
Boltzmann’s Entropy for Macroscopic Systems:
with Illustration from the Dilute Gas

Joel L. Lebowitz

Departments of Mathematics and Physics
Rutgers University

Oxford, September 26, 2023

Abstract

Bolzmann’s entropy is defined for individual macroscopic systems in a specified macrostate;
equillibirum or not. In the latter case it satisfies the second law of thermodynamics which
characterizes the time evolution of a typical isolated macroscopic system in a non-equilibrium
macrostate. The time asymmetry of this observed evolution can be understood as arising from:
a) the great disparity between microscopic and macroscopic sizes, b) initial conditions, and c)
the fact that what we observe are typical behaviors — not all imaginable ones. This will be
illustrated for a classical dilute gas.

(Much of this work was done jointly with S. Goldstein.)
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Introduction

An excellent summary of Boltzmann’s ideas can be found in Einstein ’s
description of Planck’s reasoning leading to his discovery of the
quantization of energy:

“On the basis of kinetic theory of gases Boltzmann had discovered that, aside
from a constant factor, entropy is equivalent to the logarithm of the “proba-
bility” of the [macro] state under consideration. Through this insight he rec-
ognized the nature of course of events which, in the sense of thermodynamics,
are “irreversible”. Seen from the molecular-mechanical point of view, however
all courses of events are reversible. If one calls a molecular-theoretically de-
fined state a microscopically described one, or, more briefly, micro-state, then
an immensely large number (Z) of states belong to a macroscopic condition.
Z is then a measure of the probability of a chosen macro-state. This idea
appears to be of outstanding importance also because of the fact that its
usefulness is not limited to microscopic description on the basis of me-
chanics. Planck recognized this and applied the Boltzmann principle to a
system which consists of very many resonators of the same frequency.”1
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Boltzmann’s great insight was, as Einstein writes, to identify the entropy
of an individual macroscopic system, in some micro-state X , with the log
of the “number” of X ’s giving rise to the macro-state M = M(X ).

I will denote that set of X ’s by ΓM and their “number” for a given M by
|ΓM |

When the system has an energy H(X ) in an interval (E ,E +∆E ), |ΓM | is
proportional to the “probability”, with respect to the uniform
(micro-canonical) measure, of finding the system in the macro-state M.
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Boltzmann further noted that, for macroscopic systems, |ΓM | depends
strongly on how close M is to Meq, the equilibrium macrostate at energy
E , with ΓMeq occupying almost the whole energy shell ΓE . As I will argue,
setting the entropy SB(X ) of a system in the macrostate M = M(X ) equal
to log |ΓM | explains the observed entropy increase and approach to
equilibrium in the time evolution of isolated macroscopic systems: the
overwhelming majority of microstates X ∈ ΓM , in a nonequilibrium
macrostate M will evolve towards the equilibrium macrostate.

See Figure 1 for a representation of this.
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Figure 1: Schematic picture of the decomposition of the energy shell ΓE . Here
Γeq ≡ ΓMeq

.

For classical systems the ΓM are regions in the energy shell with sizes
proportional to their Liouville volume.

The second picture is slightly more faithful. The actual ratio of the sizes is
of order 2N where N is the number of particles in the system. Let me
describe this further for classical systems.
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Classical Systems

In classical mechanics, the microstate of an isolated system of N particles
confined to a box V in Rd is a point X in the 2dN-dimensional phase
space, Γ,

X = (r1, v1, . . . , rN , vN), ri ∈ V ⊂ Rd , vi ∈ Rd (1)

Its time evolution is given by a Hamiltonian H(X ) which conserves energy,
so X (t) = TtX will be confined to the energy surface H(X ) = E . We can
take H(X ) to be of the form

H(X ) =
1

2

N∑
j=1

v2i +
∑
i<j

u(ri ,j) (2)

with rapidly decaying u(r).
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Macrostates

To describe the macroscopic state of such a system, M, we specify the
values of an n-tuple of macrovariables
M(X ) = {M1(X ),M2(X ), . . . ,Mn(X )}, with resolution ∆M = {∆Mj}.
The macrostates then partition the energy shell into sets ΓM of the form:

ΓM = {X |Mj ≤ Mj(X ) ≤ Mj +∆Mj , j = 1, . . . , n}.

