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Introduction



The microscopic model
Microscopic model given by system of N differential equations

dx t
i =

( 1
N

∑
1≤j≤N

j ̸=i

M∇g(x t
i , x

t
j )−∇V (x t

i )
)

dt +

√
2
β

dW t
i

x t
i |t=0 = x0

i ∈ Rd.

▶ g is the (symmetric) interaction potential
▶ V is the external confining potential (e.g., V (x) = 1

2 |x |
2)

▶ W1, . . . ,WN are independent standard Brownian motions
▶ 1

β
≥ 0 interpreted as a temperature; noise models thermal fluctuations.

Constant real d × d matrix M is either
▶ antisymmetric (conservative/Hamiltonian)
▶ M = −I (dissipative/gradient)

N.B.
▶ No self-interaction in model
▶ Interaction is long-range
▶ Force/velocity field experienced by a single particle is ∝ average of

fields generated by remaining particles (i.e., mean-field)



Relevance of model I

Model case for potential g(x − y) = g(x , y) are Riesz interactions indexed by
parameter s < d:

g(x) =
1

cs,d

{
− log |x |, s = 0
|x |−s, s ̸= 0

▶ s = d − 2 Coulomb

▶ s < d − 2 sub-Coulomb

▶ s > d − 2 super-Coulomb

Numerous applications & connections to particle systems in physics, particle
methods for PDEs, finding equilibrium states for interaction energies,
biological and sociological models, large neural networks, approximation
theory...

Refer to surveys Jabin 2014, Jabin-Wang 2017, Chaintron-Diez 2022, Golse 2022
and book Borodachov-Hardin-Saff 2019



Questions of interest: mean-field limit I

What are the limiting dynamics of the empirical measure

µt
N :=

1
N

N∑
i=1

δx t
i
∈ P(Rd)

as N → ∞?

Formally expect that if µ0
N −−−−⇀

N→∞
µ0, then µt

N −−−−⇀
N→∞

µt , where µt is a solution

to the mean-field equation{
∂tµ− div(µ(∇V −M∇g ∗ µ)) = 1

β
∆µ

µ|t=0 = µ0.

When β = ∞, µt
N is, in fact, a weak solution to equation (6).

Establishing the mean-field limit refers to proving this convergence.



Questions of interest: propagation of chaos I

Suppose the initial positions X 0
N = (x0

1 , . . . , x
0
N) are independently and

identically distributed with some law µ0:

f 0
N = (µ0)⊗N .

What is the limiting behavior as N → ∞ of the law f t
N(x1, . . . , xN) of the

positions X t
N = (x t

1, . . . , x
t
N) of the particles at time t?

If µt is the solution of the mean-field equation with initial datum µ0, does it
hold that

f t
N ≈ (µt)⊗N as N → ∞ ?

Propagation of chaos refers to the asymptotic factorization of k -point
marginals f t

N;k ⇀ (µt)⊗k .1

Known that mean-field convergence and propagation of chaos are closely
related; qualitatively, they are equivalent Hauray-Mischler 2014.

1Recall that the k -point marginal fN;k :=
∫
(Rd )N−k fN(·, xk+1, . . . , xN)dxk+1 · · · dxN .



Questions of interest: generation of chaos I

Related notion of generation of chaos.2 Even when the initial law f 0
N is not

asymptotically chaotic, one still has that f t
N;k − (µt)⊗k → 0 as t → ∞ and

N → ∞.

Interpreted in an entropic sense, this means the relative entropy

HN(f t
N |(µt)⊗N) :=

1
N

∫
(Rd)N

log

(
f t
N

(µt)⊗N

)
df t

N

tends to zero as t → ∞ and N → ∞.

Question: What is the relation between the two limits t → ∞ and N → ∞?
In particular, is HN(f t

N |(µt)⊗N) = oN(1) uniformly in time (uniform-in-time
entropic propagation of chaos)?



Questions of interest: generation of chaos II

For (repulsive) overdamped Langevin dynamics (M = −I), one expects the
law f t

N weakly converges to the Gibbs measure

dPN,β(XN) =
1

ZN,β
e−βHN (XN )dXN .

with Hamiltonian

HN(XN) =
1

2N

∑
1≤i ̸=j≤N

g(xi , xj) +
N∑

i=1

V (xi).

If PN,β admits a logarithmic Sobolev inequality (LSI),

H(QN |PN,β) ≤ CLS I(QN |PN,β),

then this convergence may be quantified and is exponentially fast. Poincaré
inequality or LSI holds as soon as HN is uniformly convex, i.e.
Hess HN ≥ cIdN×dN , for c > 0 Bakry-Émery 1985.

