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Goal:
Mean-field limit for multi-agent systems
— Singular (Coulomb) interaction agents
Major open problem
— Non-exchangeable agents: Remove
Type of cooperations (symmetry)
Connetivities of dense graphs
Results:
Novel hierarchy of observables
New LP estimates of the marginals of the system
Allowing very singular interaction kernels
Non-exchangeable agents on sparse-graphs
— New concept of limits: extended graphons



A general class of N-agents interacting system:

aX; = Zw K(Xi — X;) dt + V20 dW,

Xi(0) = X,-0 c R

positions/activities
weights/connectivities

N independent Wiener processes
interaction kernel




Classical mean-field theory:

N
1
dx,-:NZK()o—x,-)dH@dw,-

J=1

Xi(0) = X € R°

Wj ~ exchangeable particles
K interaction kernel

%;—Fdiv(f(K*f)—an) =0




Classical mean-field theory: Second order systems

d

K = V(t)

dVi(t) = ZKX X)) dt + V20 dW;
/#I

Rigorous limit l N —

%;—l—v Vxf+Kx*xp-V,f=0A,f

Vlasov-Fokker-Planck equation
distribution: f(t, x, v)
density: p(t, x) = [ f(t, x,v)dv



Classical mean-field theory: Bibliographic background

Ke W' + fissmooth enough

McKean 1967, Braun-Hepp 1977, Dobrushin 1979, ...

Neunzert, Sznitmann, ..., Golse

Estimates on the trajectories distance one by one

( (Z\x,,v ww’));

where (X;, V;) are N identical copies of
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Ke W' + fissmooth enough
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liw = Fllw-11 < c @ IVKIe= R — £ 1
Y
(X v) = > oxn(X)dvn(v)

i=1
(empirical measure)

—  This trajectorial approach requieres K ¢ W'



Classical mean-field theory: Bibliographic background

Ke W' + fissmooth enough

McKean 1967, Braun-Hepp 1977, Dobrushin 1979
Neunzert, Sznitmann, ..., Golse

lan = Fllw-11 < Ce”‘VK”L“IIM0 — Pl

pn(t, X, v) == NZ5X(t) )Svi(y(v)
i=1

(empirical measure)

K| < W, 0 <1
Hauray-Jabin 2015

— only in the deterministic case



— in the stochastic case

d=1
Hauray-Salem 2019



— in the stochastic case

d=1
Hauray-Salem 2019

d > 1: Truncated kernels
Huang-Liu-Pickl 2020, Pickl etal. ¢ < 1, d=3

Typically ¢. = c 75 K =-Vo.,d>3
(en + x])

where en = N7?

with the critical scale 0=1



Interaction kernel:

K = —V, for a repulsive and nonnegative ¢
Main example:
Coulombian interactions
— ¢=—cln|x|, ifd=2
c :
— ¢ - W, |f d Z 3
For simplicity:
X; e T¢
V. e RY



Classical mean-field theory: Statistical approach

- New object: We put individual trajectories aside



Classical mean-field theory: Statistical approach
- New object: We put individual trajectories aside
- Full joint law at time ¢: fy(t, X1, V4, ..., XN, VN)
satisfies the Liouville equation:
N
Orfw+ Y Vi Vly

i=1
N

N
+D N ! > K(x —X/)‘Vv,-fNZ‘TZAfoNa
]

i=1 j=1

We need velocity decay to control py



Statistical approach

- Introduce a joint law of the “trajectories”
as a kind of projection: k-point marginals

- Marginal laws of Xi, Vi, ..., Xk, Vi at time t:

T N(E X1, Ve ooy Xk, Vi) =
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TA(N—kK)  RA(N—K)
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Statistical approach

- Introduce a joint law of the “trajectories”
as a kind of projection: k-point marginals

- Marginal laws of Xi, Vi, ..., Xk, Vi at time t:
feN(E X1, Ve, Xk, Vk) =

/ In(t X1, Vi ooy XNy VN) OXk1 AVt - .. dXy dvy.
TA(N—kK)  RA(N—K)

The concept of solution for fy are carried over
the marginals fx ; and not just the joint law fy
so that we also need an appropriate notion
of entropy solutions on those marginals

- Question: f/(’/\/ — 2K



3tka+ZV/ Vx,kaJrZ > KX —%) - Vifn
i<k /<k

d
i<k TIXR

=0 Z Av,-fk,N-

i<k

Z vvl ’ / fk+1,N K(XI - Xk+1 )ka+1 de+1

Critical new idea
the new term has the same scaling as
the convolution at the limit

Moment propagation:
eZigk“ +[vil?)