In particular we always choose one of these macro-variables to be the
Hamiltonian and replace the energy surface by a thin shell surrounding
that surface to which I shall always refer as ΓE . We then have ΓM ⊂ ΓE .
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It can be shown that, as already noted, for all “reasonable” choices of M,
e.g. dividing up the box V into small regions and specifying, with some
tolerances, the particle, momentum and energy densities in each region of
V , there is in every ΓE of a macroscopic system one dominant region ΓM
which has most of the volume of ΓE . This M is called the equilibrium
macrostate Meq, and has the property that,

|ΓMeq |
|ΓE |

= 1− ε (3)

with ε≪ 1, and |ΓE | the Liouville volume of ΓE . The existence of a
macrostate satisfying (3) is essentially a consequence of the law of large
numbers.
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A system in a microstate X is then in macroscopic thermal equilibrium if
and only if X ∈ ΓMeq .

The fact that |ΓMeq | ≃ |ΓE | explains why one can use the microcanonical
ensemble to compute properties of an equilibrium system despite the fact
that ΓE contains also nonequilibrium states with energy E . Their
contribution is negligible when N ≫ 1. This is independent of whether or
not the dynamics is ergodic in a mathematical sense. In particular it is also
true for ideal gases.
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Approach to Equilibrium

Boltzmann (also Maxwell, Kelvin, . . . ) argued that given the disparity in
the sizes of the ΓM corresponding to the various macrostates, the
evolution of the vast majority of microstates X (t0) in ΓM , will for N ≫ 1
be such that |ΓM(X (t))| will not decrease (on a macroscopic scale) for
t > t0 (and t smaller than the Poincaré recurrence time, which is larger
than the age of the universe).

Thus the evolution towards equilibrium of macroscopic systems which start
in the region ΓM , M ̸= Meq, and are kept (effectively) isolated afterwards,
is “typical” with respect to the micro-canonical measure restricted to ΓM .
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Boltzmann’s Entropy

In other words, the vast majority of microstates in ΓM (not all) will evolve
in such a way that

SB(Xt) = log |ΓM(Xt)| = SB(M(Xt)) (4)

will increase with time when M(Xt0) ̸= Meq. This explains the microscopic
origin of the second law for individual macroscopic systems. SB(Xt) will
increase until X (t) reaches ΓMeq where it will stay for a very, very long
time and its entropy will be given by

SB(Meq) = log |ΓMeq | ≃ log |ΓE | (5)

its maximum possible value.

Note that while SB(X ) may depend on the choice of the macrostate M,
the equilibrium thermodynamic entropy obtained for X ∈ ΓMeq is, to
leading order in the size of the system, independent of the choice of M.
(This will be discussed more later.)
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Boltzmann’s heuristic argument for the non-decrease of entropy, based on
relative phase space volume is, as Einstein says, the correct explanation for
the time asymmetric behavior typically observed in actual macroscopic
systems. It is, however, very far from a mathematical proof.

A proof would be provided by the rigorous derivation from the microscopic
dynamics of the kinetic and hydrodynamic equations such as the heat
equation, Navier-Stokes equations, etc. commonly used to describe the
time asymmetric, entropy increasing behavior of macroscopic systems out
of equilibrium.

This has been achieved so far only for the Boltzmann equation for dilute
gases. This was done rigorously (in appropriate limits) by Oscar Lanford2

in 1973. (I particularly recommend his 1976 paper.)

2La 75, 76
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Initial Conditions

Lanford’s derivation answers the obvious question: How can we obtain
time asymmetric equations for the typical behavior of macroscopic systems
despite the time symmetry of the microscopic dynamics?

It is due to initial conditions. That is, starting out at some time t1 with a
nonequilibrium system in a macro-state M1 ̸= Meq, and keeping the
system isolated for t > t1, then for X typical of ΓM1 , X (t) will evolve to
ΓMt , such that |ΓMt | ≥ |ΓMt′ | for times t ′ greater than t ≥ t1.

This is completely consistent with the fact that if we reversed all velocities
at t > t1, Xt would return to ΓM1 , after a time interval t1 − t.
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But what about real life situations such as the rain dissolving a piece of
paper or a meteor hitting the moon?