Difficulty is going beyond the uniformly convex case (e.g.,
Bauerschmidt-Bodineau 2019-21).



Questions of interest: generation of chaos III

The mean-field density µt should weakly converge to the thermal equilibrium
measure µβ , which is the minimizer among probability measures of the
mean-field free energy

Eβ(µ) :=
1
2

∫
(Rd)2

g(x , y)dµ⊗2(x , y) +
∫
Rd

V (x)dµ(x) +
1
β

∫
Rd

logµ(x)dµ(x).

If V grows sufficiently fast at infinity, then Eβ has a unique minimizer, which is
characterized by the existence of a constant cβ ∈ R such that

g ∗ µβ + V +
1
β
logµβ = cβ in Rd.

In many cases, it’s known that P(k)
N,β ⇀ µ⊗k

β . If µβ admits the nonlinear LSI

Eβ(µ)− Eβ(µβ) ≤ CLSβ

∫
Rd

∣∣∣∣ 1β∇ logµ+∇V +∇g ∗ µ
∣∣∣∣2 dµ,

then µt converges exponentially fast to µβ . Easy to show that a nonlinear LSI
for PN,β implies mean-field LSI for µβ .



Questions of interest: generation of chaos IV

Figure: Large Particle Number and Large Time Limits

N-particle law f tN mean-field law µt

N-particle Gibbs measure PV
N,β

thermal equilibrium measure µβ

N → ∞

t → ∞
N → ∞, t → ∞

t → ∞

N → ∞

2This term was recently coined by Jani Lukkarinen.



Previous results: mean-field convergence/propagation of chaos

▶ Coupling method Sznitman 1991, Hauray-Jabin 2015, Boers-Pickl 2016,
Lazarovici-Pickl 2017, Graß 2021, Guillin-Le Bris-Monmarché 2021,...

▶ Wasserstein stability Braun-Hepp 1977, Dobrushin 1979, Neunzert-Wick 1974,
Hauray 2009, Carrillo-Choi-Hauray 2014,...

▶ Relative entropy Jabin-Wang 2016, 2018, Guillin-Le bris-Monmarché 2021

▶ Control of microscopic dynamics and compactness for well-chosen point
configurations Goodman-Hou-Lowengrub 1990, Schochet 1996,...

▶ Displacement convexity for Wasserstein gradient flow
Carrillo-Ferreira-Precioso 2012, Berman-Onnheim 2015,...

▶ Compactness via diffusion Osada 1985-1987, Rogers-Shi 1993,
Cépa-Lepingle 1997, Fournier-Hauray-Mischler 2014, Wang-Zhao-Zhu 2022,...

▶ Stability for BBGKY hierarchy Lacker 2021, Han 2022, Jabin-Poyato-Soler
2021, Bresch-Jabin-Soler 2022, Lacker-Le Flem 2023

▶ Modulated energy/free energy method Duerinckx 2016, Serfaty 2020, R.
2020-2021, Nguyen-R.-Serfaty 2021, R.-Serfaty 2021 / Bresch-Jabin-Wang
2019-2020, Chodron de Courcel-R.-Serfaty 2023



Modulated energy and functional inequalities



Modulated-energy method I

FN(XN , µ) :=

∫
(Rd)2\△

g(x , y)d
( 1

N

N∑
i=1

δxi − µ
)⊗2

(x , y).

Total interaction of system of N discrete charges at xi against neutralizing
background of charge µ, with self-interaction of points (infinite, if g(x , x) = ∞)
removed.

Quantity first appeared in stat mech of Coulomb/Riesz gases Sandier-Serfaty
2015, Rougerie-Serfaty 2016, Petrache-Serfaty 2017, Leblé-Serfaty 2017-2018 as a
next-order energy.

Falls out of the splitting formula

HN(XN) = NEβ(µβ) + NFN(XN , µβ)−
1
β

N∑
i=1

logµβ(xi).



Modulated-energy method II

This modulated energy first used in dynamics context Duerinckx 2016, Serfaty
2020

Idea: establish a Grönwall relation for FN(X t
N , µ

t)

▶ Method goes back to Brenier 2000; similarities with relative-entropy
method Dafermos 1979, DiPerna 1979, Yau 1991, Saint-Raymond 2009

▶ Exploits a weak-strong uniqueness principle for limiting equation

▶ Advantages - quantitative; no need for study of microscopic dynamics

▶ Disadvantages - typically requires some regularity for or an a priori
assumption on the limiting solution



Coercivity of modulated energy I

For simplicity, assume −∆g = cdδ0 (Coulomb),3∫
(Rd)2

g(x − y)df⊗2(x , y) = cd∥f∥2
Ḣ−1 .

