text {loc }}^{p}\left(\mathbb{R}^{d|T|}\right), 1 \leq p<\infty
$$

Compactness result towards extended graphons

- Consider $w_{N} \in L_{\xi}^{\infty} \mathcal{M}_{\zeta} \cap L_{\zeta}^{\infty} \mathcal{M}_{\xi}$ and $f_{N} \in L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap W_{x}^{1, \infty}\right)$

$$
\sup _{N \in \mathbb{N}}\left\|w_{N}\right\|_{L_{\xi}^{\infty}}^{\infty} \mathcal{M}_{\xi} \cap L_{\xi}^{\infty} \mathcal{M}_{\xi}<\infty, \quad \sup _{N \in \mathbb{N}}\left\|f_{N}\right\|_{L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap W_{x}^{1, \infty}\right)}<\infty
$$

- Then, there is a subsequence $\left\{N_{k}\right\}_{k \in \mathbb{N}}$ and there are

$$
w \in L_{\xi}^{\infty} \mathcal{M}_{\zeta} \cap L_{\zeta}^{\infty} \mathcal{M}_{\xi} \text { and } f \in L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap W_{x}^{1, \infty}\right) \text { st }
$$

$$
\tau\left(T, w_{N_{k}}, f_{N_{k}}\right) \rightarrow \tau(T, w, f) \quad \text { in } \quad L_{\text {loc }}^{p}\left(\mathbb{R}^{d|T|}\right), 1 \leq p<\infty
$$

- Reformulation $\tau(T, w, f)=\int_{0}^{1} F(w, f) d \xi$ in terms of a countable algebra of transforms $F \in \mathcal{F}$ consistent with the adding-leafs process.
- New compactness-by-rearrangement lemma reminiscent of Szemerédi lemma proving that $F\left(w_{N}, f_{N}\right)$ must converge in $L_{\text {loc }}^{p}$ modulo measure-preserving rearrangements w.r.t. ξ.
- Invariance under rearrangements of $\tau(T, w, f)$.

Compactness result towards extended graphons

- Consider $w_{N} \in L_{\xi}^{\infty} \mathcal{M}_{\zeta} \cap L_{\zeta}^{\infty} \mathcal{M}_{\xi}$ and $f_{N}^{0} \in L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap W_{x}^{1, \infty}\right)$

$$
\sup _{N \in \mathbb{N}}\left\|w_{N}\right\| L_{\xi}^{\infty} \mathcal{M}_{\zeta} \cap L_{\xi}^{\infty} \mathcal{M}_{\xi}<\infty, \quad \sup _{N \in \mathbb{N}}\left\|f_{N}^{0}\right\|_{L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap w_{x}^{1, \infty}\right)}<\infty
$$

- Then, there is a subsequence $\left\{N_{k}\right\}_{k \in \mathbb{N}}$ and there are $w \in L_{\xi}^{\infty} \mathcal{M}_{\zeta} \cap L_{\zeta}^{\infty} \mathcal{M}_{\xi}$ and $f^{0} \in L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap W_{x}^{1, \infty}\right)$ st

$$
\mathcal{D}_{\lambda}\left(\left(w_{N}, f_{N_{k}}^{0}\right),\left(w, f^{0}\right)\right) \rightarrow 0, \quad \text { as } N \rightarrow \infty
$$

for a sufficiently small $\lambda>0$.

The identification of the limit

1) Once the limit (w, f^{0}) has been calculated

$$
w \in L_{\xi}^{\infty} \mathcal{M}_{\zeta} \cap L_{\zeta}^{\infty} \mathcal{M}_{\xi} \text { and } f^{0} \in L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap W_{x}^{1, \infty}\right)
$$

2) We solve

$$
\partial_{t} f(t, x, \xi)+\operatorname{div}_{x}\left(f(t, x, \xi) \int_{0}^{1} \int_{\mathbb{R}^{d}} w(\xi, \zeta) K(x-y) f(t, y, \zeta) d y d \zeta\right)=0
$$

$$
\text { to get } f \in L^{\infty}\left(\left[0, t_{*}\right], L_{\xi}^{\infty}\left(W_{x}^{1,1} \cap W_{x}^{1, \infty}\right)\right)
$$

3) The stability result gives

$$
\left\|\int_{0}^{1} f d \xi-\frac{1}{N_{k}} \sum_{i} \bar{f}_{i}\right\|_{L_{f}^{\infty}\left(\left[0, t_{\mathrm{t}}\right], L_{x}^{2}\right)} \lesssim \frac{1}{\left(\ln \mid \ln \mathcal{D}_{\lambda}\left(\left(w, f^{0}\right),\left(w_{N_{k}}, f_{N_{k}}^{0}\right)\right)\right)_{+}^{\frac{1}{2}}} \rightarrow 0
$$

$\Longrightarrow W_{1}$-convergence by the propagation of moments.

