Dynamic Large Deviations: In search of Matching Bounds

Kac's Process and the Zero-Range Process
D. Heydecker, partially joint work with Benjamin Gess

Slides:
or danielheydecker.wordpress.com \rightarrow Research

Max-Planck Institut für Mathematik in den Naturwissenschaften, Leipzig

Introduction

Introduction and Problem

- Starting point:

Introduction and Problem

- Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_{t}^{N} \rightarrow \mu_{t}$

Introduction and Problem

- Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_{t}^{N} \rightarrow \mu_{t}$, Zero-range process $\eta_{t}^{N} \rightarrow u_{t}$:

Introduction and Problem

- Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_{t}^{N} \rightarrow \mu_{t}$, Zero-range process $\eta_{t}^{N} \rightarrow u_{t}$: microscopic models for the nonlinear PDEs

Introduction and Problem

- Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_{t}^{N} \rightarrow \mu_{t}$, Zero-range process $\eta_{t}^{N} \rightarrow u_{t}$: microscopic models for the nonlinear PDEs

$$
\partial_{t} \mu_{t}=Q\left(\mu_{t}, \mu_{t}\right) ; \quad \partial_{t} u_{t}=\frac{1}{2} \Delta \Phi\left(u_{t}\right) .
$$

Introduction and Problem

- Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_{t}^{N} \rightarrow \mu_{t}$, Zero-range process $\eta_{t}^{N} \rightarrow u_{t}$: microscopic models for the nonlinear PDEs

$$
\partial_{t} \mu_{t}=Q\left(\mu_{t}, \mu_{t}\right) ; \quad \partial_{t} u_{t}=\frac{1}{2} \Delta \Phi\left(u_{t}\right) .
$$

- Seek to characterise the large deviations around these limits:

$$
\begin{aligned}
& \mathbb{P}\left(\mu_{\bullet}^{N} \approx \mu_{\bullet}\right) \sim \exp \left(-N \mathcal{I}_{\mathrm{KP}}\left(\mu_{\bullet}\right)\right) \\
& \mathbb{P}\left(\eta_{\bullet}^{N} \approx u_{\bullet}\right) \sim \exp \left(-N^{d} \mathcal{I}_{\mathrm{ZRP}}\left(u_{\bullet}\right)\right)
\end{aligned}
$$

Introduction and Problem

- Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_{t}^{N} \rightarrow \mu_{t}$, Zero-range process $\eta_{t}^{N} \rightarrow u_{t}$: microscopic models for the nonlinear PDEs

$$
\partial_{t} \mu_{t}=Q\left(\mu_{t}, \mu_{t}\right) ; \quad \partial_{t} u_{t}=\frac{1}{2} \Delta \Phi\left(u_{t}\right) .
$$

- Seek to characterise the large deviations around these limits:

$$
\begin{aligned}
& \mathbb{P}\left(\mu_{\bullet}^{N} \approx \mu_{\bullet}\right) \sim \exp \left(-N \mathcal{I}_{\mathrm{KP}}\left(\mu_{\bullet}\right)\right) \\
& \mathbb{P}\left(\eta_{\bullet}^{N} \approx u_{\bullet}\right) \sim \exp \left(-N^{d} \mathcal{I}_{\mathrm{ZRP}}\left(u_{\bullet}\right)\right)
\end{aligned}
$$

- ... and to know when we've found the sharpest rate of decay

Introduction and Problem

- Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_{t}^{N} \rightarrow \mu_{t}$, Zero-range process $\eta_{t}^{N} \rightarrow u_{t}$: microscopic models for the nonlinear PDEs

$$
\partial_{t} \mu_{t}=Q\left(\mu_{t}, \mu_{t}\right) ; \quad \partial_{t} u_{t}=\frac{1}{2} \Delta \Phi\left(u_{t}\right) .
$$

- Seek to characterise the large deviations around these limits:

$$
\begin{aligned}
& \mathbb{P}\left(\mu_{\bullet}^{N} \approx \mu_{\bullet}\right) \sim \exp \left(-N \mathcal{I}_{\mathrm{KP}}\left(\mu_{\bullet}\right)\right) \\
& \mathbb{P}\left(\eta_{\bullet}^{N} \approx u_{\bullet}\right) \sim \exp \left(-N^{d} \mathcal{I}_{\mathrm{ZRP}}\left(u_{\bullet}\right)\right)
\end{aligned}
$$

- ... and to know when we've found the sharpest rate of decay (i.e. matching upper and lower bounds).

Introduction and Problem

- Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_{t}^{N} \rightarrow \mu_{t}$, Zero-range process $\eta_{t}^{N} \rightarrow u_{t}$: microscopic models for the nonlinear PDEs

$$
\partial_{t} \mu_{t}=Q\left(\mu_{t}, \mu_{t}\right) ; \quad \partial_{t} u_{t}=\frac{1}{2} \Delta \Phi\left(u_{t}\right) .
$$

- Seek to characterise the large deviations around these limits:

$$
\begin{aligned}
& \mathbb{P}\left(\mu_{\bullet}^{N} \approx \mu_{\bullet}\right) \sim \exp \left(-N \mathcal{I}_{\mathrm{KP}}\left(\mu_{\bullet}\right)\right) \\
& \mathbb{P}\left(\eta_{\bullet}^{N} \approx u_{\bullet}\right) \sim \exp \left(-N^{d} \mathcal{I}_{\mathrm{ZRP}}\left(u_{\bullet}\right)\right)
\end{aligned}
$$

- ... and to know when we've found the sharpest rate of decay (i.e. matching upper and lower bounds).
- Relation to aspects of the original PDE?

Introduction, 2

Introduction, 2

- Often find bounds of the form, on a suitable path space \mathbb{X},

$$
\limsup _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{A}\right) \leq-\inf \{\mathcal{I}(u): u \in \mathcal{A}\}
$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$
\liminf _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{U}\right) \geq-\inf \{\mathcal{I}(u): u \in \mathcal{U} \cap \mathcal{X}\}
$$

for $\mathcal{U} \subset \mathbb{X}$ open,

Introduction, 2

- Often find bounds of the form, on a suitable path space \mathbb{X},

$$
\limsup _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{A}\right) \leq-\inf \{\mathcal{I}(u): u \in \mathcal{A}\}
$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$
\liminf _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{U}\right) \geq-\inf \{\mathcal{I}(u): u \in \mathcal{U} \cap \mathcal{X}\}
$$

for $\mathcal{U} \subset \mathbb{X}$ open, and some universal set $\mathcal{X} \subset \mathbb{X}$.

Introduction, 2

- Often find bounds of the form, on a suitable path space \mathbb{X},

$$
\limsup _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{A}\right) \leq-\inf \{\mathcal{I}(u): u \in \mathcal{A}\}
$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$
\liminf _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{U}\right) \geq-\inf \{\mathcal{I}(u): u \in \mathcal{U} \cap \mathcal{X}\}
$$

for $\mathcal{U} \subset \mathbb{X}$ open, and some universal set $\mathcal{X} \subset \mathbb{X}$.

- (Kipnis, Landim for ZRP; Rezakanlou for a collisional model).