Infinite for f = 1
N

∑N
i=1 δxi − µ if d ≥ 2!

We can smear the point masses δxi to uniform measure δ
(ηi )
xi on sphere

∂B(0, ηi) to show that

FN(XN , µ) ≥
1

cd,s

∥∥∥∥∥ 1
N

N∑
i=1

δ
(ηi )
xi − µ

∥∥∥∥∥
2

Ḣ−1

− ErrorN,η⃗.

Both terms blow up as ηi → 0, but it turns out that there is a natural scale
N− 1

d for the ηi in terms of N, such that the error is negligible as N → ∞.

With more difficulty, this idea of renormalizing the energy through smearing
the Dirac masses can be generalized to the full range 0 ≤ s < d.

3Recall that for a ∈ R, ∥f∥2
Ḣa :=

∫
Rd (2π|ξ|)2a |̂f (ξ)|2dξ, where f̂ (ξ) denotes the

Fourier transform of f .



The modulated energy identity

Suppose that β = ∞. One computes

d
dt

FN(X t
N , µ

t)

≤ −
∫
(Rd)2\△

(
ut(x)− ut(y)

)
· ∇g(x − y)d

( 1
N

N∑
i=1

δx t
i
− µt

)⊗2
(x , y),

where ut := ∇V −M∇g ∗ µt is the vector field associated to the mean-field
equation solution µt .

If we have a functional inequality of the form

|RHS| ≤ C1(∥ut∥)
(
|FN(X t

N , µ
t)|+ C2(∥µt∥)N−α

)
,

where C1,C2 depends on d, some norm of ut , µt , respectively, and α > 0,
then Grönwall implies an estimate

|FN(X t
N , µ

t)| ≤
(
|FN(X 0

N , µ
0)|+ N−α

∫ t

0
C2(∥µτ∥)dτ

)
e
∫ t

0 C1(∥uτ∥)dτ .



Variation by transport I

In the context of mean-field limits, essential to control quantities that
correspond to differentiating FN along a transport field:

dn

dtn|t=0
FN

(
(I+ tv)⊗N(XN), (I+ tv)#µ

)
=

∫
(Rd)2\△

∇⊗ng(x − y) : (v(x)− v(y))⊗nd
( 1

N

N∑
i=1

δxi − µ
)⊗2

(x , y),

where (I+ tv)(x) = x + tv(x).

Harmonic Analysis Problem: Prove functional inequalities of form

|RHS| ≤ C(∥v∥)
(
FN(XN , µ) + C(∥µ∥)N−α)

for some α > 0. Because then this yields an estimate for the time-evolved
modulated energy FN(X t

N , µ
t) that implies mean-field convergence.

There are two perspectives on proving these functional inequalities...



The stress-energy tensor perspective I

The first perspective is due Leblé-Serfaty 2018, Serfaty 2020.

Idea: interpret the variation expression in terms of a stress-energy tensor
structure. In the Coulomb case, formally letting HN solve
−∆HN = cd

(
1
N

∑N
i=1 δxi − µ

)
, one can use integration by parts to write

∫
(Rd )2\△

(
v(x)− v(y)

)
· ∇g(x − y)d

( 1
N

N∑
i=1

δxi − µ
)⊗2

(x , y)

=
1

cd,s

∫
Rd

v · div [HN ,HN ] dx ,

where the stress-energy tensor is defined by

[h, f ]ij := ∂ih∂j f + ∂i f∂jh − δij(∇h · ∇f ), 1 ≤ i , j ≤ d .

Integration by parts and Cauchy-Schwarz allow one to conclude the bound∣∣∣∣∫
Rd

v · div [HN ,HN ] dx
∣∣∣∣ ≤ C∥∇v∥L∞∥∇HN∥2

L2 .



The stress-energy tensor perspective II

Formally, ∥∇HN∥2
L2 is the Coulomb energy of 1

N

∑N
i=1 δxi − µ; but

∥∇HN∥L2 = ∞ due to the singularity of the Dirac masses.

However, the reasoning may be implemented after a renormalization: namely,
replace δxi with the smeared charge δ

(ηi )
xi above, and apply reasoning to

HN,η⃗ := g ∗
( 1

N

N∑
i=1

δ
(ηi )
xi − µ

)
, η⃗ = (η1, . . . , ηN) ∈ RN

+.

Estimate the error directly from this replacement after choosing the ηi to be a
nearest-neighbor type distance of the order N− 1

d .