What corresponds to an appropriate choice of initial time and initial low
entropy state? Somewhat surprisingly, if one thinks hard about it, one is
pushed to consider the very beginning of the universe we live in.

This would correspond according to our current physical theories to the
time just after the “Big Bang”. The importance of initial conditions, Big
Bang or not, was already fully understood by Boltzmann and others as the
quotes below show.
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Initial Conditions

“From the fact that the differential equations of mechanics are
left unchanged by reversing the sign of time without changing
anything else, Herr Ostwald concludes that the mechanical view
of the world cannot explain why natural processes always run pref-
erentially in a definite direction. But such a view appears to
me to overlook that mechanical events are determined not
only by differential equations, but also by initial conditions.
In direct contrast to Herr Ostwald I have called it one of the most
brilliant confirmations of the mechanical view of Nature that it
provides an extraordinarily good picture of the dissipation of en-
ergy, as long as one assumes that the world began in an initial
state satisfying certain conditions. I have called this state
an improbable state.”

— L. Boltzmann3
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“It is necessary to add to the physical laws the hypothesis that
in the past the universe was more ordered in the technical sense,
[i.e. low SB] than it is today . . . to make an understanding of
irreversibility.”

— R.P. Feynman4

4Fe67
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Figure 2: “Creation of the universe: a fanciful description! The Creator’s pin has
to find a tiny box, just 1 part in 1010

123

of the entire phase-space volume, in order
to create a universe with as special a Big Bang as we actually find.” from R.
Penrose, The Emperor’s New Mind

The “tiny box” in the figure is a macrostate with low SB. N.B. It is not
necessary to select a particular microstate. Almost all microstates in a
low-entropy macrostate will behave in a similar way.
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It may be relevant to mention here a question I was asked during a talk I
gave on the subject:

Q: What does the initial state of the universe have to do with the fact that
when I put my sugar cube in my tea it dissolves irreversibly?

A: Nothing directly. But the fact that you, the sugar cube and the tea are
all here is a consequence of the initial low entropy state of the universe.
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Boltzmann vs. Gibbs Entropies

Given an ensemble (probability) density µ(X ), X ∈ Γ, the Gibbs-Shannon
entropy is given by

Sµ ≡ −
∫
Γ
µ logµ dX . (6)

Clearly if µ = µ̃M , where

µ̃M =

{
|ΓM |−1, if X ∈ ΓM ;

0, otherwise
(7)

then

SG(µ̃M) = log |ΓM | = SB(M). (8)

This is essentially the case for the microcanonical ensemble since
ΓE ≃ ΓMeq . By the equivalence of ensembles for macroscopic systems the
same is true for the canonical and other Gibbs ensembles. Thus the Gibbs
and Boltzmann entropies are equal to leading order in N for equilibrium
systems.
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However, as µ = µt evolves via the Hamiltonian dynamics for isolated
systems SG(µ) does not change in time. SG(µ) is therefore “useless” for
such systems not in equilibrium, while SB(M(Xt)) captures the essence of
typical macroscopic behavior. In particular it satisfies the second law of
thermodynamics.

Figure 3: Boltzmann’s grave in Zentralfriedhof, Vienna, with bust and entropy
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Let me now turn to an illustrative example of the time evolution of SB(M)
for a dilute gas system. Going beyond the hydrodynamical variables based
on dividing V ⊂ Rd into cells we will use a more refined description of
macrostates. To do that we note that for a system of N particles in a box
V the microstate X = {ri , vi}, i = 1, . . . ,N, can be described as a set of
N points in six (2d) dimensional one particle space,

X ↔
N∑
i=1

δ(x− ri )δ(v − vi ), x ∈ V , v ∈ Rd . (9)
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The Boltzmann Entropy for Dilute Gases

Dividing up this one particle space into cells ∆α, α = 1, · · · , n, centered
on (rα, vα), of volume |∆α|, we can, following Boltzmann, describe the
macro (meso) states of a gas Mf by specifying, with some leeway, that the
fraction of particles Nα(X )/N in each ∆α satisfy

fα|∆α| = Nα/N ∼=
∫
∆α

f (x, v)dxdv. (10)

where f (x, v) ≥ 0 is a smooth distribution in the one particle space. For a
dilute gas with negligible potential energy, f specifies E , ΓMf

