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Classical chain of oscillators

pr T wqu T g dx QX—I-I)Z T )‘q;‘cr
xEZ
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A > 0, wr 1.1.d.

Hamiltonian dynamics:

q — P, p — _qu(p7Q)

(nothing special in equilibrium)



Spreading of a wave packet

The energy Is conserved.
Finite quantity of energy in the system (zero temperature)
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Harmonic case (A=0)

Linear equations of motion (Anderson localization):
g = —(V—8A)q

f (wy)rez 1.4.d. | the eigenmodes are localized :

>

1 N
a mode for a chain of size N

E(Y - [w@eo)l) < Cem bl vy
Y



Intuition for localization

Oscillators at different frequencies “don't talk to each other”,
..e. they are not in resonance

(V- gA) = (“‘“ 8 ) ¢ < |1 — w|

Y1 = (0.99, 0.14), Y, = (0.14, —0.99)



Intuition for localization

This still holds true for larger matrices:
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E.g.: two eigenvectors for 50 sites and g=0.1

Can be generalized to the full lattice, and much more...



Harmonic case (A=0)

The packet does not spread (indefinitely):

S~

Initial time arbitrary long time

Linearity : solution = superposition of localized modes



Anharmonic case (A #0)

The packet does spread. At which rate 7
 Numerical simulations,

* Analytical computations, mathematical results

The main difficulty is, that there is no regime of
parameters, where analytical and numerical results
agree for a long time.

From S. Fishman, Y. Krivolapov and A. Soffer (2012)



Numerics : power law

EHTI'HTII | TTTTITM | TTTTIT | L §
mpa t ;
- 1 emmeemeaaa +1/3
- ) -
T 1 om() = > FH()
T 5 ;
E_U.I.llllll Z { :lllljll | LALLM | LI _g
t

D, g, r : from low to high energy
(you may perhaps think: from small to large A)

cf. e.g. Flach et al. (2009, 2014, 2020), and many others



Remark:

Small energy density «— small effective A

Because anharmonic interactions are given by
At = (MP)g> ~ (ME)g’

In equilibrium, the effective non-linearity is indeed

AT



Analytical : slower than a power law!

Theorem (w.-M. Wang and Z. Zhang, 2009)

«The wave packet stays localized for a very long time
with very high probability»

1

Vn e N, d\g >0 : A< AN = TZV

* Tisthe 1st time that 10% of the energy exits some box
around the origin

* with probability that goes quickly to 1 as A—0.




Remarks:

* No proper contradiction with the numerics

o Different (more idealized) model (atomic limit):

1
H(p,q) = 5 ZPJZC + %%%Zc + A1 (gx — qx+1)2 T Azc]ﬁ
xXe/

A= M VA

» Several other results of this type. E.g. improved bounds
by H. Cong, Y. She and Z. Zhang (2020)



Another analytical result
Let us first contemplate two scenarios for « spreading »:

1. Wandering of a hot spot

not observed

2. Proper spreading

/\AAK . observed

|




A theorem for yet another model

pr T waX T qx—I—l)z -+ )‘xq;‘cr
xEZ
A
Ay = : T >0
(L4 )T

Theorem (J. Bourgain and W.-M. Wang, 2007)

« The packet spreads slower than any power law in time. »

Vn>1,dA>0: A< = szHx(t) < 4l/n
XEZ

a.s. for all t =0 provided that this quantity is finite at t=0

Remark: It the packet properly spreads, the effective A decays.



Can numerics be misleading?

The observed spreading is actually very slow :

my2 (1) ~ 116

 When the packet spreads, the eftective non-linearity
(Ag?) decays.

* |f the spreading is slow, you need a lot of time for the

effective non-linearity to decay, and so you need a lot

of time to change regime and see another power law.

Cheap but not unrealistic to think that numerics
were not run for a long enough time



Direct comparison numerics/theory

Recreate a “contradiction” numerics/math
that can be decided

We will define a quantity /(1)
 for the original model (technical issues),
 starting from equilibirum (simpler),

e that can be controlled by a theorem.