The stress-tensor approach is elegant, low-tech (i.e., integration by parts),
and based on local arguments.

However, it is rigid in the sense that it seems restricted to exact Riesz
potentials. Extendable to super-Coulomb case d − 2 < s < d by
Caffarelli-Silvestre extension; but unclear how to extend it to the
sub-Coulomb case 0 ≤ s < d − 2.



The commutator perspective I

The second perspective originates in R. 2020 on developing a new
generalization of the modulated-energy method for multiplicative noise.

If f = 1
N

∑N
i=1 δxi − µ, then formally the first variation may be rewritten∫

Rd

(
u · (∇g ∗ f )− g ∗ (div(uf ))

)
df (x) =

〈
f ,

[
u i ,

∂i

(−∆)
d−s

2

]
f

〉
L2

.

The first variation is the quadratic form associated to the commutator[
u i , ∂i

(−∆)
d−s

2

]
. The higher-order variations can be similarly formulated in

terms of iterated commutators.

By a renormalization argument that involves regularizing the Dirac masses,
similar to as in the stress-tensor approach, one can then apply estimates for
a class of singular integral operators known as Calderón d-commutators
Calderón 1980, Christ-Journé 1987, Seeger et al. 2019, Lai 2020. The error
introduced by renormalization can be estimated directly.



A functional inequality for all Riesz/Riesz-type potentials

Using the commutator perspective, Q.H. Nguyen-R.-Serfaty 2021 proved a
first-order functional inequality valid for all Riesz cases 0 ≤ s < d, as well as
more general “Riesz-type” potentials.

Application: the modulated energy method provides a unified approach to
quantitatively proving mean-field convergence of Riesz systems. Previous
works only covered varying subcases.

The method of proof we introduced works for higher-order functional
inequalities as well.



Sharpness of functional inequality

A natural question is the size of the exponent α in the functional inequality.∣∣∣∣∣
∫
(Rd)2\△

(
v(x)− v(y)

)
· ∇g(x − y)d

( 1
N

N∑
i=1

δxi − µ
)⊗2

(x , y)

∣∣∣∣∣
≤ C1(∥∇v∥)

(
FN(XN , µ) + C2(∥µ∥)N−α

)
.

More precisely, we want both terms in the RHS to be of the same order as
N → ∞; and we say the functional inequality is sharp if this is the case.

▶ By only counting nearest-neighbor (with typical distance of N− 1
d )

interactions, one expects FN is at least of order N
s
d −1

▶ FN ≥ −CN
s
d −1, where C = C(∥µ∥L∞) > 0

▶ Known that minFN is of order N
s
d −1 Sandier-Serfaty 2015, Rougerie-Serfaty

2015, Petrache-Serfaty 2017, Hardin et al. 2017

▶ Optimal exponent α = 1 − s
d only been shown for Coulomb case

s = d − 2 Leblé-Serfaty 2018, Serfaty 2020, R. 2021



Sharp functional inequality for the Coulomb/super-Coulom case

Theorem 1 (R.-Serfaty 2022, Chodron de
Courcel-R.-Serfaty 2023)
Let d ≥ 1, d − 2 ≤ s < d. There exists a constant C = C(d, s) > 0 such that
TFH. Let µ ∈ L1(Rd) ∩ L∞(Rd) with unit mean and v : Rd → Rd be Lipschitz.
Then for any pairwise distinct XN ∈ (Rd)N , it holds that∣∣∣∣∣
∫
(Rd)2\△

(v(x)− v(y)) · ∇g(x − y)d
( 1

N

N∑
i=1

δxi − µ
)⊗2

(x , y)

∣∣∣∣∣
≤ C∥∇v∥L∞

(
FN(XN , µ) +

log(N∥µ∥L∞)

2dN
1s=0 + C∥µ∥

s
d
L∞N

s
d −1

)
.



Comments

▶ Proof based on the stress-tensor perspective. The improvement to
N

s
d −1 comes from better estimation of the renormalization error.

▶ We also have sharp estimates for higher-order variations∫
(Rd)2\△

∇⊗ng(x − y) : (v(x)− v(y))⊗nd(
1
N

N∑
i=1

δxi − µ)⊗2(x , y).

Proof via an induction argument based on using lower-order variation
estimates, which combines both the stress-tensor and commutator
perspectives.

▶ Application: the optimal N
s
d −1 rate of convergence for the mean-field

limit measured in terms of FN(X t
N , µ

t). Previously, the optimal rate was
only known for the Coulomb case s = d − 2 Serfaty 2021, R. 2021. Only
the sub-Coulomb case 0 ≤ s < d − 2 remains.