3tka+ZV/ Vx,kaJrZ > KX —%) - Vifn
i<k /<k

d
i<k TIXR

=0 Z Av,-fk,N-

i<k

Z vvl ’ / fk+1,N K(XI - Xk+1 )ka+1 de+1

Critical new idea
the new term has the same scaling as
the convolution at the limit

Moment propagation:

eek(X1;V17---an7Vk) _ ezfgk(1+|Vi\2)+1N Dijek PXi=X))



3tka+ZV, Vx,ka"‘Z ZK i —Xj) - Vi

i<k /<k
Z V- / ; fict1,n K(Xi — Xk41) dXk1 Vi1
I<k T xR
=0 Z Av,-fk,N-

i<k

Critical new idea
the new term has the same scaling as
the convolution at the limit:
— behaves well with (weighted) LP norms

lnlly = [ @0
Mhex  JThIxRKd

ek(X‘], V17' . 7Xk7 Vk) = Zlgk(1 + |Vf|2) + 1N Zingk ¢(Xf - Xj



8ﬂkA/+—§£:\q ‘7&ﬁ(N—Fj£: j{:/( ) Vifn

i<k j<k
N —k
+ — Z Vy, fri 1.8 K(Xi — Xi1) AXk1 OV
N = TdxRI

Avoid loosing a derivative in v;



8ﬂkA/+—§£:\q Y7&ﬁ(N—%j£: j{:/( ) Vifn

i<k /<k
— Z Vy, - / fier1.n K (X — Xi1) X1 OV 1
: Td xR
i<k

i<k

Avoid loosing a derivative in v;
In parallel:
e Lacker (2021) studies the propagation of marginals
on 1st (2nd) order systems with non-degenerate
diffusion using the relative entropy, but require
interaction kernels K in some exponential Orlicz space

¢ Jabin-Poyato-S, 2021, for non-exchangeable systems



New results: d = 2, 3.

Assume K ¢ LP(TY), p > 1, and define

1 C

— — q /

Consider a renormalized solution fy to the
Liouville eq satisfying the Gaussian decay

with 9 € L>(T9N x R9N), such that

0 A(0 K A(t N
/ 0,17 < FE - sup 7 een < F
Tkd « Rkd <1 TNd « RNd



New results: d = 2, 3.

Assume K ¢ LP(TY), p > 1, and define

— 1 — c q /

Consider a renormalized solution fy to the
Liouville eq satisfying the Gaussian decay

with 9 € L>(T9N x R9N), such that

0 A(0 K A(t N
/ 0,170 < FE sup 7 een < F
Tkd « Rkd <1 TNd « RNd

Then, one has that

sup |fe n|? e\t e < ok ,_—g 1 Fk p2k—N-1
t<T JTkd x RKd




New results (Bresch, Jabin & JS)
Assume that (d=2)
K=-V¢e lP(T?), forsome p>1,

/ e’ dx < +00, 6> 0,
Td
e Let f be the unique smooth solution to the Vlasov equation

with initial data © € C°(T9 x R%) & e IVF < o
Td xR

k
o Ry = () in L', =T]f(t,x,v)
i=1

170 wll oo (awavy < M, for some M >0, Vk < N



New results (Bresch, Jabin & JS)
Assume that (d=2)
o K=-V¢elP(T?), forsome p>1,

. / e’ dx < +00, 6>0,
Td

Let f be the unique smooth solution to the Vlasov equation

with initial data © € C°(T9 x R%) & e IVF < o
Td xR

k
foy — () in L', =TT f(t, %, v))

170 wll oo (awavy < M, for some M >0, Vk < N

Then, there exists T* such that
fka — f®k, in L/oc ([0, T*] X de X de)

Strong propagation of Chaotic/Tensorized law
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Remarks

e The results are valid only for finite time.