⊂ ΓE .
(When the potential energy is not negligible f does not specify the energy
and we need to add the value of the energy to describe the macrostate,
c.f. Goldstein-Lebowitz (2004).)
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The Boltzmann entropy of a dilute gas in a macrostate Mf ,

SB(f ) = SB(Mf ) = log |ΓMf
| (11)

was computed by Boltzmann: |ΓMf
| =

∏
α |∆α|Nα/Nα!, so that for N ≫ 1,

sB(f ) =
1

N
SB(f ) = −

∑
|∆α|fα log fα + const (12)

Boltzmann approximated (12), for small |∆α|, by setting

sgas(f ) ∼= −
∫
V
dx

∫
R3

dv f (x, v) log f (x, v) + const. (13)
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The maximum of sgas(f ) over all f for a system of N particles in a volume
|V | with a given energy, which is for a dilute gas just the kinetic energy, is
obtained for the Maxwell distribution,

feq = ρ(2πkT/m)−3/2 exp[−mv2/2kT ] (14)

where kT = 2/3(E/N), ρ = N/|V |.

In this case ΓMfeq
= ΓMeq and the equilibrium entropy per particle for a

dilute gas is given, to leading order in the size of the system, by

sgas(feq) =
3

2
logT − log ρ+ Const. (15)

the same as the equilibrium Clausius entropy Seq(E ,N,V ) per particle for
a dilute gas, with density ρ.
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Consider now the time evolution of the entropy of a dilute gas when its
volume is expanded by lifting a constraint. We shall see that replacing the
sum (12) by the integral (13) may not be valid when the system is in a
nonequilibrium nonuniform state.

Before doing that let me discuss briefly Lanford’s derivation of the
Boltzmann Equation. (This is like “bringing coal to Newcastle” for this
audience). In this derivation the meaning of a smooth f is made precise.

My emphasis, like Lanford’s, is on individual macroscopic systems. In the
works by Bodineau, et al.5, they start with a probability measure which is
close to a product of smooth one particle distributions f (x , v). They prove
that f (x , v , t) describes typical behavior of individual systems and go
beyond that to consider fluctuations and large deviations.

5Bo23
25 / 54



Lanford’s Theorem

Consider a gas consisting of N hard balls of diameter d in a volume
V ⊂ R3 evolving according to Hamiltonian dynamics with elastic collisions.

Keeping V fixed consider now a sequence of systems with different particle
numbers, and different diameters d , such that N → ∞, d → 0, while
Nd2 → b > 0 (and so Nd3 → 0). This is the Boltzmann-Grad (BG) limit:
b−1 is proportional to the mean-free-path between collisions.
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Choose now a smooth f0(x , v) and as N increases consider microstates
XN ⊂ ΓMf0

such that the fraction of particles in cubical boxes ∆α is
required to satisfy (10) ever more closely, with equality in the BG limit,

lim
BG

Nα(XN)/N =

∫
∆α

f0(x, v)dxdv. (16)

N.B. The BG limit is required for (16) to hold for arbitrarily small ∆α.
The exact distribution of a finite system of N particles is a sum of N delta
functions, not a smooth f .
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Lanford’s theorem then says (roughly):

A typical microstate XN(0) ∈ ΓMf0
will evolve, via the Hamiltonian

dynamics, to a microstate XN(t) such that, in the BG limit

Nα(XN(t))

N
=

∫
∆α

f (x, v, t)dxdv (17)

for arbitrarily small ∆α, where f (x, v, t) solves the Boltzmann equation

∂f

∂t
+ v · ∂f

∂x
= bQ(f , f ) (18)

with initial condition f0(x, v).

The BE gives a deterministic evolution from the macrostate Mf0 to the
macrostate Mft in the BG limit. It describes approximately the evolution of
the coarse grained empirical distribution for a dilute gas. For extensions
see [Bo23].
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The second law generalized to nonequilibrium macrostates now says that
for a typical microstate of a dilute gas with X (0) ∈ ΓMf0

,
X (t) = TtX (0) ∈ ΓMft

, the entropy will be non-decreasing with t.