Further applications of functional inequalities

▶ Seen that these FIs are crucial for proving mean-field limits of classical
particle systems Serfaty 2020, Duerinckx-Serfaty 2020, Bresch-Jabin-Wang
2019-2020, R. 2020-2022, Han Kwan-Iacobelli 2020, Q.H. Nguyen-R.-Serfaty
2021

▶ Also used to study scaling limits of quantum systems Golse-Paul 2020, R.
2021, Ben Porat 2022

▶ FIs (first- and higher-order) used to prove central limit theorems for
fluctuations of Coulomb gases Leblé-Serfaty 2018, Serfaty 2021

▶ Second-order FIs also have applications to mean-field limits with special
kinds of multiplicative noise R. 2020



Uniform-in-time convergence at positive temperature I

At positive temperature β < ∞, the noise has a diffusive effect in the limit
N → ∞. At the level of the mean-field PDE, this is seen through the decay of
solutions as t → ∞: for any 1 ≤ p ≤ q ≤ ∞

∥∇⊗nµt∥Lq ≲d,p,q (t/β)−
n
2 −

d
2

(
1
p − 1

q

)
∥µ0∥Lp .

This is exactly the same smoothing effect as satisfied by the linear heat
equation! On the torus Td, one even has exponential decay with µt replaced
by µt − 1.

We saw earlier that the time dependence of our modulated energy estimate
depends on quantities involving norms of µt :

|FN(X t
N , µ

t)| ≤
(
|FN(X 0

N , µ
0)|+ N−α

∫ t

0
C2(∥µτ∥)dτ

)
e
∫ t

0 C1(∥uτ∥)dτ .

New idea: Use the decay of µt to improve the time dependence, possibly
obtaining estimates which are uniform-in-time.



Uniform-in-time convergence at positive temperature II

In R.-Serfaty 2021, we developed a stochastic version of the modulated-energy
method based on estimating

E
(
|FN(X t

N , µ
t)|
)
,

that works for either conservative or repulsive dissipative dynamics and leads
to uniform-in-time estimates (w/ V = 0).

Previous works on uniform-in-time convergence (e.g., Malrieu 2003,
Cattiaux-Guillin-Malrieu 2008, Salem 2018, Durmus-Eberle-Guillin-Zimmer 2020,
Arnaudon-Del Moral 2020, Delarue-Tse 2021, Delgadino-Gvalani-Pavliotis-Smith
2023) impose strong convexity and/or regularity assumptions on the
interaction potential g.

Unfortunately, our method breaks down for s > d − 2, essentially because g
is no longer superharmonic. Also, doesn’t work for s = d − 2 (cf. Guillin-Le
bris-Monmarché 2021).



Modulated free energy and
propagation/generation of chaos



Modulated free energy I

A closely related object is the modulated free energy of Bresch-Jabin-Wang
2019-2020,

EN(fN , µ) :=
1
β

HN(fN |µ⊗N) + EfN [FN(XN , µ)] ,

which is well-suited to studying overdamped Langevin dynamics at positive
temperature.

Combines

▶ relative entropy HN(fN |µ⊗N),

▶ (average) modulated energy EfN [FN(XN , µ)].

Now the points XN ∈ (Rd)N are viewed as randomly distributed according to
the law fN and we take the expectation of the modulated energy FN(XN , µ).

Enlightening to re-express the modulated free energy in a different form...



Modulated Gibbs measure I
Given a density µ, we can define the modulated Gibbs measure

QN,β(µ) :=
1

KN,β(µ)
e−βNFN (XN ,µ)dµ⊗N(XN),

and modulated partition function

KN,β(µ) :=

∫
(Rd)N

e−βNFN (XN ,µ)dµ⊗N(XN).

Inserting the splitting formula

HN(XN) = NEβ(µβ) + NFN(XN , µβ)−
1
β

N∑
i=1

logµβ(xi).

into PV
N,β ,

dPV
N,β(XN) =

e−βNEβ (µβ )

Z V
N,β

e−βNFN (XN ,µβ )d(µβ)
⊗N(XN).

In other words, we have found that

PV
N,β = QN,β(µβ) and Z V

N,β = KN,β(µβ)e−βNEβ (µβ ).

Gibbs measure = modulated Gibbs measure relative to µβ .



Modulated Gibbs measure II

Conversely, given a probability measure µ, the modulated Gibbs measure
QN,β(µ) may be seen as a Gibbs measure through a change of the confining
potential.