Introduction, 2

- Often find bounds of the form, on a suitable path space \mathbb{X},

$$
\limsup _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{A}\right) \leq-\inf \{\mathcal{I}(u): u \in \mathcal{A}\}
$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$
\liminf _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{U}\right) \geq-\inf \{\mathcal{I}(u): u \in \mathcal{U} \cap \mathcal{X}\}
$$

for $\mathcal{U} \subset \mathbb{X}$ open, and some universal set $\mathcal{X} \subset \mathbb{X}$.

- (Kipnis, Landim for ZRP; Rezakanlou for a collisional model).
- Leaves open the possibility that there is a better upper bound $\mathcal{I}^{\prime}>\mathcal{I}$.

Introduction, 2

- Often find bounds of the form, on a suitable path space \mathbb{X},

$$
\limsup _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{A}\right) \leq-\inf \{\mathcal{I}(u): u \in \mathcal{A}\}
$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$
\liminf _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{U}\right) \geq-\inf \{\mathcal{I}(u): u \in \mathcal{U} \cap \mathcal{X}\}
$$

for $\mathcal{U} \subset \mathbb{X}$ open, and some universal set $\mathcal{X} \subset \mathbb{X}$.

- (Kipnis, Landim for ZRP; Rezakanlou for a collisional model).
- Leaves open the possibility that there is a better upper bound $\mathcal{I}^{\prime}>\mathcal{I}$. Can we work harder to get matching bounds?

Introduction, 2

- Often find bounds of the form, on a suitable path space \mathbb{X},

$$
\limsup _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{A}\right) \leq-\inf \{\mathcal{I}(u): u \in \mathcal{A}\}
$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$
\liminf _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{U}\right) \geq-\inf \{\mathcal{I}(u): u \in \mathcal{U} \cap \mathcal{X}\}
$$

for $\mathcal{U} \subset \mathbb{X}$ open, and some universal set $\mathcal{X} \subset \mathbb{X}$.

- (Kipnis, Landim for ZRP; Rezakanlou for a collisional model).
- Leaves open the possibility that there is a better upper bound $\mathcal{I}^{\prime}>\mathcal{I}$. Can we work harder to get matching bounds?
- Key difficulty: analysis of a modified PDE (controlled Boltzmann equation, skeleton equation)

Introduction, 2

- Often find bounds of the form, on a suitable path space \mathbb{X},

$$
\limsup _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{A}\right) \leq-\inf \{\mathcal{I}(u): u \in \mathcal{A}\}
$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$
\liminf _{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{U}\right) \geq-\inf \{\mathcal{I}(u): u \in \mathcal{U} \cap \mathcal{X}\}
$$

for $\mathcal{U} \subset \mathbb{X}$ open, and some universal set $\mathcal{X} \subset \mathbb{X}$.

- (Kipnis, Landim for ZRP; Rezakanlou for a collisional model).
- Leaves open the possibility that there is a better upper bound $\mathcal{I}^{\prime}>\mathcal{I}$. Can we work harder to get matching bounds?
- Key difficulty: analysis of a modified PDE (controlled Boltzmann equation, skeleton equation) with qualitatively different properties.

Restricted Large Deviations:
Kac's Process

Kac's Process

Kac's Process

- Empirical measure μ_{t}^{N} of N interacting velocities $V_{1}(t), \ldots, V_{N}(t)$.

Kac's Process

- Empirical measure μ_{t}^{N} of N interacting velocities $V_{1}(t), \ldots, V_{N}(t)$.
- Energy-conserving collisions: pairs (v, v_{\star}) update to

$$
v \mapsto v^{\prime}=v+\left(\left(v-v_{\star}\right) \cdot \sigma\right) \sigma ; \quad v_{\star} \mapsto v_{\star}^{\prime}=v_{\star}+\left(\left(v_{\star}-v\right) \cdot \sigma\right) \sigma .
$$

Kac's Process

- Empirical measure μ_{t}^{N} of N interacting velocities $V_{1}(t), \ldots, V_{N}(t)$.
- Energy-conserving collisions: pairs (v, v_{\star}) update to

$$
\begin{aligned}
& v \mapsto v^{\prime}=v+\left(\left(v-v_{\star}\right) \cdot \sigma\right) \sigma ; \quad v_{\star} \mapsto v_{\star}^{\prime}=v_{\star}+\left(\left(v_{\star}-v\right) \cdot \sigma\right) \sigma . \\
& \text { at rate } N^{-1} B\left(v-v_{\star}, \sigma\right) d \sigma=N^{-1}\left|v-v_{\star}\right| d \sigma, \sigma \in \mathbb{S}^{d-1} .
\end{aligned}
$$

Kac's Process

- Empirical measure μ_{t}^{N} of N interacting velocities $V_{1}(t), \ldots, V_{N}(t)$.
- Energy-conserving collisions: pairs (v, v_{\star}) update to

$$
\begin{aligned}
& v \mapsto v^{\prime}=v+\left(\left(v-v_{\star}\right) \cdot \sigma\right) \sigma ; \quad v_{\star} \mapsto v_{\star}^{\prime}=v_{\star}+\left(\left(v_{\star}-v\right) \cdot \sigma\right) \sigma . \\
& \text { at rate } N^{-1} B\left(v-v_{\star}, \sigma\right) d \sigma=N^{-1}\left|v-v_{\star}\right| d \sigma, \sigma \in \mathbb{S}^{d-1} .
\end{aligned}
$$

- Propagation of chaos: Sznitzman, Grünbaum, Mischler-Mouhot.

Kac's Process

- Empirical measure μ_{t}^{N} of N interacting velocities $V_{1}(t), \ldots, V_{N}(t)$.
- Energy-conserving collisions: pairs (v, v_{\star}) update to

$$
\begin{aligned}
& v \mapsto v^{\prime}=v+\left(\left(v-v_{\star}\right) \cdot \sigma\right) \sigma ; \quad v_{\star} \mapsto v_{\star}^{\prime}=v_{\star}+\left(\left(v_{\star}-v\right) \cdot \sigma\right) \sigma . \\
& \text { at rate } N^{-1} B\left(v-v_{\star}, \sigma\right) d \sigma=N^{-1}\left|v-v_{\star}\right| d \sigma, \sigma \in \mathbb{S}^{d-1} .
\end{aligned}
$$

- Propagation of chaos: Sznitzman, Grünbaum, Mischler-Mouhot.
- For LDP, start in N-particle equilibrium

$$
V_{0}^{i} \sim_{\text {i.i.d. }} \gamma(d v)=\frac{1}{\sqrt{2 \pi d}^{d}} \exp \left(-|v|^{2} / 2 d\right) d v .
$$

Kac's Process

- Empirical measure μ_{t}^{N} of N interacting velocities $V_{1}(t), \ldots, V_{N}(t)$.
- Energy-conserving collisions: pairs (v, v_{\star}) update to

$$
\begin{aligned}
& v \mapsto v^{\prime}=v+\left(\left(v-v_{\star}\right) \cdot \sigma\right) \sigma ; \quad v_{\star} \mapsto v_{\star}^{\prime}=v_{\star}+\left(\left(v_{\star}-v\right) \cdot \sigma\right) \sigma . \\
& \text { at rate } N^{-1} B\left(v-v_{\star}, \sigma\right) d \sigma=N^{-1}\left|v-v_{\star}\right| d \sigma, \sigma \in \mathbb{S}^{d-1} .
\end{aligned}
$$

- Propagation of chaos: Sznitzman, Grünbaum, Mischler-Mouhot.
- For LDP, start in N-particle equilibrium

$$
V_{0}^{i} \sim_{\text {i.i.d. }} \gamma(d v)=\frac{1}{\sqrt{2 \pi d}^{d}} \exp \left(-|v|^{2} / 2 d\right) d v .
$$

- Sanov:

$$
\mathbb{P}\left(\mu_{0}^{N} \approx \mu_{0}\right) \sim \exp \left(-N H\left(\mu_{0} \mid \gamma\right)\right)
$$

A Candidate Rate Function

A Candidate Rate Function

- Seek joint LDP on the trajectory $\mu_{\bullet}^{N}=\left(\mu_{t}^{N}\right)_{0 \leq t \leq T}$ and the empirical flux w^{N} recording collisions.