This is exactly what happens for sgas(ft) defined in (13) for ft evolving
according to the Boltzmann equation:

Boltzmann’s H-theorem :

d

dt
sgas(ft) =

d

dt

{
−
∫
V
dx

∫
R3

dv ft(x, v) log ft(x, v)

}
(19)

= bI(ft) ≥ 0.

As put by Boltzmann6:
“In one respect we have even generalized the entropy principle
here, in that we have been able to define the entropy in a gas that
is not in a stationary [equilibrium] state.”

6Bo98
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We note that the rate of increase of entropy in (19) is proportional to
b = limBGNd2. If one takes the limit N → ∞, d → 0 in such a way that
Nd2 → 0 then b = 0 and the time derivative of sgas(f ) given in (19) is
equal to zero.

The reason for this lack of change in sgas(f ) when b = 0 is that sgas(f ),
defined in terms of a smooth f (x , v , t) does not capture all the features of
the evolution of macrostates, defined in terms of coarse graining,
|∆α| > 0. Keeping |∆α| > 0 is essential for seeing the increase of the
Boltzmann entropy from spreading in physical space.
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To see the increase of sB(Mf ) when b = 0 Chakraborti et al. investigated
numerically the time evolution of a spatially nonuniform ideal gas in one
dimension7. They started the system in a microstate X randomly chosen
from ΓMeq of a system of N particles confined to an interval of length L,
and then, let the gas expand to an interval of length 2L. They chose cells
∆α all of equal size ∆ = |∆x ||∆v | with cutoff on the maximal speed |v |).
They computed the change in

s fB(t) =
1

N
SB(Mf ) =

∑
α

|∆α|fα log fα + Const (20)

as this system evolved in time without any collisions, see also8.

7[Ch21]
8[Ch23]

31 / 54



We found, to our surprise, that the time “teq” it took the system with
initial entropy Seq(L) to reach the new entropy, Seq(2L) = Seq(L)+N log 2,
depended strongly on the width |∆v | of the single-particle phase space
cells used to define the macrostate Mf and thus the Boltzmann entropy
SB(Mf ). The smaller |∆v |, the slower the entropy production, see Fig. 4.
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Figure 4: The time evolution of s fB(t) when X0 is chosen at random from an initial
ΓM0 corresponding to the phase space region where all N particles are in the left
half of the box with energy E ≃ Nϵ0, ϵ0 = 1.25 corresponding to a temperature
2.5, N = 107. (The continuous line sF∆(t). will be explained later.)

33 / 54



The reason for this strong dependence on |∆v | is that for the ideal gas the
only mechanism for uniformizing the velocity distribution over all of space
is via the difference between the total distance traveled in a time t by the
particles with velocity v versus those with velocity v +∆v . In order for
the systems to approach equilibrium, this distance must exceed L, which
only occurs after time teq ∼ L/|∆v |.

The time evolution of the entropy is much less sensitive to the spatial size
∆x of the cells. The time scale for the initial uniformization of the spatial
density (ignoring the local velocity distributions) is of order L/vth, where
vth is the mean speed, this time is much shorter than teq. It accounts for
the apparent jump in s at t = 0.
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The different curves s fB(t) collapse to a single curve when t is rescaled as
t = 2Lτ

|∆v | , where 2L is the circumference of the circle to which our system
can be mapped.
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Figure 5: The figure shows a collapse of the data presented in the previous figure
for different values of ∆v , on plotting the entropy as a function of the scaled time

τ = t∆v/(2L). The dashed line in the insert is the graph of sF (τ), will be
defined defined below. The oscillations have period 1 with maxima at
τ = 1, 2, . . ., the time it takes “∆v” to go around the circle.
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Figure 6: Plot showing the evolution of one of the boxes used earlier, N = 106

particles, in the (x , v) plane, where the particles move on a circle of length
2L = 8. The particles were initially distributed uniformly in a small box with
∆x = 0.25, ∆v = 0.5. With time the box gets continually stretched and, at times
that are multiples of 2L/∆v = 16, the stretched pieces wind completely around
the box. Comparing with Fig 5 we see that the maxima in s fB(t) occur at times
≈ 16, 32, at which the winding around the length 2L is complete. [Ch21]
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To study analytically the curves in Figures 4 and 5 [Ch21] define

