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Now his principal doctrines were these. That atoms and the vacuum
were the beginning of the universe; and that everything else existed only in opinion.

(Diogenes Laërtius, Democritus, Vol. IX, 44, trans. Yonge 1853)
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Heat equation from microscopic dynamics: an old problem

Heat equation for the temperature T (t, x)

C(T )∂tT = ∂x (K(T )∂xT ) , C(T ) specific heat, K(T ) thermal conductivity.

As a conservative law for the thermal energy:

∂te = ∂x (D(e)∂xe) , D(e) = K(T )C(T )
−1 thermal diffusivity

How to obtain this from a diffusive rescaling of a microscopic dynamics governed by
Hamilton’s equations

q̇j = pj

ṗj = −∂qjH(q,p)
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Connection to the microscopic dynamics

Consider a 1-d chain of anharmonic oscillators (a lattice system):

H(q,p) =∑
x

[
p2x
2
+W (qx) +V (qx+1 − qx)] =∑

x

ex

ėx = Jx−1,x − Jx ,x+1, Jx ,x+1 = −pxV
′
(qx+1 − qx), energy currents

then we expect that, under certain conditions on the initial distribution and on the
non-linearity of V and W

lim
ε→0

ε∑
x

G(εx)ex(ε
−2t) = ∫ G(y) e(t, y) dy

with

∂te = ∂y (D(e)∂ye) , D(e) =
1

C(Te)T 2
e
∫

∞

0
dt∑

x

Ee (Jx ,x+1(t)J0,1(0))
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Mathematical problems and energy conserving noise

Even the convergence of the Green-Kubo formula for D is not proven.

Adding some energy conserving noise to the dynamics (like random flip of sign of the
velocities) we can prove convergence of the GK formula for D, and linearized equation of
the energy fluctuations in equilibrium.

For diffusive problems other than for energy, relative entropy and entropy production
estimates can prove hydrodynamic limits for stochastic dynamics (Varadhan , Yau, ..., see
Milton Jara talk).

These relative entropy techniques do not work for the energy for a well known problem:
entropy does not control energy.

For harmonic chains (V and W quadratic) with noise only conserving energy, it is
possible to prove heat equation in the diffusive limit, at least in the average (not as a law
of large numbers).
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A deterministic dynamics

x = 1, . . . ,N, N + 1 = 1, periodic boundary. qx ,px ∈ R2,

q̇x(t) = px(t)

ṗx(t) = (∆ − ω2
0)qx(t) + ε

− 1
2 b (f ⌊tε

−1⌋θx) Jpx(t)

J = (
0 1
−1 0

) , ∆qx = qx+1 + qx−1 − 2qx .

f a chaotic map, ε = ε(N) = N−a, a > 6,
b(θ) of null average wrt the invariant measure of f .
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The chaotic maps f

The easy case: smooth map on the interval

f ∶ T→ T, f ∈ C∞, f ′ ≥ λ > 1.

There exists a unique a.c. invariant measure ρ⋆(θ)dθ + exponential decay of correlations.

An Anosov map on T2, for example

f (
θ1
θ2

) = (
2 1
1 1

)(
θ1
θ2

) .

This has the advantage to be time reversible.
Also ∃! ρ⋆(θ)dθ + exponential decay of correlations.
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The exterior force

q̇x(t) = px(t) ṗx(t) = (∆ − ω2
0)qx(t) + ε

− 1
2 b (f ⌊tε

−1⌋θx) Jpx(t), x = 1, . . . ,N.

∫
T
b(θ)ρ⋆(θ)dθ = 0,

and there exists a periodic orbit {θn}
p
n=1, p ∈ N, θn+1 = f θn, θp = θ1, such that

p

∑
n=1

b(θn) ≠ 0 Ô⇒ γ ∶= ∫
T
b(θ)2ρ⋆(θ)dθ + 2

∞
∑
k=1
∫
T
b(θ)b(f kθ)ρ⋆(θ)dθ > 0,

1
√
n

n

∑
k=1

b(f kθ)
law
Ð→
n→∞

N (0, γ),
1

√
n

⌊nt⌋
∑
k=1

b(f kθ)
law
Ð→
n→∞

√
γW (t) Wiener process
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q̇x(t) = px(t) ṗx(t) = (∆ − ω2
0)qx(t) + ε

− 1
2 b (f ⌊tε

−1⌋θx) Jpx(t), x = 1, . . . ,N.