A Candidate Rate Function

- Seek joint LDP on the trajectory $\mu_{\bullet}^{N}=\left(\mu_{t}^{N}\right)_{0 \leq t \leq T}$ and the empirical flux w^{N} recording collisions.
- Candidate rate function: Léonard, 1995; Rezakhanlou, 1998; Bouchet, 2020.

A Candidate Rate Function

- Seek joint LDP on the trajectory $\mu_{\bullet}^{N}=\left(\mu_{t}^{N}\right)_{0 \leq t \leq T}$ and the empirical flux w^{N} recording collisions.
- Candidate rate function: Léonard, 1995; Rezakhanlou, 1998; Bouchet, 2020.
- Dynamic cost: set $\mathcal{J}\left(\mu_{\bullet}, w\right)=\infty$ unless $\left(\mu_{\bullet}, w\right)$ is a measure-flux pair

A Candidate Rate Function

- Seek joint LDP on the trajectory $\mu_{\bullet}^{N}=\left(\mu_{t}^{N}\right)_{0 \leq t \leq T}$ and the empirical flux w^{N} recording collisions.
- Candidate rate function: Léonard, 1995; Rezakhanlou, 1998; Bouchet, 2020.
- Dynamic cost: set $\mathcal{J}\left(\mu_{\bullet}, w\right)=\infty$ unless $\left(\mu_{\bullet}, w\right)$ is a measure-flux pair, in which case set

$$
\mathcal{J}\left(\mu_{\bullet}, w\right):=\operatorname{Ent}(w \mid \underbrace{\left|v-v_{\star}\right| \mu_{t}(d v) \mu_{t}\left(d v_{\star}\right) d t d \sigma}_{=: \bar{m}_{\mu}}) .
$$

A Candidate Rate Function

- Seek joint LDP on the trajectory $\mu_{\bullet}^{N}=\left(\mu_{t}^{N}\right)_{0 \leq t \leq T}$ and the empirical flux w^{N} recording collisions.
- Candidate rate function: Léonard, 1995; Rezakhanlou, 1998; Bouchet, 2020.
- Dynamic cost: set $\mathcal{J}\left(\mu_{\bullet}, w\right)=\infty$ unless $\left(\mu_{\bullet}, w\right)$ is a measure-flux pair, in which case set

$$
\mathcal{J}\left(\mu_{\bullet}, w\right):=\operatorname{Ent}(w \mid \underbrace{\left|v-v_{\star}\right| \mu_{t}(d v) \mu_{t}\left(d v_{\star}\right) d t d \sigma}_{=: \bar{m}_{\mu}})
$$

- If $\mathcal{J}<\infty$, then μ_{\bullet} solves a modified Boltzmann equation $\left(\mathrm{BE}_{K}\right)$, $K=\frac{d w}{d \bar{m}_{\mu}}$.

A Candidate Rate Function

- Seek joint LDP on the trajectory $\mu_{\bullet}^{N}=\left(\mu_{t}^{N}\right)_{0 \leq t \leq T}$ and the empirical flux w^{N} recording collisions.
- Candidate rate function: Léonard, 1995; Rezakhanlou, 1998; Bouchet, 2020.
- Dynamic cost: set $\mathcal{J}\left(\mu_{\bullet}, w\right)=\infty$ unless $\left(\mu_{\bullet}, w\right)$ is a measure-flux pair, in which case set

$$
\mathcal{J}\left(\mu_{\bullet}, w\right):=\operatorname{Ent}(w \mid \underbrace{\left|v-v_{\star}\right| \mu_{t}(d v) \mu_{t}\left(d v_{\star}\right) d t d \sigma}_{=: \bar{m}_{\mu}}) .
$$

- If $\mathcal{J}<\infty$, then μ_{\bullet} solves a modified Boltzmann equation $\left(\mathrm{BE}_{K}\right)$, $K=\frac{d w}{d \bar{m}_{\mu}}$. If $\mathcal{J}=0$, we recover (BE).

A Candidate Rate Function

- Seek joint LDP on the trajectory $\mu_{\bullet}^{N}=\left(\mu_{t}^{N}\right)_{0 \leq t \leq T}$ and the empirical flux w^{N} recording collisions.
- Candidate rate function: Léonard, 1995; Rezakhanlou, 1998; Bouchet, 2020.
- Dynamic cost: set $\mathcal{J}\left(\mu_{\bullet}, w\right)=\infty$ unless $\left(\mu_{\bullet}, w\right)$ is a measure-flux pair, in which case set

$$
\mathcal{J}\left(\mu_{\bullet}, w\right):=\operatorname{Ent}(w \mid \underbrace{\left|v-v_{\star}\right| \mu_{t}(d v) \mu_{t}\left(d v_{\star}\right) d t d \sigma}_{=: \bar{m}_{\mu}})
$$

- If $\mathcal{J}<\infty$, then μ_{\bullet} solves a modified Boltzmann equation $\left(\mathrm{BE}_{K}\right)$, $K=\frac{d w}{d \bar{m}_{\mu}}$. If $\mathcal{J}=0$, we recover (BE).
- Total $\operatorname{cost} \mathcal{I}\left(\mu_{\bullet}, w\right)=H\left(\mu_{0} \mid \gamma\right)+\mathcal{J}\left(\mu_{\bullet}, w\right)$.

Theorem 1: Positive Result

The rate function \mathcal{I} written above captures at least some of the correct large deviations behaviour:

Theorem (H, 2021; see also Basile-Benedetto-Bertini-Orierri, 2021)

- The variables $\left(\mu_{\bullet}^{N}, w^{N}\right)$ are exponentially tight in $\mathbb{D} \times \mathcal{M}(E)$.
- For all $\mathcal{A} \subset \mathbb{D} \times \mathcal{M}(E)$ closed,

$$
\begin{equation*}
\lim \sup \frac{1}{N} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w^{N}\right) \in \mathcal{A}\right) \leq-\inf \left\{\mathcal{I}\left(\mu_{\bullet}, w\right):\left(\mu_{\bullet}, w\right) \in \mathcal{A}\right\} \tag{UB}
\end{equation*}
$$

Theorem 1: Positive Result

The rate function \mathcal{I} written above captures at least some of the correct large deviations behaviour:

Theorem (H, 2021; see also Basile-Benedetto-Bertini-Orierri, 2021)