Let

Vµ,β := −g ∗ µ− 1
β
logµ.

Then retracing the steps of the splitting formula above, one has

QN,β(µ) = PVµ,β

N,β .



Modulated Gibbs measure III

Using the explicit form of the modulated Gibbs measure QN,β(µ), we may
rewrite

EN(fN , µ) =
1
β

(
HN(fN |QN,β(µ)) +

logKN,β(µ)

N

)
.

With this rewriting, a crucial condition appearing in all that follows, called
smallness of the free energy, is

| logKN,β(µ)| = o(N),

which corresponds for instance to the “large deviations estimates” in
Jabin-Wang 2018. This condition—and even a stronger quantitative one—can
be proven in the Riesz cases and for bounded continuous interactions.

Up to a constant related to the smallness of free energy condition, the
modulated free energy is another relative entropy!



Dissipation of modulated free energy I
Crucial computation of Bresch et al.,

d
dt

EN(f t
N , µ

t) ≤

− 1
2
Ef t

N

[∫
(Rd)2\△

(ut(x)− ut(y)) · ∇1g(x , y)d

(
1
N

N∑
i=1

δxi − µt

)⊗2

(x , y)

]

− 1
β2N

Ef t
N

[
N∑

i=1

∣∣∣∣∣∣∇i log

(
f t
N

(µt)⊗N

)
+

β

N

∑
j ̸=i

∇1g(xi , xj)− β∇g ∗ µt(xi)

∣∣∣∣∣∣
2 ]

,

where the velocity field associated to the mean-field dynamics is

ut :=
1
β
∇ logµt +∇V +∇g ∗ µt .

At first pass...
▶ The second term on the RHS, which is ≤ 0, may be discarded.
▶ The first term on the RHS can be controlled in the Riesz case by the

modulated energy itself through the functional inequality, allowing to
close a Grönwall loop. On Td (when V = 0), this is what is done in
Bresch-Jabin-Wang 2019, Chodron de Courcel-R.-Serfaty 2023.



Sharp uniform-in-time propagation of chaos

Theorem 2 (Chodron de Courcel-R.-Serfaty 2022)
Let d ≥ 1, max(0, d − 2) ≤ s < d and β < ∞. Let
µ0 ∈ P(Td) ∩ W 2,∞(Td) ∩ Ḣ1+s−d(Td), such that infTd µ0 > 0. Then the
mean-field equation is globally well-posed in C

(
[0,∞),P(Td) ∩ W 2,∞(Td)

)
;

infTd µt ≥ infTd µ0; and for any n ≥ 0 and 1 ≤ p ≤ ∞,

∀t ≥ 1, ∥∇⊗n(µt − 1)∥Lp = O(e−Ct), as t → ∞.

For an “entropy solution” fN to N-particle forward Kolmogorov equation,
define the quantity

E t
N := EN(f t

N , µ
t) +

log
(
N∥µt∥L∞

)
2Nd

1s=0 + C∥µt∥
s
d
L∞N

s
d −1,

where C > 0 is a certain constant to ensure that E t
N ≥ 0. Then

EN(f t
N , µ

t) ≤ EN(f 0
N , µ

0) exp

(
C
∫ t

0
∥∇uτ∥L∞dτ

)
for some C > 0. In particular, the RHS is bounded uniformly in t.



Modulated Fisher information

In reality, one should not discard the nonpositive term, as it has a dissipative
effect crucial to the long-time behavior. We rewrite it as

− 1
β2N

Ef t
N

[
N∑

i=1

∣∣∣∣∣∣∇ log

(
f t
N

(µt)⊗N

)
+

β

N

∑
j ̸=i

∇1g(xi , xj)−∇g ∗ µt(xi)

∣∣∣∣∣∣
2 ]

= − 1
β2N

EQN,β (µt )

[ ∣∣∣∣∣∣∇
√

f t
N

QN,β(µt)

∣∣∣∣∣∣
2 ]

= − 1
β2 IN(f t

N |QN,β(µ
t)),

where IN is the normalized relative Fisher information. The dissipation
identity transforms into

d
dt

EN(f t
N , µ

t) ≤ − 1
β2 IN(f t

N |QN,β(µ
t))

− 1
2
Ef t

N

[∫
(Rd)2\△

(ut(x)− ut(y)) · ∇1g(x , y)d

(
1
N

N∑
i=1

δxi − µt

)⊗2

(x , y)

]
.

Goal: exploit a functional inequality relating the relative Fisher information to
the modulated free energy to take advantage of the relative FI term.