F (x , v , 0) =
N∑
i=1

⟨δ(x − ri )δ(v − vi )⟩, (21)

where the average is over the {ri , vi} in canonical distribution (equivalent
to the microcanonical one with the same energy) for the given density and
temperature. We then evolve F according to Eq. (18) with b = 0,
F (x , v , t) = F (x − vt, v , 0), periodic over the circle. We then integrate
F (x , v , t) over cells ∆α to obtain a an averaged Nα and thus the entropy
sF∆(t). This is plotted as a continuous line in Fig4. We see in the figure
that sF∆(t) coincides with s fB(t), the entropy computed for a single typical
microstate.
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Taking the limit |∆α| → 0 we obtain sF (τ) given by

sF (τ) = − 1

N

∫
F (x , v , τ) lnF (x , v , τ)dxdv (22)

where

F (x , v , τ) =
1

2Lτ

∫ 2Lτ

0
F (x − x ′, v , 0)dx ′. (23)
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Setting

F (x , v , 0) = ρh(v)[1 + ϕ(x , v)], with 2L = 1 (24)

ϕ(x , v) = ϕ(x + 1, v),

∫ 1

0
ϕ(x , v)dx = 0.

we obtain

F (x , v) = ρh(v)[1 +
1

τ

∫ τ

0
ϕ(x − x ′, v)dx ′] (25)

= ρh(v)[1 +
1

τ
ψ(x , v , τ)],

where ψ(x , v , τ) is periodic in τ with period 1 with

ψ(x , v , n) = 0, for n = 1, 2, 3, . . . . (26)

This yields the sF (τ) plotted in the insert of Figure 5 for the initial
condition used. The maxima, all of equal height, occur at τ = 1, 2, . . ..
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Time evolution of the Boltzmann entropy for hard discs

To elucidate the time evolution of SB(M) for different choices of |∆α|
when the interaction between the particles is not neglected but the mean
free path is still large comparable to the scale of the spatial inhomogeneity
Garrido et al. have carried out molecular dynamics computations for the
time evolutions of a two-dimensional system of N hard discs9.

The system is started in a microstate X chosen at random from a
canonical Gibbs ensemble with temperature T = 1 (setting KB = 1) in a
rectangular box of size Lx = 1/2, Ly = 1 with periodic boundary conditions
along the y direction and hard walls constraining the system along the x
direction. The disc’s radius r is fixed in such a way that the system has a
given initial areal density η = πr2N/|V | where V = LxLy = 1/2. The
corresponding mean free path when the system is dilute is λ ∼ (ηN)−1/2.

9P. Garrido, S. Goldstein, D. Huse and J.L.L (in preparation
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At time t = 0 we remove the hard walls and let this gas of discs expand to
a box of size Lx = Ly = L = 1 with now periodic boundary conditions
along both directions. We study the time evolution of this system until it
reaches an equilibrium state X ∈ ΓMeq in this larger periodic box.
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The degrees of freedom associated with y and vy , along which direction
the system does not expand, remain near thermal equilibrium. Therefore
the Boltzmann entropy associated with these y , vy degrees of freedom
remains approximately constant in time while the system expands along
the x direction and approaches the new thermal equilibrium.

We will consider only the entropy due to the degrees of freedom associated
with x and vx , since it is this part of the entropy that is most out of
equilibrium and changing with time.
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Thus we divide the four-dimensional one-particle phase space (x , vx ; y , vy )
into cells ∆α of extent ∆x and ∆vx in the (x , vx) plane with each cell
including the full range of y and vy . We count Nα(t), the number of
particles in ∆α at time t and evaluate the

s(t; ∆,N, η) = −∆

N

∑
α

Nα(t)

∆
log

Nα(t)

∆
. (27)

All cells have equal “area” |∆α| = |∆x ||∆vx | = ∆ in the (x , vx) plane.
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Results for different values of the mean free path λ:

Figure 7: Boltzmann entropy for N = 105 and areal densities η = 10−6 (upper
left), η = 10−7 (upper right), η = 10−8 (lower left) and η = 10−9 (lower right)
for 16 cells along the x direction and different values of ∆vx .