- The variables $\left(\mu_{\bullet}^{N}, w^{N}\right)$ are exponentially tight in $\mathbb{D} \times \mathcal{M}(E)$.
- For all $\mathcal{A} \subset \mathbb{D} \times \mathcal{M}(E)$ closed,

$$
\begin{equation*}
\lim \sup \frac{1}{N} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w^{N}\right) \in \mathcal{A}\right) \leq-\inf \left\{\mathcal{I}\left(\mu_{\bullet}, w\right):\left(\mu_{\bullet}, w\right) \in \mathcal{A}\right\} . \tag{UB}
\end{equation*}
$$

- For all $\mathcal{U} \subset \mathbb{D} \times \mathcal{M}(E)$ open,
$\lim \inf \frac{1}{N} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w^{N}\right) \in \mathcal{U}\right) \geq-\inf \left\{\mathcal{I}\left(\mu_{\bullet}, w\right):\left(\mu_{\bullet}, w\right) \in \mathcal{U} \cap \mathcal{X}\right\}$
where $\left.\mathcal{X}=\left\{\left(\mu_{\bullet}, w\right):\left.\langle | v\right|^{2}+\left|v_{\star}\right|^{2}, w\right\rangle<\infty\right\}$.

Positive Result: Main ideas

- Upper bound: variational formulation

$$
\mathcal{I}\left(\mu_{\bullet}, w\right)=\sup \left\{\equiv\left(\mu_{\bullet}, w, \varphi, f, g\right)_{T}: \varphi \in C_{b, v}, f \in C_{b, t, v}^{1,0}, g \in C_{c}(E)\right\}
$$

Positive Result: Main ideas

- Upper bound: variational formulation

$$
\mathcal{I}\left(\mu_{\bullet}, w\right)=\sup \left\{\equiv\left(\mu_{\bullet}, w, \varphi, f, g\right)_{T}: \varphi \in C_{b, v}, f \in C_{b, t, v}^{1,0}, g \in C_{c}(E)\right\}
$$

 $Z^{N}=\exp \left(N \equiv\left(\mu_{\bullet}^{N}, w^{N}, \varphi, f, g\right)_{t}\right)$ is a mean 1 martingale.

Positive Result: Main ideas

- Upper bound: variational formulation

$$
\mathcal{I}\left(\mu_{\bullet}, w\right)=\sup \left\{\equiv\left(\mu_{\bullet}, w, \varphi, f, g\right)_{T}: \varphi \in C_{b, v}, f \in C_{b, t, v}^{1,0}, g \in C_{c}(E)\right\}
$$

 $Z^{N}=\exp \left(N \equiv\left(\mu_{\bullet}^{N}, w^{N}, \varphi, f, g\right)_{t}\right)$ is a mean 1 martingale.

- (UB) follows from a standard martingale argument.

Positive Result: Main ideas

- Upper bound: variational formulation

$$
\mathcal{I}\left(\mu_{\bullet}, w\right)=\sup \left\{\equiv\left(\mu_{\bullet}, w, \varphi, f, g\right)_{T}: \varphi \in C_{b, v}, f \in C_{b, t, v}^{1,0}, g \in C_{c}(E)\right\}
$$

 $Z^{N}=\exp \left(N \equiv\left(\mu_{\bullet}^{N}, w^{N}, \varphi, f, g\right)_{t}\right)$ is a mean 1 martingale.

- (UB) follows from a standard martingale argument.
- First step in lower bound: for $\left(\mu_{\bullet}, w\right)$ with $\left|v-v_{\star}\right| K$ bounded and bounded away from 0 , we can write down a change of measure making $\left(\mu_{\bullet}, w\right)$ the typical trajectory as $N \rightarrow \infty$

Positive Result: Main ideas

- Upper bound: variational formulation

$$
\mathcal{I}\left(\mu_{\bullet}, w\right)=\sup \left\{\equiv\left(\mu_{\bullet}, w, \varphi, f, g\right)_{T}: \varphi \in C_{b, v}, f \in C_{b, t, v}^{1,0}, g \in C_{c}(E)\right\}
$$

 $Z^{N}=\exp \left(N \equiv\left(\mu_{\bullet}^{N}, w^{N}, \varphi, f, g\right)_{t}\right)$ is a mean 1 martingale.

- (UB) follows from a standard martingale argument.
- First step in lower bound: for $\left(\mu_{\bullet}, w\right)$ with $\left|v-v_{\star}\right| K$ bounded and bounded away from 0 , we can write down a change of measure making $\left(\mu_{\bullet}, w\right)$ the typical trajectory as $N \rightarrow \infty$ with

$$
\mathbb{Q}^{N}\left(\left|\frac{1}{N} \log \frac{d \mathbb{Q}^{N}}{d \mathbb{P}}-\mathcal{I}\left(\mu_{\bullet}, w\right)\right|>\epsilon\right) \rightarrow 0
$$

Positive Result: Main ideas

- Upper bound: variational formulation

$$
\mathcal{I}\left(\mu_{\bullet}, w\right)=\sup \left\{\equiv\left(\mu_{\bullet}, w, \varphi, f, g\right)_{T}: \varphi \in C_{b, v}, f \in C_{b, t, v}^{1,0}, g \in C_{c}(E)\right\}
$$

 $Z^{N}=\exp \left(N \equiv\left(\mu_{\bullet}^{N}, w^{N}, \varphi, f, g\right)_{t}\right)$ is a mean 1 martingale.

- (UB) follows from a standard martingale argument.
- First step in lower bound: for $\left(\mu_{\bullet}, w\right)$ with $\left|v-v_{\star}\right| K$ bounded and bounded away from 0 , we can write down a change of measure making $\left(\mu_{\bullet}, w\right)$ the typical trajectory as $N \rightarrow \infty$ with

$$
\mathbb{Q}^{N}\left(\left|\frac{1}{N} \log \frac{d \mathbb{Q}^{N}}{d \mathbb{P}}-\mathcal{I}\left(\mu_{\bullet}, w\right)\right|>\epsilon\right) \rightarrow 0
$$

- Argument exploits uniqueness for $\left(\mathrm{BE}_{K}\right)$.

Extending the Lower Bound

- Call the set where we have a lower bound \mathcal{X}_{0}.

Extending the Lower Bound

- Call the set where we have a lower bound \mathcal{X}_{0}. By a diagonal argument, we automatically get a lower bound on the set \mathcal{X}_{1} of $\left(\mu_{\bullet}, w\right)$ for which there exists a recovery sequence

$$
\left(\mu_{\bullet}^{(n)}, w^{(n)}\right) \in \mathcal{X}_{0}:\left(\mu_{\bullet}^{(n)}, w^{(n)}\right) \rightarrow\left(\mu_{\bullet}, w\right), \mathcal{I}\left(\mu_{\bullet}^{(n)}, w^{(n)}\right) \rightarrow \mathcal{I}\left(\mu_{\bullet}, w\right) .
$$

- (i.e. where the L.S.C. envelope $\overline{\mathcal{I} \mid \mathcal{X}_{0}}$ coincides with \mathcal{I}).