Modulated LSI

Given data (g,V , β), we say that a uniform µ-modulated LSI (µ-LSI) holds if
the family of probability measures {QN,β(µ)}N≥1 of the form (31) satisfies a
uniform LSI.

Main observation: if QN,β(µ) satisfies a uniform LSI, then

IN(fN |QN,β(µ)) ≥
1

CLS
HN(fN |QN,β(µ))

=
1

CLS

(
βEN(fN , µ)−

logKN,β(µ)

N

)
.

In other words, a uniform LSI for QN,β(µ) implies that the relative Fisher
information is bounded below by the modulated free energy and an
additive error that is oN(1) assuming smallness of free energy.

If this estimate holds for µ = µt along the mean-field flow, then it can be
inserted into the dissipation inequality to obtain an exponential decay of the
modulated free energy.



An abstract, general result I
Assume the following for the potential g : (Rd)2 → [−∞,∞].

(i) g ∈ C2((Rd)2 \ △) is symmetric and for some s < d, satisfies

|g(x , y)| ≤ C

{
1 + |log |x − y || , s = 0
1 + |x − y |−s, s > 0

for some constant C > 0.

Ensures all energy expressions are well-defined and that all differential
identities can be justified.

(ii) There exists a constant Cβ ∈ [0, 1
β
) such that for any fN ∈ Pac((Rd)N)

and µ ∈ P(Rd) ∩ L∞(Rd), with
∫
Rd log(1 + |x |)dµ(x) < ∞ if s = 0,

EfN [FN(XN , µ)] ≥ −CβHN(fN |µ⊗N)− oN(1),

where oN(1) only depends (in an increasing fashion) on µ through
∥µ∥L∞ .

Ensures that the modulated free energy is nonnegative up to oN(1)
error. Note this does not come for free, since we make no sign
assumptions on g. In fact, it shows that the modulated free energy
controls the relative entropy.



An abstract, general result II

(iii) There exist constants CRE ,CME ≥ 0, such that∣∣∣∣∣∣EfN

[∫
(Rd)2\△

(v(x)− v(y)) · ∇1g(x , y)d

(
1
N

N∑
i=1

δxi − µ

)⊗2

(x , y)

]∣∣∣∣∣∣
≤ ∥v∥∗

(
CRE HN(fN |µ⊗N) + CMEEfN [FN(XN , µ)] + oN(1)

)
for all pairwise distinct configurations XN ∈ (Rd)N , densities
fN ∈ Pac((Rd)N) and µ ∈ P(Rd) ∩ L∞(Rd), and continuous vector fields
v with finite homogeneous Sobolev norm ∥ · ∥∗ of some order.



An abstract, general result III

Let us introduce the quantity

E t
N := EN(f t

N , µ
t) + ot

N(1)

as a substitute for the modulated free energy.

▶ Additive error ot
N(1) ensures that E t

N ≥ 0, which allows to perform a
Grönwall argument on this quantity.

▶ Depends only on µt through the L∞ norm, hence the t superscript, and
is increasing in this dependence.



An abstract, general result IV

Theorem 3 (R.-Serfaty 2023)
Let β > 0. Assume that the mean-field equation admits a solution
µ ∈ C([0,∞),P(Rd) ∩ L∞(Rd)), such that ∥µt∥L∞ is bounded uniformly in t
and ∇ut ∈ L∞ locally uniformly in t. If s = 0, further assume that∫
Rd log(1 + |x |)dµt < ∞ for every t ≥ 0. If QN,β(µ

t) satisfies a uniform LSI
with constant CLS > 0 for every t ≥ 0, then

∀t ≥ 0, E t
N ≤ e

− 4t
βCLS

+
∫ t

0
C∥uτ∥∗

2 dτE0
N

+ e
− 4t

βCLS
+
∫ t

0
C∥uτ∥∗

2 dτ
∫ t

0
e

4τ
βCLS

−
∫ τ

0
C∥uτ

′
∥∗

2 dτ ′

×

[
ȯτ

N +
4

βCLS

(
oτ

N(1)−
logKN,β(µ

τ )

βN

)]
dτ,

where oτ
N(1) is as above, and ȯτ

N(1) denotes the derivative of oτ
N(1) with

respect to time.



An abstract, general result V

▶ Provided
∫∞

0 ∥uτ∥∗dτ < ∞, the first term on the RHS converges
exponentially fast to 0 as t → ∞.

▶ The second term is oN(1) uniformly bounded in t , assuming
logKN,β(µ

τ ) = o(N) uniformly in τ and that
∫∞

0 |ȯτ
N(1)|dτ < ∞, by the

fundamental theorem of calculus and our assumption that ∥µt∥L∞ is
uniformly bounded.