∫
T
b(θ)ρ⋆(θ)dθ = 0,

and there exists a periodic orbit {θn}
p
n=1, p ∈ N, θn+1 = f θn, θp = θ1, such that

p

∑
n=1

b(θn) ≠ 0 Ô⇒ γ ∶= ∫
T
b(θ)2ρ⋆(θ)dθ + 2

∞
∑
k=1
∫
T
b(θ)b(f kθ)ρ⋆(θ)dθ > 0,

1
√
n

n

∑
k=1

b(f kθ)
law
Ð→
n→∞

N (0, γ),
1

√
n

⌊nt⌋
∑
k=1

b(f kθ)
law
Ð→
n→∞

√
γW (t) Wiener process

S. Olla Heat Equation 8 / 24



Assumptions on the initial distribution

q = (q1, . . . ,qN),p = (p1, . . . ,pN), θ = (θ1, . . . , θN), (q,p, θ) ∈ RN × RN ×TN .

The initial distribution dµN(q,p, θ) is a probability measure on RN × RN ×TN such that

dµN(q,p, θ) = ρN(θ)µθ,N(dq,dp)dθ,

ρN(θ) =
N

∏
x=1

ρx(θx), sup
x

sup
θx∈T

∣∂θxρx(θx)∣

ρx(θx)
≤ C0.

It is important that there is a certain smoothness in the initial distribution of θ, while
µθ,N(dq,dp) can also be singular.

lim
N→∞

EµN [
1

N

N

∑
x=1

ϕ(
x

N
) ex(0)] = ∫

T
ϕ(y)e0(y)dy , initial macroscopic profile
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The limit theorem

Let e(t, y) the solution of

∂te =
D

γ
∂2xe, e(0, y) = e0(y), y ∈ T.

with

D =
2

2 + ω2
0 + ω0

√
ω2
0 + 4

,

then for any smooth test function ϕ on T:

lim
N→∞

EµN [
1

N

N

∑
x=1

ϕ(
x

N
) ex(N

2t)] = ∫
T
ϕ(y)e(t, y)dy ,
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Error control and longer time scales

∣EµN [
1

N

N

∑
x=1

ϕ(
x

N
) ex(N

2t)] − ∫
T
ϕ(y)e(t, y)dy ∣ ≤

C∥ϕ∥C8

N
α
6
−1

At a larger time scale we get a global equilibrium:

lim
N→∞

EµN [
1

N

N

∑
x=1

ϕ(
x

N
) ex(N

2+βt)] = E0∫
T
ϕ(y)dy ,

E0 = ∫
T
e0(y)dy .
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The equivalent stochastic dynamics

q̇x(t) = px(t),

dpx(t) = (∆ − ω2
0)qx(t)dt − γpx(t)dt +

√
2γJpx(t)dwx(t), x = 1, . . . ,N.

where {wx(t)} are i.i.d. standard Wiener processes (one dimensional).

In Stratonovich form

dpx(t) = (∆ − ω2
0)qx(t)dt +

√
2γJpx(t) ○ dwx(t)

In fact this has the same macroscopic equation for the energy:

∂te =
D

γ
∂2xe, D =

2

2 + ω2
0 + ω0

√
ω2
0 + 4

.
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Strategy of the proof

E(
1

N
∑
x

ϕ(
x

N
) [ex(N

2t) − ex(0)]) =∑
x

ϕ′ (
x

N
)∫

t

0
E (jx ,x+1(N

2s))ds + oN

We want to show that the time average of the energy currents:

∫

t

0
E (jx ,x+1(N

2s))ds = −∫
t

0
E (px(N

2s) ⋅ qx+1(N
2s))ds + ∫

t

0
E (px(N

2s) ⋅ qx(N
2s))ds

is close to the same quantity of the stochastic dynamics,
then we proceed as in the stochastic dynamics.