Extending the Lower Bound

- Call the set where we have a lower bound \mathcal{X}_{0}. By a diagonal argument, we automatically get a lower bound on the set \mathcal{X}_{1} of $\left(\mu_{\bullet}, w\right)$ for which there exists a recovery sequence

$$
\left(\mu_{\bullet}^{(n)}, w^{(n)}\right) \in \mathcal{X}_{0}:\left(\mu_{\bullet}^{(n)}, w^{(n)}\right) \rightarrow\left(\mu_{\bullet}, w\right), \mathcal{I}\left(\mu_{\bullet}^{(n)}, w^{(n)}\right) \rightarrow \mathcal{I}\left(\mu_{\bullet}, w\right) .
$$

- (i.e. where the L.S.C. envelope $\overline{\left.\mathcal{I}\right|_{\mathcal{X}_{0}}}$ coincides with \mathcal{I}).
- Argument: suppression of collisions in various 'bad' regions of collision space, then convolution $\mu_{t} \mapsto g_{\delta} \star \mu_{t}$.

Extending the Lower Bound

- Call the set where we have a lower bound \mathcal{X}_{0}. By a diagonal argument, we automatically get a lower bound on the set \mathcal{X}_{1} of $\left(\mu_{\bullet}, w\right)$ for which there exists a recovery sequence

$$
\left(\mu_{\bullet}^{(n)}, w^{(n)}\right) \in \mathcal{X}_{0}:\left(\mu_{\bullet}^{(n)}, w^{(n)}\right) \rightarrow\left(\mu_{\bullet}, w\right), \mathcal{I}\left(\mu_{\bullet}^{(n)}, w^{(n)}\right) \rightarrow \mathcal{I}\left(\mu_{\bullet}, w\right) .
$$

- (i.e. where the L.S.C. envelope $\overline{\left.\mathcal{I}\right|_{\mathcal{X}_{0}}}$ coincides with \mathcal{I}).
- Argument: suppression of collisions in various 'bad' regions of collision space, then convolution $\mu_{t} \mapsto g_{\delta} \star \mu_{t}$.
- Truncation argument critically uses $\left.\left.\langle 1+| v\right|^{2}+\left|v_{*}\right|^{2}, w\right\rangle<\infty$.

Theorem 2: A Counterexample

Theorem 2: A Counterexample

- (RLB) has the prototypical form of a restricted lower bound.

Theorem 2: A Counterexample

- (RLB) has the prototypical form of a restricted lower bound.
- Counterexample without restriction:

Theorem 2: A Counterexample

- (RLB) has the prototypical form of a restricted lower bound.
- Counterexample without restriction:

Theorem (H, 2021; see also Basile-Bernadetto-Bertini-Caglioti

 2021)Let $\Theta:[0, T] \rightarrow[0, \infty)$ be a bounded energy profile satisfying certain technical assumptions. Then the set

$$
\left.\mathcal{A}_{\ominus}=\left\{\left(\mu_{\bullet}, w\right): \mu_{0}=\gamma, \mu_{\bullet} \text { solves }(B E), w=\bar{m}_{\mu},\left.\langle | v\right|^{2}, \mu_{t}\right\rangle=\Theta(t)\right\}
$$

is compact, nonempty, and $\mathcal{I}=0$ on $\mathcal{A} \Theta$. For some $\mathcal{V} \supset \mathcal{A}_{\ominus}$,

$$
\liminf \frac{1}{N} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w^{N}\right) \in \mathcal{V}\right)<0=-\inf \left\{\mathcal{I}\left(\mu_{\bullet}, w\right):\left(\mu_{\bullet}, w\right) \in \mathcal{A}_{\ominus}\right\}
$$

while

$$
\inf _{\mathcal{U} \supset \mathcal{A}_{\ominus}} \lim \inf \frac{1}{N} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w^{N}\right) \in \mathcal{U}\right)>-\infty
$$

Theorem 2: A Counterexample

- (RLB) has the prototypical form of a restricted lower bound.
- Counterexample without restriction:

Theorem (H, 2021; see also Basile-Bernadetto-Bertini-Caglioti

 2021)Let $\Theta:[0, T] \rightarrow[0, \infty)$ be a bounded energy profile satisfying certain technical assumptions. Then the set

$$
\left.\mathcal{A}_{\Theta}=\left\{\left(\mu_{\bullet}, w\right): \mu_{0}=\gamma, \mu_{\bullet} \text { solves }(B E), w=\bar{m}_{\mu},\left.\langle | v\right|^{2}, \mu_{t}\right\rangle=\Theta(t)\right\}
$$

is compact, nonempty, and $\mathcal{I}=0$ on \mathcal{A}_{\ominus}. For some $\mathcal{V} \supset \mathcal{A}_{\ominus}$,

$$
\liminf \frac{1}{N} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w^{N}\right) \in \mathcal{V}\right)<0=-\inf \left\{\mathcal{I}\left(\mu_{\bullet}, w\right):\left(\mu_{\bullet}, w\right) \in \mathcal{A}_{\ominus}\right\}
$$

while

$$
\inf _{\mathcal{U} \supset \mathcal{A}_{\ominus}} \liminf \frac{1}{N} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w^{N}\right) \in \mathcal{U}\right)>-\infty
$$

....so such behaviour cannot be excluded, but the rate function predicts the exponential occurrence wrongly.

Counterexample: (One Possible) Proof

- Easiest case: $\Theta(t)=1+\theta 1(t>0)$, for some $\theta>0$.

Counterexample: (One Possible) Proof

- Easiest case: $\Theta(t)=1+\theta 1(t>0)$, for some $\theta>0$.
- The Gaussian satisfies $0<\sup \left(z: \int e^{z|v|^{2}} \gamma(d v)\right)=d<\infty$.

Counterexample: (One Possible) Proof

- Easiest case: $\Theta(t)=1+\theta 1(t>0)$, for some $\theta>0$.
- The Gaussian satisfies $0<\sup \left(z: \int e^{z|v|^{2}} \gamma(d v)\right)=d<\infty$.
- Construct \mathbb{Q}^{N} under which

$$
V_{0}^{i} \sim_{\text {i.i.d. }} \exp \left(\lambda_{M(N)}|v|^{2} 1(|v| \geq M(N))\right) \gamma(d v)
$$

with $\lambda_{M(N)}<d$ chosen so that $\mathbb{E}\left[V_{0}^{i}\right]=1+\theta$,

Counterexample: (One Possible) Proof

- Easiest case: $\Theta(t)=1+\theta 1(t>0)$, for some $\theta>0$.
- The Gaussian satisfies $0<\sup \left(z: \int e^{z|v|^{2}} \gamma(d v)\right)=d<\infty$.
- Construct \mathbb{Q}^{N} under which

$$
V_{0}^{i} \sim_{\text {i.i.d. }} \exp \left(\lambda_{M(N)}|v|^{2} 1(|v| \geq M(N))\right) \gamma(d v)
$$

with $\lambda_{M(N)}<d$ chosen so that $\mathbb{E}\left[V_{0}^{i}\right]=1+\theta$, and $M(N) \rightarrow \infty$ slowly enough that, for all $\delta>0$,
$\left.\mathbb{Q}^{N}\left(|\langle | v|^{2}, \mu_{0}^{N}\right\rangle-(1+\theta) \mid>\delta\right) \rightarrow 0 ; \quad \mathbb{Q}^{N}\left(W\left(\mu_{0}^{N}, \gamma_{M(N)}\right)>\delta\right) \rightarrow 0$.