Roughly I(t) measures the loss of memory in the system



Definition of /(t)

Another way to decompose the Hamiltonian at A =0 :

ZHx — %@7p>_|_<Q7 (V_gA)Q>
_Z‘@E‘2+E| 4, E ZHE

with
(V—gA)|E) = EIE)

The energy of each mode is conserved at A =0 :

aH

= () VE
dt



Definition of /(t)

For the coupled dynamics, H = Hy + AH; , we define

_ 2
1) — lz ((He(t) — Hg(0))%)r

2 V&I’(HE)

where (f)7 is the Gibbs state at temperature T

1

(fir = > / f(q,p)e @)1 dqap

(this is an equilibrium measure for the dynamics)



Expected behavior for /(1)

I1(0) = 0 : by definition
I(+00) = 1 :inthelarge N limit, (Hg(t); Hz(0))7 — 0 ast — oo



Rigorous bound on /(1)

Theorem (W. De Roeck, F. H. and O. Prosniak).
Let n € N. There exists a deterministic constant C,, < 400 such that
forall A > O and forall r > 0,

limsupIy(t) < C, ()\z_a + (Ant)z)

N—00 -

a.s. with a < 2 that can be made explicit.

Remark: We assume that the temperature 7 1s fixed.
Actually I(A\, T) = I(\T).



Numerical results for /(1)
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It would seem that I(z) = f((AT)*t), but we know it is not!
(smallest value of A suggests actually a deviation from this behavior)



Numerical results for /(1)

prediction, slope -4
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Power law consistent with S. Flach et al.

Back to the spreading of a wave packet. It local equilibrium
holds inside the packet:

OE = 0y(D(TA\)O:E)

and TA goes to O as the packet spreads

For this non-linear diffusion equation, we find

my(f) ~ /3 —  D(T\) ~ (T\*

Consistent within linear fluctuating hydrodynamics:

I(t) = f(Dr) = f((TA)*)



Timescales consistent with S. Flach et al.

Effective temperature of the wave packet:

AE . .
AT & = final energy density
\/121712

< >

N

Smallest effective non-linearity that is reached:
AT =0.0005 + ... (Flach), AT =0.0002 (us)



Does numerics work at all?

Yes:
 Harmonic chain

» Pseudo-conservation "
of an effective energy

0.0 0.2 0.4 0.6 0.8 1.0

NO:

e Correct time reversal
(probably asking too
much)




Some catch: Is the packet in local equilibrium?

Applying statistical mechanics is challenging:
e finite amount of energy,
* nearly conserved local quantities

Observation: pre-thermal plateau for the clean chain

| A)
A(0) \ kinetic pre-thermal plateau
(A)pre \
(A)tn \ ;
0 ~ A\’ Ty ~ A2 Tg ~ )\_2p=

Figure 1. Expected time evolution of a local observable A(t).

H conserved, N pseudo-conserved (number of phonons)



Pre-thermal state in the packet?

Preliminary data suggest the packet is pre-thermal:
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It Is probably the closest to equilibrium that we can get
on these time scales



Challenges with the proof

Perturbative analysis in A:  vn, find unand gn such that

dHE

— = MH,u, Mg,

Hence

He(t) — H(0) = Aun() — un(0)) + N /O ds gn(s)

/ \

fluctuation ‘dissipation’



Controlling denominators

The perturbative expansion yields small denominators:

1

o1V1 + -+ OylVn

with
Ok — + 1

v, e1genirequencies < y,% eigenvaluesof H =V — gA

Heuristics: vy, ...,vm are nearly 1.1.d.



Controlling denominators

* 2 eigenvalues in a system of size L : Minami’'s estimate

I

PO #vp : [V —vi| <v) < L%y

* Linear combination of > 2 eigenvalues : ?
2 2 2 2
el R e
(would feature if KG would be replaced by DNLS)

* Linear combination of > 2 eigenfrequencies : New bound!

Vi, + Vky — Vky — Vg,



Trick to control denominators

Shift the full spectrum:
H — H+ ald

. . Y ) ) 0
e | eaves invariant Vi, T Vi, — Vi, — Vi,

* Does notleave invariant . Vg, + Vg, — Vg, — Ui,

In our model, the disorder is on the diagonal:

H = V- gA, V. =w> ii.d.

X

SO, We can escape resonances by shifting the whole disorder



Control on denominators

This idea yields a lemma;

Lemma (WDR, FH, OP).
In a system of size L, forany 0 < ¢ < 1/L,

m
1
P(min‘ZTka| Sg) < C, LMemt

k=1
where the minimum runs over m-tuples of all different eigenvalues,
and where 7, € {—m, ..., m}, 7, # 0 are given.

From a technical point of view, this is the key new result



Conclusion and outlook

 Our mathematical results show that the chain is
asymptotically many-body localized: dissipative effects
arise as a non-analytic function of A.

 Comparison with numerical data suggest that state-of-
the-art numerics do not capture correctly the asymptotic
behavior of the chain.

 Mathematical results are so tar limited to the dynamics in
equilibrium. We are working to relax this hypothesis.