Global and uniform estimates
— Alexis Béjar-Lépez « Jabin, JS

e The result does not provide direct quantitative
convergence estimates on the marginals

fkn — oK,
Quantitative estimate for the case K < L2.

e Extension to the stochastic case of mildly singular
kernels

o Does not apply directly in d > 3 to i i.d. X° as
[ eNdx = +o0, YA >0, if ¢ = Xz




New results: First order systems

]
aXi(t) = 5 D K(X = X)) dt + V2o dW,
i

Z:—i—div(f(K*f)—an) =0

Applications:
- Keller-Segel, Euler / Navier-Stokes
Fetecau, Huang-Liu, Pickl, Bresch-Jabin-Wang,...
Chorin, Goodman, Beale-Majda, Cottet, Fournier, S.,
Hauray, Jabin-Wang, Wynter,
Rosenzweig, Duerinckx, Serfaty (u ¢ W'),...



New results: First order models (Bresch, Jabin & JS).

Assume that

K e LP(T9), forsome p>1, |K

]
|X[®

(divK)_ e L>(T9),

s<d

Let f be the unique smooth solution to the transport equation

with initial data f© € C>(T9),

Ry = ()% in L,

110 wll oo (rowy < MK, for some M >0, Yk < N



New results: First order models (Bresch, Jabin & JS).

Assume that

1

e KeLP(TY), forsome p>1, KNW

s<d

o (divK)_ € L>=(T9),

e Let f be the uniqgue smooth solution to the transport equation
with initial data f© € C*°(T9),

o R0y = ()% in L,

o |[F nllpoo(rany < M¥,  forsome M >0, Yk < N

Then, there exists T* such that

fk,N N f@k7 in Lq ([O, T*] Xde)

loc

— Strong propagation of chaos



Non-exchangeable systems:

A prototype to study non-exchangeable systems is

N
aXi =Y wi'K(X; - X)) dt + V2o dW,,
j=1

non-necessarily symmetric
interaction weights



Assumptions on the interaction weights:

Objective: stay within the mean-field limit

N

N o . . .
max Z \w)| = O(1)  Total interaction with any
/:

object must be finite

N . .
max |wy| =3 0 Individual coefficients
1<7j<N

should be small



Some examples:
Brain neural networks

Many neurons: Human brains contain ~ 86 - 10° neurons.

Sparseness & modularity: Each neuron has synaptic
connections with only 7 - 10% neurons. Human Connectome
is organized into structural cores and modules.

Synchronization: emerges as a consequence of the interplay
of the local dynamics in regions with large intra connectivity
and the topology of non-symmetric connectivities.

>0330
>0.167

— 50500
® 0500
o 50330
.+ 0167




Some examples:
Agents on a graph
Brain structure, Epidemiology, Machine Learning, ...

Sparseness: We don’t expect to
have many interactions

w; = 0 for most /, j.

There is another scale within the
graph: Vi, the number #j of order N’
such that w; ~

—> wj satisfy the assumptions and
the law of large numbers still applies

How different is the study of the mean-field limit of
the classical case with respect to this context?



Strategies regarding the structure of w;: simple structure

For w; = m;, define
N
UN = ij5(X — )(j)
j=1

which verifies (symmetrization)

ar +div (K *x vn)vn) = cAvy

— In Fluid Mechanics gives the total vorticity,

but vy can lose the probability measure character
and modulated energy techniques could give problems.



Strategies regarding the structure of w;: simple structure

For w; = m;, define
N
UN = ij5(X — )(j)
j=1

which verifies (symmetrization)

ar +div (K *x vn)vn) = cAvy

— In Fluid Mechanics gives the total vorticity,
but vy can lose the probability measure character
and modulated energy techniques could give problems.