Counterexample: (One Possible) Proof

- Easiest case: $\Theta(t)=1+\theta 1(t>0)$, for some $\theta>0$.
- The Gaussian satisfies $0<\sup \left(z: \int e^{z|v|^{2}} \gamma(d v)\right)=d<\infty$.
- Construct \mathbb{Q}^{N} under which

$$
V_{0}^{i} \sim_{\text {i.i.d. }} \exp \left(\lambda_{M(N)}|v|^{2} 1(|v| \geq M(N))\right) \gamma(d v)
$$

with $\lambda_{M(N)}<d$ chosen so that $\mathbb{E}\left[V_{0}^{i}\right]=1+\theta$, and $M(N) \rightarrow \infty$ slowly enough that, for all $\delta>0$, $\left.\mathbb{Q}^{N}\left(|\langle | v|^{2}, \mu_{0}^{N}\right\rangle-(1+\theta) \mid>\delta\right) \rightarrow 0 ; \quad \mathbb{Q}^{N}\left(W\left(\mu_{0}^{N}, \gamma_{M(N)}\right)>\delta\right) \rightarrow 0$.

- Because $\lambda_{M(N)}<d, \frac{d \mathbb{Q}^{N}}{d \mathbb{P}} \leq e^{N d(1+\theta+\epsilon)}$ with high \mathbb{Q}^{N}-probability.

Counterexample: (One Possible) Proof

- Easiest case: $\Theta(t)=1+\theta 1(t>0)$, for some $\theta>0$.
- The Gaussian satisfies $0<\sup \left(z: \int e^{z|v|^{2}} \gamma(d v)\right)=d<\infty$.
- Construct \mathbb{Q}^{N} under which

$$
V_{0}^{i} \sim_{\text {i.i.d. }} \exp \left(\lambda_{M(N)}|v|^{2} 1(|v| \geq M(N))\right) \gamma(d v)
$$

with $\lambda_{M(N)}<d$ chosen so that $\mathbb{E}\left[V_{0}^{i}\right]=1+\theta$, and $M(N) \rightarrow \infty$ slowly enough that, for all $\delta>0$,

$$
\left.\mathbb{Q}^{N}\left(|\langle | v|^{2}, \mu_{0}^{N}\right\rangle-(1+\theta) \mid>\delta\right) \rightarrow 0 ; \quad \mathbb{Q}^{N}\left(W\left(\mu_{0}^{N}, \gamma_{M(N)}\right)>\delta\right) \rightarrow 0 .
$$

- Because $\lambda_{M(N)}<d$, $\frac{d \mathbb{Q}^{N}}{d \mathbb{P}} \leq e^{N d(1+\theta+\epsilon)}$ with high \mathbb{Q}^{N}-probability.
- Chaotic, but not entropically chaotic.

Counterexample: (One Possible) Proof

- Easiest case: $\Theta(t)=1+\theta 1(t>0)$, for some $\theta>0$.
- The Gaussian satisfies $0<\sup \left(z: \int e^{z|v|^{2}} \gamma(d v)\right)=d<\infty$.
- Construct \mathbb{Q}^{N} under which

$$
V_{0}^{i} \sim_{\text {i.i.d. }} \exp \left(\lambda_{M(N)}|v|^{2} 1(|v| \geq M(N))\right) \gamma(d v)
$$

with $\lambda_{M(N)}<d$ chosen so that $\mathbb{E}\left[V_{0}^{i}\right]=1+\theta$, and $M(N) \rightarrow \infty$ slowly enough that, for all $\delta>0$,
$\left.\mathbb{Q}^{N}\left(|\langle | v|^{2}, \mu_{0}^{N}\right\rangle-(1+\theta) \mid>\delta\right) \rightarrow 0 ; \quad \mathbb{Q}^{N}\left(W\left(\mu_{0}^{N}, \gamma_{M(N)}\right)>\delta\right) \rightarrow 0$.

- Because $\lambda_{M(N)}<d$, $\frac{d \mathbb{Q}^{N}}{d \mathbb{P}} \leq e^{N d(1+\theta+\epsilon)}$ with high \mathbb{Q}^{N}-probability.
- Chaotic, but not entropically chaotic.
- Using martingale arguments, Pozvner inequality..., all distributional limits $\left(\mu_{\bullet}, w\right)$ are supported on \mathcal{A}_{\ominus}, so for all open $\mathcal{U} \supset \mathcal{A}$,

$$
\liminf _{N} N^{-1} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w\right) \in \mathcal{U}\right) \geq-d(1+\theta)
$$

Counterexample: Proof, 2

Counterexample: Proof, 2

- Why doesn't the expected bound hold on \mathcal{A} ?

Counterexample: Proof, 2

- Why doesn't the expected bound hold on \mathcal{A} ?
- $\mathcal{J}=0$ on \mathcal{A}_{\ominus} because all paths have $w=\bar{m}_{\mu}$, and $H\left(\mu_{0} \mid \gamma\right)=0$.

Counterexample: Proof, 2

- Why doesn't the expected bound hold on \mathcal{A} ?
- $\mathcal{J}=0$ on \mathcal{A}_{\ominus} because all paths have $w=\bar{m}_{\mu}$, and $H\left(\mu_{0} \mid \gamma\right)=0$.
- For well-chosen $f \in C_{c}\left(\mathbb{R}^{d}\right), 0 \leq f \leq|v|^{2}$,

$$
\mathcal{V}=\left\{\left(\mu_{\bullet}, w\right): \int_{T / 2}^{T}\left\langle f, \mu_{t}\right\rangle d t>\frac{T}{2}\left(1+\frac{\theta}{2}\right)\right\} \supset \mathcal{A}_{\Theta}
$$

Counterexample: Proof, 2

- Why doesn't the expected bound hold on \mathcal{A} ?
- $\mathcal{J}=0$ on \mathcal{A}_{\ominus} because all paths have $w=\bar{m}_{\mu}$, and $H\left(\mu_{0} \mid \gamma\right)=0$.
- For well-chosen $f \in C_{c}\left(\mathbb{R}^{d}\right), 0 \leq f \leq|v|^{2}$,

$$
\mathcal{V}=\left\{\left(\mu_{\bullet}, w\right): \int_{T / 2}^{T}\left\langle f, \mu_{t}\right\rangle d t>\frac{T}{2}\left(1+\frac{\theta}{2}\right)\right\} \supset \mathcal{A}_{\ominus}
$$

and
$\left.\liminf _{N} \frac{1}{N} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w^{N}\right) \in \mathcal{V}\right) \leq \liminf _{N} \frac{1}{N} \log \mathbb{P}\left(\left.\langle | v\right|^{2}, \mu_{0}^{N}\right\rangle>1+\frac{\theta}{2}\right)<0$

Counterexample: Proof, 2

- Why doesn't the expected bound hold on \mathcal{A} ?
- $\mathcal{J}=0$ on \mathcal{A}_{\ominus} because all paths have $w=\bar{m}_{\mu}$, and $H\left(\mu_{0} \mid \gamma\right)=0$.
- For well-chosen $f \in C_{c}\left(\mathbb{R}^{d}\right), 0 \leq f \leq|v|^{2}$,

$$
\mathcal{V}=\left\{\left(\mu_{\bullet}, w\right): \int_{T / 2}^{T}\left\langle f, \mu_{t}\right\rangle d t>\frac{T}{2}\left(1+\frac{\theta}{2}\right)\right\} \supset \mathcal{A}_{\ominus}
$$

and
$\left.\liminf _{N} \frac{1}{N} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w^{N}\right) \in \mathcal{V}\right) \leq \lim _{N} \inf \frac{1}{N} \log \mathbb{P}\left(\left.\langle | v\right|^{2}, \mu_{0}^{N}\right\rangle>1+\frac{\theta}{2}\right)<0$
using pathwise energy conservation and Cramér's theorem.

