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• Relation to aspects of the original PDE?
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).

• If J < ∞, then µ• solves a modified Boltzmann equation (BEK ),
K = dw

dmµ
. If J = 0, we recover (BE).

• Total cost I(µ•, w) = H(µ0|γ) + J (µ•, w).
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Theorem 1: Positive Result

The rate function I written above captures at least some of the correct
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Theorem (H, 2021; see also Basile-Benedetto-Bertini-Orierri, 2021)
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0 〉 − (1 + θ)| > δ
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→ 0; QN !
W (µN
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→ 0.

• Because λM(N) < d , dQN

dP ≤ eNd(1+θ+ε) with high QN -probability.
• Chaotic, but not entropically chaotic.
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• Theorem of Basile-Benedetto-Bertini-Caglioti: counterexample

by a different construction, improved rate function which is > 0 on
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neighbour y .
• Identify η̃N ∈ L1

≥0(Td
N) ⊂ L1

≥0(Td) and give path space D the
Skorokhod topology for a metric inducing weak convergence.

• Hydrodynamic scaling: limit of ηN
t (x) := η̃N

N2t(x) (e.g.
Kipnis-Landim) - (nondegenerate) nonlinear parabolic equation

∂tut = ∆Φ(ut)

for some Φ determined by the jump rate g .
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(Skeleton equation (Skg )).
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. T

0
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/
.

Key ideas: Renormalised kinetic solutions (generalising
DiPerna-Lions, Ambrosio, LeBris-Lions). Uniqueness of renormalised
solutions via variable doubling argument.

• In particular, I = ∞ outside of R.
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0 be drawn from a local equilibrium ρ ∈ C(Td , (0, ∞)). Then we

have matching large deviations upper and lower bounds with speed
Nd/χN , and the rate function given by taking I0(u0) := αH(u0|ρ) and
nonlinearity Φ(u) = uα.

• Innovations: remove paths outside R by trajectorial estimates,
recovery sequences for paths inside R.
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The Scaling Relation

• Possible limits:
ZRP ηN

t

Discretised PME on Td
N

∂tuχ
t = ∆Φχ(uχ

t )

(PME)

(a): χ → 0, N fixed

(b): χ = 0, N → ∞

(c): χ fixed, N → ∞

(d): χ → 0, N = ∞

(f)

(e)
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with a scaling relation on (ε, δ) → 0. Our condition plays the same
role.
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N bounded puts us in regime (e).

• (c), (f) are ‘classical hydrodynamics’; (b, e) are different.
• Fehrman-Gess: Matching bounds with rate I for SPDE

duε
t = 1

2∆Φ(uε
t )dt −

√
ε∇ · (Φ(ut)1/2ξδ)

with a scaling relation on (ε, δ) → 0. Our condition plays the same
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15



Key Technical Step: Restriction to R & Replacement Lemma

• Main difficulty in LDP: weak convergence of configuration ∕ =⇒
convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).

16



Key Technical Step: Restriction to R & Replacement Lemma

• Main difficulty in LDP: weak convergence of configuration ∕ =⇒
convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).

• To complete the LDP, we also need to show that, if u• ∕∈ R then

inf
U∋u•

lim sup
N

χN
Nd logP

!
ηN

• ∈ U
"

= −∞.

16



Key Technical Step: Restriction to R & Replacement Lemma

• Main difficulty in LDP: weak convergence of configuration ∕ =⇒
convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).

• To complete the LDP, we also need to show that, if u• ∕∈ R then

inf
U∋u•

lim sup
N

χN
Nd logP

!
ηN

• ∈ U
"

= −∞.

• Kipnis-Landim: replacement lemma in regime (c) via fast
macroscopic equilibration.

16



Key Technical Step: Restriction to R & Replacement Lemma

• Main difficulty in LDP: weak convergence of configuration ∕ =⇒
convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).

• To complete the LDP, we also need to show that, if u• ∕∈ R then

inf
U∋u•

lim sup
N

χN
Nd logP

!
ηN

• ∈ U
"

= −∞.