S. Olla Heat Equation 13 / 24



Strategy of the proof

E(
1

N
∑
x

ϕ(
x

N
) [ex(N

2t) − ex(0)]) =∑
x

ϕ′ (
x

N
)∫

t

0
E (jx ,x+1(N

2s))ds + oN

We want to show that the time average of the energy currents:

∫

t

0
E (jx ,x+1(N

2s))ds = −∫
t

0
E (px(N

2s) ⋅ qx+1(N
2s))ds + ∫

t

0
E (px(N

2s) ⋅ qx(N
2s))ds

is close to the same quantity of the stochastic dynamics,
then we proceed as in the stochastic dynamics.

S. Olla Heat Equation 13 / 24



Covariance Matrix evolution

Sq
x ,x ′ = ∫

t

0
E (qx(N

2s) ⋅ qx ′(N
2s))ds, Sq,p

x ,x ′ = ∫

t

0
E (qx(N

2s) ⋅ px ′(N
2s))ds

Sp,q
x ,x ′ = ∫

t

0
E (px(N

2s) ⋅ qx ′(N
2s))ds, Sp

x ,x ′ = ∫

t

0
E (px(N

2s) ⋅ px ′(N
2s))ds.

after calculations, we have

S(p,q)
+ S(q,p)

= R
(q)
N

S(q)
(ω2

0I −∆) + γS(q,p)
− S(p)

= R
(q,p)
N

(ω2
0I −∆)S(q)

+ γS(p,q)
− S(p)

= R
(p,q)
N

(ω2
0I −∆)S(q,p)

N + S(p,q)
N (ω2

0I −∆) + 2γS(p)
− 2γΣ(S(p)

) = R
(p)
N .

where R
(α)
N is a negligeable matrix for N →∞.
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Closing the heat equation

After diagonalizing in Fourier coordinates and more esplicit calculations we obtain

∑
x

ϕ′ (
x

N
)∫

t

0
E (jx ,x+1(N

2s))ds = −∑
x

ϕ′ (
x

N
)(S(q,p)

x ,x+1 − S(q,p)
x ,x )

=
D

γ

1

N
∑
x

ϕ′′ (
x

N
)S(p)

x ,x + oN =
D

γ

1

N
∑
x

ϕ′′ (
x

N
)∫

t

0
E(p2x(N

2s))ds + oN

and we conclude with the asymptotic equipartition of potential and kinetic energies:

D

γ

1

N
∑
x

ϕ′′ (
x

N
)∫

t

0
[E(p2x(N

2s)) −E(ex(N
2s))]ds Ð→

N→∞
0.
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From the deterministic to the random evolution

Let G the generator of the random evolution:

G = A + γS

A =∑
x

(px ⋅ ∂qx + (∆qx − ω
2
0qx) ⋅ ∂px )

S =∑
x

(px ,2∂px,1 − px ,1∂px,2)
2
=∑

x

(Jpx ⋅ ∂px )
2 ,

For the random evolution we obtain the equation for the covariance matrix from

∫

t

0
µN(GA(N2s))ds =

µN(A(N2t)) − µN(A(0))

N2
= oN

for A = A(p,q) quadratic function.
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From the deterministic to the random evolution

Let G the generator of the random evolution:

G = A + γS

A =∑
x

(px ⋅ ∂qx + (∆qx − ω
2
0qx) ⋅ ∂px )

S =∑
x

(px ,2∂px,1 − px ,1∂px,2)
2
=∑

x

(Jpx ⋅ ∂px )
2 ,

For the deterministic evolution we want then

∫

t

0
µN(GA(N2s))ds =

µN(A(N2t)) − µN(A(0))

N2
+ o(N, εN) = oN

for A = A(p,q) quadratic function.
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From the deterministic to the random evolution

The (natural) idea is to split the macroscopic time interval [0,N2t] in intervals of length h,
long enough for the maps fx to be close to equilibrium and CLT variances close to the
equilibrium one (i.e. γ), but short enough so that the configuration (q,p) has moved very
little.

The main difficulty is to prove that, after each time step, the distributions of the angles θx ,
when conditioned on the positions, has still enough smoothness to ensure a new convergence
in the following step.