The mfp for the different boxes are λ ≈ .7, λ ≈ 2.2, λ ≈ 5, λ ≈ 22. For λ ≈ 22
the dependence on |∆vx | is the same as for the ideal gas, λ = ∞, while for
λ = .7 there is almost no dependence on |∆vx |. It is this latter case for which
sgas(f ) is a good approximation to the entropy of the dilute gas. This is surely
what Boltzmann had in mind.
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Figure 8: (x , vx)-phase space typical evolution of a system in the x , vx plane with
N = 105 discs with areal densities η = 10−4 (left column) and η = 10−6 (right
column) for times (from top to bottom) t =0.0, 0.5, 1.0, 1.50 and 2.0.
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The spatial time evolution of an ideal gas in a torus is analyzed in detail in
a very nice paper by S. De Bievre and P.E. Parris10. They consider an
initial distribution of N point particles with a product measure

∏
f0(ri , vi ),

corresponding to a uniform density in part of a unit torus and a “smooth”
velocity distribution, say Maxwellian with variance 1.

Figure 9: (From BP) Numerical simulation of the free expansion on the 2-torus of
a non-interacting gas of 104 particles having a thermal distribution of momenta
with mean thermal speed equal to unity, initially confined in the horizontal
direction to the region 0.4 < x < 0.6, at the sequence of times indicated.

10BiPa17
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To define the macro state Mf BP divide the unit torus into L squares, Dj ,
j = 1, . . . ,L , of area D each, and specify the fraction of particles in each
region with uncertainty ϵ. Meq then corresponds to “uniform density”, i.e.
the fraction fj of particles in Dj , satisfy |fj − D| < ϵ, ϵ > 0, for every j .

Fixing L and ϵ, BP prove that a system picked at random from the initial

ΓMf
will, with probability, P ≥ 1− δN , δN = Le−

1
4
ϵ2N , uniformly spread

out, i.e. will be in equilibrium, for an exponentially long time period t,
τ1 < t < τ2. Here τ1 is of order 1 and τ2 is exponentially large in N,
corresponding to Poincaré recurrence time.

This is what is meant by the approach to equilibrium, i.e. a uniform
distribution, being typical behavior for phase points in the initial
macrostate.

I highly recommend this paper.
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More General Macroscopic Equations

Going beyond the examples described above suppose, more generally, that
the time evolution of the macrostate M, given by M(X (t)) = Mt ,
effectively satisfies an autonomous deterministic time asymmetric
equation, such as the diffusion or the heat equation. (I shall consider here
for simplicity macrostates M which are invariant under velocity reversal.)

Having such an equation means that if t3 > t2 > t1, then the microscopic
dynamics Tt carries almost all of ΓMt1

= ΓM1 , inside ΓM2 and ΓM2 inside
ΓM3 , i.e. Tt2−t1ΓM1 ⊂ ΓM2 and Tt3−t2ΓM2 ⊂ ΓM3 , with negligible error. Put
otherwise a typical phase point in ΓM1 will go to ΓM2 and then to ΓM3 , i.e.
Tt3−t1ΓM1 ⊂ ΓM3 , c.f. [Go04].

Figure 10: Time evolution of ΓM1
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The fact that phase space volume is conserved by the Hamiltonian time
evolution implies that |ΓM1 | ≤ |ΓM2 | ≤ |ΓM3 |, and thus that
SB(M3) ≥ SB(M2) ≥ SB(M1).

Hence the solution of any deterministic macroscopic equation for Mt has
to satisfy the inequality11 d

dtSB(Mt) ≥ 0, exactly what Boltzmann showed
for the BE.

11Go04,Pe70
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We note that the existence of such a macroscopic equation implies (at
least insofar as the macro-variables are concerned) that the phase points in
the region in Γ2 coming from Γ1 behave, forward in time, as microstates
typical of Γ2.

They are, however, very atypical backwards in time. Thus if we reverse all
the velocities in Γ2, then at a later time, t ′ = t2 + (t2 − t1) all of the
points initially in ΓM1 will again be in ΓM1 (with their velocities reversed),
a smaller region than ΓM2 , while |ΓMt′ | ≥ |ΓM2 |.
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