• Kipnis-Landim: replacement lemma in regime (c) via fast
macroscopic equilibration. For us, both achieved through pathwise
regularity using ideas of Aubin-Lions-Simon:

16



Key Technical Step: Restriction to R & Replacement Lemma

• Main difficulty in LDP: weak convergence of configuration ∕ =⇒
convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).

• To complete the LDP, we also need to show that, if u• ∕∈ R then

inf
U∋u•

lim sup
N

χN
Nd logP

!
ηN

• ∈ U
"

= −∞.

• Kipnis-Landim: replacement lemma in regime (c) via fast
macroscopic equilibration. For us, both achieved through pathwise
regularity using ideas of Aubin-Lions-Simon:

• Probabilistic Step: Obtain discrete estimate on FN(ηN
• ) at LDP level

16



Key Technical Step: Restriction to R & Replacement Lemma

• Main difficulty in LDP: weak convergence of configuration ∕ =⇒
convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).

• To complete the LDP, we also need to show that, if u• ∕∈ R then

inf
U∋u•

lim sup
N

χN
Nd logP

!
ηN

• ∈ U
"

= −∞.

• Kipnis-Landim: replacement lemma in regime (c) via fast
macroscopic equilibration. For us, both achieved through pathwise
regularity using ideas of Aubin-Lions-Simon:

• Probabilistic Step: Obtain discrete estimate on FN(ηN
• ) at LDP level,

for the functional

FN(ηN
• ) = sup

t
H(ηN

t ) + 1
Nd−2

. T

0

4

x∼y

((ηN
t (x))α/2 − (ηN

t (y))α/2)2dt.

16



Key Technical Step: Restriction to R & Replacement Lemma

• Main difficulty in LDP: weak convergence of configuration ∕ =⇒
convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).

• To complete the LDP, we also need to show that, if u• ∕∈ R then

inf
U∋u•

lim sup
N

χN
Nd logP

!
ηN

• ∈ U
"

= −∞.

• Kipnis-Landim: replacement lemma in regime (c) via fast
macroscopic equilibration. For us, both achieved through pathwise
regularity using ideas of Aubin-Lions-Simon:

• Probabilistic Step: Obtain discrete estimate on FN(ηN
• ) at LDP level,

for the functional

FN(ηN
• ) = sup

t
H(ηN

t ) + 1
Nd−2

. T

0

4

x∼y

((ηN
t (x))α/2 − (ηN

t (y))α/2)2dt.

• Analytic Step: Pass to the limit on sequences with FN(uN
• ) ≤ C and

t *→ ut continuous;

16



Key Technical Step: Restriction to R & Replacement Lemma

• Main difficulty in LDP: weak convergence of configuration ∕ =⇒
convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).

• To complete the LDP, we also need to show that, if u• ∕∈ R then

inf
U∋u•

lim sup
N

χN
Nd logP

!
ηN

• ∈ U
"

= −∞.

• Kipnis-Landim: replacement lemma in regime (c) via fast
macroscopic equilibration. For us, both achieved through pathwise
regularity using ideas of Aubin-Lions-Simon:

• Probabilistic Step: Obtain discrete estimate on FN(ηN
• ) at LDP level,

for the functional

FN(ηN
• ) = sup

t
H(ηN

t ) + 1
Nd−2

. T

0

4

x∼y

((ηN
t (x))α/2 − (ηN

t (y))α/2)2dt.

• Analytic Step: Pass to the limit on sequences with FN(uN
• ) ≤ C and

t *→ ut continuous;
• Probabilistic Step: eliminate non-continuous u•

16



Key Technical Step: Restriction to R & Replacement Lemma

• Main difficulty in LDP: weak convergence of configuration ∕ =⇒
convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).

• To complete the LDP, we also need to show that, if u• ∕∈ R then

inf
U∋u•

lim sup
N

χN
Nd logP

!
ηN

• ∈ U
"

= −∞.