Counterexample: Proof, 2

- Why doesn't the expected bound hold on \mathcal{A} ?
- $\mathcal{J}=0$ on \mathcal{A}_{\ominus} because all paths have $w=\bar{m}_{\mu}$, and $H\left(\mu_{0} \mid \gamma\right)=0$.
- For well-chosen $f \in C_{c}\left(\mathbb{R}^{d}\right), 0 \leq f \leq|v|^{2}$,

$$
\mathcal{V}=\left\{\left(\mu_{\bullet}, w\right): \int_{T / 2}^{T}\left\langle f, \mu_{t}\right\rangle d t>\frac{T}{2}\left(1+\frac{\theta}{2}\right)\right\} \supset \mathcal{A}_{\ominus}
$$

and
$\left.\liminf _{N} \frac{1}{N} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w^{N}\right) \in \mathcal{V}\right) \leq \lim _{N} \inf \frac{1}{N} \log \mathbb{P}\left(\left.\langle | v\right|^{2}, \mu_{0}^{N}\right\rangle>1+\frac{\theta}{2}\right)<0$
using pathwise energy conservation and Cramér's theorem.

- Theorem of Basile-Benedetto-Bertini-Caglioti: counterexample by a different construction, improved rate function which is >0 on \mathcal{A}_{\ominus}.

Counterexample: Proof, 2

- Why doesn't the expected bound hold on \mathcal{A} ?
- $\mathcal{J}=0$ on \mathcal{A}_{\ominus} because all paths have $w=\bar{m}_{\mu}$, and $H\left(\mu_{0} \mid \gamma\right)=0$.
- For well-chosen $f \in C_{c}\left(\mathbb{R}^{d}\right), 0 \leq f \leq|v|^{2}$,

$$
\mathcal{V}=\left\{\left(\mu_{\bullet}, w\right): \int_{T / 2}^{T}\left\langle f, \mu_{t}\right\rangle d t>\frac{T}{2}\left(1+\frac{\theta}{2}\right)\right\} \supset \mathcal{A}_{\Theta}
$$

and
$\left.\liminf _{N} \frac{1}{N} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w^{N}\right) \in \mathcal{V}\right) \leq \liminf _{N} \frac{1}{N} \log \mathbb{P}\left(\left.\langle | v\right|^{2}, \mu_{0}^{N}\right\rangle>1+\frac{\theta}{2}\right)<0$
using pathwise energy conservation and Cramér's theorem.

- Theorem of Basile-Benedetto-Bertini-Caglioti: counterexample by a different construction, improved rate function which is >0 on \mathcal{A}_{\ominus}.
- LDP rate function still not correct for other Boltzmann kernels (e.g. cutoff Maxwell Molecules).

Zero-Range Process: An
 Example with Matching Bounds

Zero-Range Process

Zero-Range Process

- Fix a (nondecreasing) function $g: \mathbb{N} \rightarrow \mathbb{R}$.

Zero-Range Process

- Fix a (nondecreasing) function $g: \mathbb{N} \rightarrow \mathbb{R}$.
- Place a bin at each site of $\mathbb{T}_{N}^{d}:=\left\{0, N^{-1}, \ldots, 1-N^{-1}\right\}^{d}$;

Zero-Range Process

- Fix a (nondecreasing) function $g: \mathbb{N} \rightarrow \mathbb{R}$.
- Place a bin at each site of $\mathbb{T}_{N}^{d}:=\left\{0, N^{-1}, \ldots, 1-N^{-1}\right\}^{d}$;
- $\tilde{\eta}^{N}=$ empirical partical configuration;

Zero-Range Process

- Fix a (nondecreasing) function $g: \mathbb{N} \rightarrow \mathbb{R}$.
- Place a bin at each site of $\mathbb{T}_{N}^{d}:=\left\{0, N^{-1}, \ldots, 1-N^{-1}\right\}^{d}$;
- $\tilde{\eta}^{N}=$ empirical partical configuration;
- At rate $g\left(\eta^{N}(x)\right)$, a particle jumps from x to a randomly chosen neighbour y.

Zero-Range Process

- Fix a (nondecreasing) function $g: \mathbb{N} \rightarrow \mathbb{R}$.
- Place a bin at each site of $\mathbb{T}_{N}^{d}:=\left\{0, N^{-1}, \ldots, 1-N^{-1}\right\}^{d}$;
- $\tilde{\eta}^{N}=$ empirical partical configuration;
- At rate $g\left(\eta^{N}(x)\right)$, a particle jumps from x to a randomly chosen neighbour y.
- Identify $\tilde{\eta}^{N} \in L_{\geq 0}^{1}\left(\mathbb{T}_{N}^{d}\right) \subset L_{\geq 0}^{1}\left(\mathbb{T}^{d}\right)$ and give path space \mathbb{D} the Skorokhod topology for a metric inducing weak convergence.

Zero-Range Process

- Fix a (nondecreasing) function $g: \mathbb{N} \rightarrow \mathbb{R}$.
- Place a bin at each site of $\mathbb{T}_{N}^{d}:=\left\{0, N^{-1}, \ldots, 1-N^{-1}\right\}^{d}$;
- $\tilde{\eta}^{N}=$ empirical partical configuration;
- At rate $g\left(\eta^{N}(x)\right)$, a particle jumps from x to a randomly chosen neighbour y.
- Identify $\tilde{\eta}^{N} \in L_{\geq 0}^{1}\left(\mathbb{T}_{N}^{d}\right) \subset L_{\geq 0}^{1}\left(\mathbb{T}^{d}\right)$ and give path space \mathbb{D} the Skorokhod topology for a metric inducing weak convergence.
- Hydrodynamic scaling: limit of $\eta_{t}^{N}(x):=\tilde{\eta}_{N^{2} t}^{N}(x)$

Zero-Range Process

- Fix a (nondecreasing) function $g: \mathbb{N} \rightarrow \mathbb{R}$.
- Place a bin at each site of $\mathbb{T}_{N}^{d}:=\left\{0, N^{-1}, \ldots, 1-N^{-1}\right\}^{d}$;
- $\tilde{\eta}^{N}=$ empirical partical configuration;
- At rate $g\left(\eta^{N}(x)\right)$, a particle jumps from x to a randomly chosen neighbour y.
- Identify $\tilde{\eta}^{N} \in L_{\geq 0}^{1}\left(\mathbb{T}_{N}^{d}\right) \subset L_{\geq 0}^{1}\left(\mathbb{T}^{d}\right)$ and give path space \mathbb{D} the Skorokhod topology for a metric inducing weak convergence.
- Hydrodynamic scaling: limit of $\eta_{t}^{N}(x):=\tilde{\eta}_{N^{2} t}^{N}(x)$ (e.g. Kipnis-Landim)