1
N

Defining X; = m;:X; = case of exchangeable systems

For m; random and i.i.d. Then m; ~

extend the entropy approaches



Strategies regarding the structure of w/¥

When w;} do not have any simple structure

e It no longer seems possible to define
an empirical measure

~~ Try to incorporate w) as part of the state

Can we write

N

Wi = W( ) (5175]) § € [0,1]
for some dlstrlbutlon of ¢ and some kernel w?

= we go back to a classical mean-field context
for which the regularity of w is crucial



Strategies regarding the structure of W,?’:

We would like to solve the mean-field limit
equation associated with this new kernel

Ot (t, x, &

waivs (T(ex9) [ we) [ Kx- )it oy.a0))
= o Af(t, X, &)

N—r




Strategies regarding the structure of W,?’:

We would like to solve the mean-field limit
equation associated with this new kernel

Ot (t, x, &

waivs (T(ex9) [ we) [ Kx- )it oy.a0))
= o Af(t, X, &)

~—

e There is no initial data

o We are not interested in f, butin [ 7(t, x, d¢)
which should be the limit of the “empirical measure”

e Need for an analytical context: Graph Theory



Graphons as dense graph limits (Lovasz, Szegedy, '06)
Large-scale limits of symmetric dense graphs

Let G = (V, E, Wy) a finite graph with vertex V = [1; N],
edges E, and adjacency matrix Wy = (w}');




Graphons as dense graph limits (Lovasz, Szegedy, '06)

Large-scale limits of symmetric dense graphs

Let G =

(V, E, Wy) afinite graph with vertex V = [1; N],

edges E, and adjacency matrix Wy = (w; M

From w}’ we construct a piecewise constant function wy

ij=1

After permutation of indexes
wg — w € L>([0,1]?), w symmetric,
for dense graphs |E(Gy)| ~ |V(Gn)/?.



Graphons as dense graph limits (Lovasz, Szegedy, '06)
Large-scale limits of symmetric dense graphs

Let G = (V, E, Wy) a finite graph with vertex V = [1; N],
edges E, and adjacency matrix Wy = ( ,j\’),,-

.WNSC ZWU[I1I)

ij=1

i ) ()
o Wi — w e {L>([0,1]?), w symmetric } = Graphons,
for dense graphs |E(Gn)| =~ |V(Gn)|?.

e The cut metric: éo(w, wg)
there exists a measure preserving map ¢y on [0, 1] st

N N—oo
HW—W¢N(/'),¢>N(/)HLML1 — 0



What about mean-field limits on symmetric dense graphs?

Medvedev '18-'19
e For any graphon w, we can find finite graphs Gy
approximating 0 < w < 1, with weights

wi =N - w(¢,¢)d¢ dc,

i
x5 w)

Ul




What about mean-field limits on symmetric dense graphs?

Medvedev '18-'19
e For any graphon w, we can find finite graphs Gy
approximating 0 < w < 1, with weights

Wi =N [ w(e.C)dé dC,
wS "2 win ([0, 13) = do(w,wS) =0

o K e Whe

e Stability estimate:

d 1 1
G| [ mfiacds < or [ [ i~ flaxde s Calwg -~ wii
0 JRrd 0 JRY



What about mean-field limits on symmetric dense graphs?

Medvedev '18-'19
e For any graphon w, we can find finite graphs Gy
approximating 0 < w < 1, with weights

=N w(e.C)dé dC,

wS "2 win ([0, 13) = do(w,wS) =0
e K c Whe

- fo (t,x,€)d¢ and f satisfies

1
atf(t,X,£)+diVX (f(t,X,g)/o /]Rd W(&C) K(X—y)f(t,y,()dyd{) =



What about mean-field limits on symmetric dense graphs?