• Kipnis-Landim: replacement lemma in regime (c) via fast
macroscopic equilibration. For us, both achieved through pathwise
regularity using ideas of Aubin-Lions-Simon:

• Probabilistic Step: Obtain discrete estimate on FN(ηN
• ) at LDP level,

for the functional

FN(ηN
• ) = sup

t
H(ηN

t ) + 1
Nd−2

. T

0

4

x∼y

((ηN
t (x))α/2 − (ηN

t (y))α/2)2dt.

• Analytic Step: Pass to the limit on sequences with FN(uN
• ) ≤ C and

t *→ ut continuous;
• Probabilistic Step: eliminate non-continuous u•

16



PME as Gradient Flow

• PME as gradient flow in space of measures M: Brézis (flat H−1),
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• Still formally, |αDH(u)|2u = αDα(u).
17



PME as Gradient Flow via LDP

18



PME as Gradient Flow via LDP

• Full proof via LDP.

18



PME as Gradient Flow via LDP

• Full proof via LDP.
• Consider LDP with global equilibrium ρ = 1 initial conditions.

Detailed balance =⇒ (T ηN
• )t := ηN

T−t− has the same law as the
original process!

18



PME as Gradient Flow via LDP

• Full proof via LDP.
• Consider LDP with global equilibrium ρ = 1 initial conditions.

Detailed balance =⇒ (T ηN
• )t := ηN

T−t− has the same law as the
original process!

• Contraction principle and uniqueness of rate functions:

I(T u•) = I(u•)

for all u•.

18



PME as Gradient Flow via LDP

• Full proof via LDP.
• Consider LDP with global equilibrium ρ = 1 initial conditions.

Detailed balance =⇒ (T ηN
• )t := ηN

T−t− has the same law as the
original process!

• Contraction principle and uniqueness of rate functions:

I(T u•) = I(u•)

for all u•.
• “Improbability of starting at nonequilibrium u0 and evolving forwards

by (PME) = Improbability of evolving via backwards (PME) into u0”.
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Theorem 4: Gradient Flow

Theorem (H.-Gess 2023)

Let u• ∈ D with H(u0) < ∞. Then we have the identity

J (u•) = 1
2

5
αH(uT ) − αH(u0) + α

2

. T

0
Dα(us)ds + 1

2A(u•)
6

(EDI)

allowing both sides to be infinite, where

A(u•) = 1
2 inf

0
‖θ‖2

L2
t,x

: ∂tut + ∇ · (1
2uα/2

t θt) = 0
1

.

In particular, the functional on the right-hand side is nonnegative, and
vanishes if and only if u• is a solution to (PME).
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Gradient Flow: Sketch Proof

• The unique optimisers for g , θ are characterised by

g , θ ∈ Λu• :=
'

uα/2∇ϕ : ϕ ∈ C1,2([0, T ] × Td)
(L2

t,x
.
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Substitute into

I(v•) = αH(uT ) + 1
2‖gr ‖2

L2
t,x

= I(u•) = αH(u0) + 1
2‖g‖2

L2
t,x

.

• After some manipulations,

J (u•) = 1
2

)
αH(uT ) − αH(u0) +

777Π[u•]∇uα/2
777

2

L2
t,x

+ A(u•)
+

.
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Gradient Flow: Sketch Proof, 2

• ‖Π[u•]∇uα/2‖2
L2

t,x
≤ α

2
, T

0 Dα(us)ds, so the previous argument yields
the inequality

J (u•) ≤ 1
2

5
αH(uT ) − αH(u0) + α

2

. T

0
Dα(us)ds + 1

2A(u•)
6

.

(1)
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0
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.

(1)

• If u• ∈ X , then ∇uα/2 = 2
α uα/2∇ log u ∈ Λu• , so both of the

inequalities are equalities.
• For the general case, use recovery sequences and use (1) again.
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• Hence why Lp

x estimates had to be false: trajectories with u0 ∕∈ Lp
x ,

uT ∈ C∞
x give reversal v0 ∈ C∞

x but vT ∕∈ Lp
x .

• Same argument works for (BEK ): no possible regularity or moment
estimates beyond finite entropy.

• (%): Could be done purely by PDE tools from Fehrman-Gess - but
not obvious starting from PME!
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