▶ Since EN differs from EN only by additive constants which are oN(1), and
the modulated free energy EN controls the relative entropy HN , our
estimate implies entropic generation of chaos and also gives a
uniform-in-time propagation of chaos if E0

N = oN(1).

In repulsive Riesz, attractive log, and bounded continuous cases,
assumptions (i)-(iii) hold and a more precise form of the main estimate is
available.

Cf. previous work on generation of chaos Lacker-Le Flem 2023 (entropic/exp
integrable ∇g), Guillin-Le Bris-Monmarché 2021 (entropic/log/conservative),
Guillin-Le Bris-Monmarché 2023 (Wasserstein/1D Riesz).



Modulated LSI for 1D Riesz case I

Given a density µ, recall that

QN,β(µ) = PVµ,β

N,β , where Vµ,β := −g ∗ µ− 1
β
logµ.

Proposition 4
Suppose that µ ∈ P(R) ∩ L∞(R) and if s = 0, also suppose that∫
log(1 + |x |)dµ < ∞. For β > 0, suppose that Vµ,β is κ-convex, for some

κ > 0. Then the probability measure QN,β(µ) has LSI constant 2
βκ

.

Let µ ∈ P(R) be such that log µ
µβ

∈ C2(R). If V ∈ C2 and β > 0, then Vµ,β is
κ-convex with

κ(µ) := inf V ′′ −
(

1
β
∥ log µ

µβ
∥Ċ2 + ∥g ∗ (µ− µβ)∥Ċ2

)
.

One can produce µ ∈ P(R) satisfying κ(µ) > 0 by choosing h ∈ C2, setting

µ :=
ehµβ∫
ehµβ

, and taking ∥eh − 1∥C2 arbitrarily small.



Modulated LSI for 1D Riesz case II

∥∥∥log µt

µβ

∥∥∥
Ċ2

→ 0 as t → ∞ J. Huang-R.-Serfaty. So, always exists t0 such that

inf t≥t0 κ(µ
t) > 0. Then QN,β(µ

t) satisfied a uniform LSI with constant
independent of t on [t0,∞). Combine with propagation of chaos estimate on
[0, t0] to deduce entropic generation of chaos.

▶ Proposition generalizes uniform LSI for 1D log Gibbs measure
Chafaı̈-Lehec 2020

▶ Proof relies on the convexity of the Riesz potential g on [0,∞) (only true
in 1D). Allows to treat the interaction as a perturbation of the
confinement.

▶ Ordering of particles allows to show the total Hamiltonian is uniformly
convex.

▶ Use contraction theorem Caffarelli 2000 for bounding the Lipschitz
seminorm of the Brenier map between two probability measures solely
in terms of the convexity constant. Reduces to applying LSI for
Gaussian measure Gross 1975.



Current and future directions



Current directions

Modulated energy/free energy combined with these commutator-type
functional inequalities are powerful tools for studying the large N behavior of
these systems. When combined with analysis of mean-field equation,
effective also for large time behavior.
▶ Uniform-in-time propagation of chaos for attractive case with mildly

singular g (e.g., g = log |x |, Patlak-Keller-Segel). Chodron de
Courcel-R.-Serfaty.

▶ Gaussian CLT for linear statistics/cumulant bounds J. Huang-R.-Serfaty

▶ Dynamical LDP Hess-Childs



Outlook I

Despite progress, a number of questions remain...

▶ Sharp functional inequalities in the sub-Coulomb regime 0 ≤ s < d − 2?
The singularity of the potential is milder, but the decay at infinity is
slower.

▶ Modulated LSI beyond d = 1?

▶ The case with positive and negative charges (e.g., two-component
plasma)? Our methods rely on the density having a definite sign and
also when we work at the level of the SDEs, there are no collisions
between particles. However, it is known that collisions may occur if the
particles are not identically signed.



Outlook II

▶ What about second-order systems? The prototypical microscopic
system is 

ẋi = vi

v̇i = − 1
N

∑
1≤j≤N

j ̸=i

∇g(xi − xj),

for which the expected mean-field PDE is the Vlasov equation
∂t f + v · ∇x f + E · ∇v f = 0
ρ =

∫
Rd df (·, v)

E = −∇g ∗ ρ,
(x , v) ∈ Ω× Rd.

Duerinckx-Serfaty 2020 treated the monokinetic case
f (x , v) = ρ(x)δ(v − u(x)), which is amenable to the modulated energy
method. But otherwise, this problem is essentially open.



The End

Thank you for your attention!
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