Medvedev '18-'19
e For any graphon w, we can find finite graphs Gy
approximating 0 < w < 1, with weights

=N wiE,)ded, | sup Nw}| = O(1)

wi = winL'([0, 1) = da(w,wS)—0

o K e Whe

— N — f01 f(t,x,€)d¢ and f satisfies

1
8tf(t,X,§)+diVX (f(t7X7§)/0 /]Rd W(&C) K(X_y)f(tvyaC)dyd<> =



What about mean-field limits on sparse graphs, |E(Gn)| =~ |V(Gn)|?

e SUp
NeN

m?xzj]

N
W,-/-!erlaxzi:y

wy| < C

o K e Whin Whe

e X? independent (but not i.i.d.) sttheir laws f2 verify

lim max]

N—o0

sup max{/ X [22(x) dx, ||f,-°||W1,1nW1,oo} < 00
Rd

NeN /!

N = 0.



What about mean-field limits on sparse graphs, |E(Gn)| =~ |V(Gn)|?

N N ; N
sSup max Wi max wi'| < C, lim max|w;|=0.
oNeg i Ej \w; |+ ,‘-'" E,- lw;'| < C, Jim. ’_? lw;'| =0

e K e WhinWwhe
e X? independent (but not i.i.d.) sttheir laws f2 verify

supm.ax{ [ e ox. ||n°||w1,1mw1,oo} < oo
NeN !/ Rd

—> the mean-field limit is described by (extended graphon)

w e LZ([0, 1], M ([0, 1])) N L([0, 1], M¢([0, 1]))
fe Lo, T x [0, 1], Wy n We=(RY)

—000<t<T

Ny ]
1
lim sup EW; | — ) dx ,/ft,-, a¢ | =0.
h P 1<Nk; LI (t,-¢) f)

Jabin, Poyato, JS



Idea of the proof

Propagation of independence

ZWU K(Xi = y)ii(t.y) dy,

Xi(0) = X- (independent)
fi(t,-) = Law(Xi(t)) verify

8t7‘/+divx<,tx ZW,,/KX y)Ff tdy)> 0,

7‘:I'(07X) = fl(07 )
_

(s

2 \

N N
Z ,1\, Zﬁ(t-)) < Cy(1) max|WU|1/2 Cao(t)
i=1 i=1

“Nba *



Consequences of the propagation of independence:

« For general connectivities w},
-+ the limit of the corresponding 1-particle distribution

1 on-
N Zf,(t,X)
i=1

e The equation for 1-particle distribution evolves
a kind of 2-particle distribution

N
1 _ -
2 S0 Wi X7 x)

ij=1

— There is a hierarchy of equations indexed by trees



Graphon-like reformulation
» We can recast the equation for f; using graphons:
wn (£, ¢) = ZNW CENGINEEN()

thx,1l(l))

e (wy, fy) is a solution of the generalized Vlasov equation

=10y
N

1
8th(t,X,£)+diVX<fN(t,X,§)/O WN(€7C) Rd K(X_y)fN(tﬂdyde)>:




Graphon-like reformulation
» We can recast the equation for f; using graphons:
wn (£, ¢) = ZNwNﬂ it 0y (©OLps 1 (0),

thx =1 4(€).

e (wy, fy) is a solution of the generalized Vlasov equation

1
8th(t,X,§)+diVX(fN(t,X,§)/O WN(€)C) Rd K(X_y)fN(tﬂdyde)>:

Q1) Compactness of (wy, fy)
Q2) Identification of the limit (w, f) in an appropriate topology.
Q3) The limit (w, f) satisfies the generalized Vlasov equation

~~ New compactness result in the spirit of Lovasz & Szegedy.



New hierarchy of observables

e For finite tree T (and not any arbitrary graph), we define

(T, wn, In)(E X1, X7))
IT|

-/ [T wn(eo&) TT Mt Xm&m) 0 ... dgir
0. 107 4

c&(T) m=1

These observables include the 1-particle distribution
for the tree T = T; with only one vertex:

N
7(Tq, wn, fy)(t, X) Z?tx

e Our observables completely entangle the kernel
with the initial conditions




New hierarchy of observables

e A critical point is that these observables solve an
independent hierarchy of equations