The identification of the limit
4) Therefore, we can conclude that
$\mathbb{E} W_{1}\left(\frac{1}{N_{k}} \sum_{i} \delta_{x_{i}}, \int_{0}^{1} f(t, \cdot, \xi) d \xi\right)$

$$
\begin{aligned}
\leq & \mathbb{E} W_{1}\left(\frac{1}{N_{k}} \sum_{i} \delta x_{i}, \frac{1}{N_{k}} \sum_{i} \bar{f}_{i}(t, \cdot)\right) \\
& +W_{1}\left(\frac{1}{N_{k}} \sum_{i} \bar{f}_{i}(t, \cdot), \int_{0}^{1} f(t, \cdot, \xi) d \xi\right) \rightarrow 0
\end{aligned}
$$

Conclusions and perspectives

Advantages

- Joint approach mean-field and large-graph limit.
- Large class of sparse non-symmetric graphs.
- Weights not coming as discretization of fixed continuous objects.
- Better results in the noisy case:

$$
\left\|\tau(T, w, f)-\tau\left(T, w_{N}, f_{N}\right)\right\|_{L^{2}\left(\mathbb{R}^{d|\tau|}\right)} \rightarrow 0
$$

Open questions

- What if $K \notin W^{1, \infty}$?
only used in the propagation of independence

Thanks for your attention!

Further previous results in the non-exchangeable case
\triangleright Dense graph limits $\left|E\left(G_{N}\right)\right| \approx\left|V\left(G_{N}\right)\right|^{2}$.
(LGL) Lovasz, Szegedy '06: Graphons $w \in L^{\infty}\left([0,1]^{2}\right)$.
(MFL) Chiba, Medvedev '19, Kaliuzhnyi-Verbovetski, Medvedev '18.
\triangleright Sparse graph limits $\left|E\left(G_{n}\right)\right| \approx\left|V\left(G_{n}\right)\right|$.
(LGL) Benjamini, Schram '01: Graphings.
\triangleright Intermediate density $\left|V\left(G_{n}\right)\right| \ll\left|E\left(G_{n}\right)\right| \lesssim\left|V\left(G_{n}\right)\right|^{2}$. (LGL) Borgs, Chayes, Cohn, Zhao '18-'19: L^{p} graphons.
\triangleright Intermediate density $\left|V\left(G_{n}\right)\right| \lesssim\left|E\left(G_{n}\right)\right| \lesssim\left|V\left(G_{n}\right)\right|^{2}$.
(LGL) Backhausz, Szegedy '20: Graphops
(LGL) Kunszenti-Kovasz, Lovasz, Szegedy '19: s-graphons
(LGL) Kuehn, Xu '21: Digraph-measures
(MFL) Gkogkas, Kuehn '20; Kuehn, Xu '21.

Comparison of the various graph limit theories

Entropy solution

- A function $f_{N} \in L^{\infty}\left([0,1] \times \mathbb{T}^{d N} \times \mathbb{R}^{d N}\right)$ satisfying the Gaussian decay

$$
\sup _{t \leq 1} \int_{\mathbb{T}^{d N} \times \mathbb{R}^{d N}} e^{\beta \sum_{i \leq N}\left|v_{i}\right|^{2}} f_{N} d x_{1} d v_{1} \ldots d x_{N} d v_{N} \leq V^{N}
$$

Entropy solution

- A function $f_{N} \in L^{\infty}\left([0,1] \times \mathbb{T}^{d N} \times \mathbb{R}^{d N}\right)$ satisfying the Gaussian decay is an entropy solution iff all marginals $f_{k, N}$ for $1 \leq k \leq N$ verify

$$
\begin{aligned}
\int_{0}^{T} \int_{\mathbb{T}^{d k} \times \mathbb{R}^{d k}} e^{\lambda e_{k}}\left|f_{k, N}\right|^{q-1} \\
\quad \operatorname{sign}\left(f_{k, N}\right) L_{k}\left[f_{k, N}\right] d x_{1} d v_{1} \ldots d x_{k} d v_{k} d t \geq 0,
\end{aligned}
$$

Reduced energy

$$
e_{k}\left(x_{1}, v_{1}, \ldots, x_{k}, v_{k}\right)=\sum_{i \leq k}\left(1+\left|v_{i}\right|^{2}\right)+\frac{1}{N} \sum_{i, j \leq k} \phi\left(x_{i}-x_{j}\right) .
$$

e_{k} is invariant under the advection component

$$
L_{k}=\sum_{i \leq k} v_{i} \cdot \nabla_{x_{i}}+\frac{1}{N} \sum_{i, j \leq k} K\left(x_{i}-x_{j}\right) \cdot \nabla_{v_{i}}
$$

Entropy solution

- A function $f_{N} \in L^{\infty}\left([0,1] \times \mathbb{T}^{d N} \times \mathbb{R}^{d N}\right)$ satisfying the Gaussian decay is an entropy solution iff all marginals $f_{k, N}$ for $1 \leq k \leq N$ verify

$$
\begin{aligned}
\int_{0}^{T} \int_{\mathbb{T}^{d k} \times \mathbb{R}^{d k}} e^{\lambda e_{k}}\left|f_{k, N}\right|^{q-1} \\
\quad \operatorname{sign}\left(f_{k, N}\right) L_{k}\left[f_{k, N}\right] d x_{1} d v_{1} \ldots d x_{k} d v_{k} d t \geq 0,
\end{aligned}
$$

- Renormalized or mild solutions can offer a natural way to prove it, while it is automatically satisfied if we have classical solutions.