The mathematical tool to control this is called standard pairs (developped by Dolgopyat, from
ideas of Sinai, L.S. Young, ...). Intuitively, standard pairs are the measures closer to a δ
function for which the deterministic dynamics still exhibit statistical properties.
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Standard Pair ` = (G`, ρ`)
Given a small δ > 0,

θx ∈ [ax ,bx], ∣bx − ax ∣ ∈ [δ/2, δ], x = 1, . . . ,N

G` ∶
N

⨉
x=1

[ax ,bx]→ RN
×RN ,

G(θ) = {Gx(θ) = (Gq1x
(θ),Gq2x

(θ),Gp1x
(θ),Gp2x

(θ)), x = 1, . . . ,N}

∑
x

ex(G(θ)) = E constant energy

The configuration G(θ) changes little for θ ∈ ⨉N
x=1[ax ,bx]:

∥DG∥∞ = sup
x ,θ

⎡
⎢
⎢
⎢
⎣
∑
y

(∂θxGy(θ))
2
⎤
⎥
⎥
⎥
⎦

1/2
≤ C̄

√
Eε
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Standard Pair ` = (G`, ρ`)

The standard probability density ρ`

ρ`(θ) =∏
x

ρx(θx), ∫

bx

ax
ρx(θx)dθx = 1, ∥

ρ′x
ρx

∥
C0
≤ C0.

There exists C0 large enough such that this property is conserved by the map f .

The standard
pair ` = (G`, ρ`) depends on the parameters N,E , δ, ε, C̄ ,C0.
A standard pair ` induces the probability measure

µ`(g) = ∫
⨉x [ax ,bx ]

g(θ,G`(θ))ρ`(θ)dθ,

for g(θ,q,p).
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Evolution of standard pairs

Fact: the evolution of a standard pair is a convex combination of standard pairs with the
same parameters.

It also allow, for a proper choice of the parameters and the time step h, to control the error in
the calculation of the covariances uniformly in N. It turns out that ε(N) < N−6 is enough for
the speeding of the external field.
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What about ENTROPY?

We did not use entropy or relative entropy in the proof. Unlike in other hydrodynami limits,
relative entropy is useless for the energy, a well known problem present in many other scaling
limits.

But if it cannot be part of the solution, it could be part of the problem.

ρ⋆ density of the stationary measure of the chaotic maps, and let
ρ⋆,N(dθ) =∏x ρ⋆(θx)dθx

νβ,N(q,p) = −βHN(q,p)
ZN

invariant Gibbs density

assume the initial distribution has density

dµN(q,p, θ) = g0(q,p, θ) νβ,N(q,p)ρ⋆,N(dθ) dqx dpx ∶= g0(q,p, θ) dµeq(θ,q,p)

with finite entropy:

H(0) ∶= ∫ g0(q,p, θ) log g0(q,p, θ)νβ,N(q,p) ≤ CN.
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Entropy evolution

At (macroscopic) time t we have density gt(q,p, θ), with entropy

H(t) = ∫ gt(q,p, θ) log gt(q,p, θ)νβ,N(q,p) = H(0),
d

dt
H(t) = 0,

same as time 0 (as in Joel’s and others talks).

We need to loose some information. Consider the marginal

ḡt(q,p) = ∫ gt(θ,q,p)ρ⋆,N(dθ),

and its entropy

H̄(t) = ∫ ḡt(q,p) log ḡt(q,p) νβ,N(q,p)∏
x

dqx dpx ,
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Entropy evolution

ḡt(q,p) = ∫ gt(θ,q,p)ρ⋆,N(dθ), H̄(t) = ∫ ḡt(q,p) log ḡt(q,p) νβ,N(q,p)∏
x

dqx dpx ,

The time derivative of this marginal entropy is not 0, and

d

dt
H̄(t) = N2

∑
x
∫ (ε−1/2∫ b (θx) Jpx ⋅ ∂pxgt(θ,q,p)ρ⋆,N(dθ)) log ḡt(q,p) νβ,N(q,p)∏

x

dqx dpx

= −N2
∑
x
∫ (ε−1/2∫ b (θx)gt(θ,q,p)ρ⋆,N(dθ))

Jpx ⋅ ∂px ḡt(q,p)

ḡt(q,p)
νβ,N(q,p)∏

x

dqx dpx ,

I do not know about the sign of this derivative, but there is no reason that it is always negative.
How is this related with the same entropy production of the stochastic dynamics? For t > s

H̄(t) − H̄(s) ∼
n→∞

−N2γ ∫
t

s
∑
x
∫

(Jpx ⋅ ∂px ḡr)
2

ḡr
νβ,N(q,p)∏

x

dqx dpx < 0.
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