8{7‘( T, Wy, fN)
[T

+ ) divy, K(xi—2)7(T +i,wn, fn)(t, X1, ..., Xi7),2)dz | =0
=\

where T 4+ i denotes the tree obtained from T
by adding a leaf on the /i-th vertex

e They naturally extend the notion of marginals,
and hierarchy of marginals to non-exchangeable systems
If the particles were exchageable, observables would
depend only on the number of nodes — classical hierarchy




New hierarchy of observables

e A critical point is that these observables solve an
independent hierarchy of equations

81'7-(7-7 Wn, fN)
7|
+ZdiVx,- ( K(xi —z)7(T + i, wy, fN)(t,x1,...,xT|,z)dz> =0
i—1 RY

where T 4+ i denotes the tree obtained from T
by adding a leaf on the /i-th vertex

e The kernel w does not appear explicitly in this equation,
it only appears in the definition of observable




New hierarchy of observables

e A critical point is that these observables solve an
independent hierarchy of equations

8;7‘(7-, Wy, fN)

—|—Zdivx. K(xi —2)7(T +i,wn, fn)(t, X1, ..., X|7,2)dz | =0
= \Ure

where T 4+ i denotes the tree obtained from T
by adding a leaf on the /i-th vertex

e We don’t prove the convergence of fy to f in a direct sense.
This must be inferred from the convergence of 7(T, wy, fy)
that gives the correct topology for the convergence

—> we only need that 7(T, wy, fv)(t = 0, Xy, ..., X7|) converges




New hierarchy of observables

e A critical point is that these observables solve an
independent hierarchy of equations

81’7_(7-7 WN7 fN)
7|
+ ZdiVx,- ( K(xi —z)7(T + i, wy, fN)(t,x1,...,xT|,z)dz> =0
i= Re

where T 4+ i denotes the tree obtained from T
by adding a leaf on the /i-th vertex

e |In our strategy there are two types of limits:
1) Propagation of independence, limit of zero correlation:
the coupled system: the PDE for f; and the DS for X;
2) Push the graph to infinity: the limit of IJE;noo (T, wn, fn)




What about the metric to estimate compactness? Stability
e For A >0andany w,w € LM N LXM,

fO,1° € Le(We'' n W), we define

Da((w, 1), (#,7)) = sup ATV2||~(T, w, 1) = (T, i, 7°)
trees 71

L2(Rd|T\)




What about the metric to estimate compactness? Stability

e For A >0andany w,w € LM N LXM,
fO,1° € Le(We'' n W), we define

trees 71

Da((w, °), (W, 7)) = sup AITI/2 HT(T, w, 1) — (T, w, )

L2(Rd|T\)

e Stability:

f.f € L([0, t.]; L(Wy'' 1 WE™)) unique solutions of

1
(1t ,6) +divy (f(r, x6) [ [ WK yty.od dc) -0

/fdg /fdf

([0, .1, 13)

S

1

(In|InD) ((w, 1), (

W,

))))

1
2
T




Compactness result towards extended graphons
o Consider wy € LM N LEM, and fy € LE(W' N We™)

f}ég HWN”LE"MCOL?/\Q < 0, EZFI\)I HfNHLgo(W;JmW;’OO) < o0

e Then, there is a subsequence {Nx}«cn and there are
W e LEMNLEMe and e LE(W' N We™) st

(T, wn,, ) = (T, w,f) in L

loc

RIT), 1 <p< oo




Compactness result towards extended graphons

o Consider wy € LM N LEM, and fy € LE(W' N We™)

i}ég HWN”LE‘JMCOL?/\Q < 0, EZFI\)I HfNHLgo(W;JmW;’OO) < o0

e Then, there is a subsequence {Nx}«cn and there are
W e LEMNLEMe and e LE(W' N We™) st

(T, wn,, ) = (T, w,f) in L

loc

RIT), 1 <p< oo

e Reformulation (T, w, f) = fo (w, f) d¢ in terms of a countable
algebra of transforms F € F consistent with the adding-leafs
process.

e New compactness-by-rearrangement lemma reminiscent of
Szemerédi lemma proving that F(wy, fy) must converge
in LP modulo measure-preserving rearrangements w.r.t. ¢.

loc

e Invariance under rearrangements of (T, w, f).



Compactness result towards extended graphons
o Consider wy € LE M N LEM; and 1§ € LE(Wy' N We™)
sup W Lgo Mtz me < 00, Zﬁg”f’(\)’”L?(Wl"ﬁW}”) < 00
e Then, there is a subsequence {Nj}«en and there are
W e LEM N LEM and O € LWy 0 We™) st
Da((wn, 1)), (w, %)) = 0, as N — oo

for a sufficiently small A > 0.



The identification of the limit

1) Once the limit (w, °) has been calculated

W e LEM N LEM and 0 € LR(We' 0 W)
2) We solve

1
(1, %,€) + divy (f(t, x6) [ [ weKx-yfty.0d dc) =0

to get f € L([0, &.], L(Wy'' N We™))
3) The stability result gives

1
1 -
- : <
/O f d¢ Nkzi:f,

1
+ —0
(ln‘lnD)\((Wﬁ f0)7 (WNk7 f/(\)[k))Di
= W;-convergence by the propagation of moments.

-




The identification of the limit

4) Therefore, we can conclude that

1 1
EW, (Nk Zax,,/o f(t,-,€) d.g)



Conclusions and perspectives

Advantages
e Joint approach mean-field and large-graph limit.
e Large class of sparse non-symmetric graphs.
e Weights not coming as discretization
of fixed continuous objects.
e Better results in the noisy case:

|7(T, w, f) — (T, wn, fn)|| 2rorriy — O

Open questions
e What if K ¢ W'>?
only used in the propagation of independence



Thanks for your attention!



Further previous results in the non-exchangeable case

> Dense graph limits |E(Gy)| ~ |V(Gn)[?.
(LGL) Lovasz, Szegedy '06: Graphons w € L>([0, 1]?).
(MFL) Chiba, Medvedev ’19, Kaliuzhnyi-Verbovetski, Medvedev ’18.

> Sparse graph limits |E(G,)| ~ |V(G))|.
(LGL) Benjamini, Schram '01: Graphings.

> Intermediate density |V(G,)| < |E(G,)| < |V(Gh)?.
(LGL) Borgs, Chayes, Cohn, Zhao '18-'19: LP graphons.

> Intermediate density |V(G,)| < |E(G,)| < [V(Gh)?.
(LGL) Backhausz, Szegedy '20: Graphops
(LGL) Kunszenti-Kovasz, Lovasz, Szegedy '19: s-graphons
(LGL) Kuehn, Xu ’21: Digraph-measures
(MFL) Gkogkas, Kuehn "20; Kuehn, Xu '21.



Comparison of the various graph limit theories

graphops digrapk:measures
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Entropy solution
- A function fy € L([0, 1] x T9N x R) satisfying
the Gaussian decay

12
sup/ e® Lisn Vil £y dxy dvy ... dxy dvy < VN,
t<1 JTINxRAN



Entropy solution

- A function fy € L>([0, 1] x TN x R) satisfying
the Gaussian decay is an entropy solution iff all
marginals fx n for 1 < k < N verify

-
A e —1
/ / e % |fi n|?
0 JTok xRk

sign (fk,N) Ly [fk,N] adxy dvy ... dxy, dvi df > 0,
Reduced energy

’
(X, Vi, X vi) =) (14 |Vi!2)+N > o(xi—

i<k ij<k
€k is invariant under the advection component

LK—ZV, VX, N ZK VV,

i<k ij<k



Entropy solution

- A function fy € L([0, 1] x T9N x R) satisfying
the Gaussian decay is an entropy solution iff all
marginals fx n for 1 < k < N verify

T
/ / eAek |fk,N’q_1
0 JTdkxRdk
sign (fk,N) Ly [fk,N] dxy dvy ...dx, dv df > 0,

- Renormalized or mild solutions can offer
a natural way to prove it, while it is automatically
satisfied if we have classical solutions.