Zero-Range Process

- Fix a (nondecreasing) function $g: \mathbb{N} \rightarrow \mathbb{R}$.
- Place a bin at each site of $\mathbb{T}_{N}^{d}:=\left\{0, N^{-1}, \ldots, 1-N^{-1}\right\}^{d}$;
- $\tilde{\eta}^{N}=$ empirical partical configuration;
- At rate $g\left(\eta^{N}(x)\right)$, a particle jumps from x to a randomly chosen neighbour y.
- Identify $\tilde{\eta}^{N} \in L_{\geq 0}^{1}\left(\mathbb{T}_{N}^{d}\right) \subset L_{\geq 0}^{1}\left(\mathbb{T}^{d}\right)$ and give path space \mathbb{D} the Skorokhod topology for a metric inducing weak convergence.
- Hydrodynamic scaling: limit of $\eta_{t}^{N}(x):=\tilde{\eta}_{N^{2} t}^{N}(x)$ (e.g. Kipnis-Landim) - (nondegenerate) nonlinear parabolic equation

Zero-Range Process

- Fix a (nondecreasing) function $g: \mathbb{N} \rightarrow \mathbb{R}$.
- Place a bin at each site of $\mathbb{T}_{N}^{d}:=\left\{0, N^{-1}, \ldots, 1-N^{-1}\right\}^{d}$;
- $\tilde{\eta}^{N}=$ empirical partical configuration;
- At rate $g\left(\eta^{N}(x)\right)$, a particle jumps from x to a randomly chosen neighbour y.
- Identify $\tilde{\eta}^{N} \in L_{\geq 0}^{1}\left(\mathbb{T}_{N}^{d}\right) \subset L_{\geq 0}^{1}\left(\mathbb{T}^{d}\right)$ and give path space \mathbb{D} the Skorokhod topology for a metric inducing weak convergence.
- Hydrodynamic scaling: limit of $\eta_{t}^{N}(x):=\tilde{\eta}_{N^{2} t}^{N}(x)$ (e.g. Kipnis-Landim) - (nondegenerate) nonlinear parabolic equation

$$
\partial_{t} u_{t}=\Delta \Phi\left(u_{t}\right)
$$

Zero-Range Process

- Fix a (nondecreasing) function $g: \mathbb{N} \rightarrow \mathbb{R}$.
- Place a bin at each site of $\mathbb{T}_{N}^{d}:=\left\{0, N^{-1}, \ldots, 1-N^{-1}\right\}^{d}$;
- $\tilde{\eta}^{N}=$ empirical partical configuration;
- At rate $g\left(\eta^{N}(x)\right)$, a particle jumps from x to a randomly chosen neighbour y.
- Identify $\tilde{\eta}^{N} \in L_{\geq 0}^{1}\left(\mathbb{T}_{N}^{d}\right) \subset L_{\geq 0}^{1}\left(\mathbb{T}^{d}\right)$ and give path space \mathbb{D} the Skorokhod topology for a metric inducing weak convergence.
- Hydrodynamic scaling: limit of $\eta_{t}^{N}(x):=\tilde{\eta}_{N^{2} t}^{N}(x)$ (e.g. Kipnis-Landim) - (nondegenerate) nonlinear parabolic equation

$$
\partial_{t} u_{t}=\Delta \Phi\left(u_{t}\right)
$$

for some Φ determined by the jump rate g.

Large Deviations: Beyond Kipnis-Landim

- Large deviation result of Kipnis-Landim:

Large Deviations: Beyond Kipnis-Landim

- Large deviation result of Kipnis-Landim: variational rate function $\mathcal{I}_{\text {Var }}$

Large Deviations: Beyond Kipnis-Landim

- Large deviation result of Kipnis-Landim: variational rate function $\mathcal{I}_{\text {Var }}$, lower bound restricted to a set \mathcal{X}.

Large Deviations: Beyond Kipnis-Landim

- Large deviation result of Kipnis-Landim: variational rate function $\mathcal{I}_{\text {Var }}$, lower bound restricted to a set \mathcal{X}.
- In the lower bound, $\mathcal{I}_{\text {Var }}$ coincides with

$$
\mathcal{I}_{\mathrm{FP}}\left(u_{\bullet}\right):=\mathcal{I}_{0}\left(u_{0}\right)+\frac{1}{2} \inf _{H \in C_{t, x}^{1,3}}\left\{\int_{t, x} \Phi(u)|\nabla H|^{2}: \partial_{t} u_{t}=\Delta \Phi\left(u_{t}\right)-\nabla \cdot(\Phi(u) \nabla H)\right\}
$$

Large Deviations: Beyond Kipnis-Landim

- Large deviation result of Kipnis-Landim: variational rate function $\mathcal{I}_{\text {Var }}$, lower bound restricted to a set \mathcal{X}.
- In the lower bound, $\mathcal{I}_{\text {Var }}$ coincides with

$$
\mathcal{I}_{\mathrm{FP}}\left(u_{\bullet}\right):=\mathcal{I}_{0}\left(u_{0}\right)+\frac{1}{2} \inf _{H \in C_{t, x}^{1,3}}\left\{\int_{t, x} \Phi(u)|\nabla H|^{2}: \partial_{t} u_{t}=\Delta \Phi\left(u_{t}\right)-\nabla \cdot(\Phi(u) \nabla H)\right\}
$$

(and \mathcal{X} is the set of u_{\bullet} where the infimum is finite).

Large Deviations: Beyond Kipnis-Landim

- Large deviation result of Kipnis-Landim: variational rate function $\mathcal{I}_{\text {Var }}$, lower bound restricted to a set \mathcal{X}.
- In the lower bound, $\mathcal{I}_{\text {Var }}$ coincides with

$$
\mathcal{I}_{\mathrm{FP}}\left(u_{\bullet}\right):=\mathcal{I}_{0}\left(u_{0}\right)+\frac{1}{2} \inf _{H \in C_{t, x}^{1,3}}\left\{\int_{t, x} \Phi(u)|\nabla H|^{2}: \partial_{t} u_{t}=\Delta \Phi\left(u_{t}\right)-\nabla \cdot(\Phi(u) \nabla H)\right\}
$$

(and \mathcal{X} is the set of u_{\bullet} where the infimum is finite).

- What is the L.S.C. envelope of $\mathcal{I}_{\mathrm{FP}}$?

Large Deviations: Beyond Kipnis-Landim

- Large deviation result of Kipnis-Landim: variational rate function $\mathcal{I}_{\text {Var }}$, lower bound restricted to a set \mathcal{X}.
- In the lower bound, $\mathcal{I}_{\text {Var }}$ coincides with

$$
\mathcal{I}_{\mathrm{FP}}\left(u_{\bullet}\right):=\mathcal{I}_{0}\left(u_{0}\right)+\frac{1}{2} \inf _{H \in C_{t, x}^{1,3}}\left\{\int_{t, x} \Phi(u)|\nabla H|^{2}: \partial_{t} u_{t}=\Delta \Phi\left(u_{t}\right)-\nabla \cdot(\Phi(u) \nabla H)\right\}
$$

(and \mathcal{X} is the set of u_{0} where the infimum is finite).

- What is the L.S.C. envelope of $\mathcal{I}_{\mathrm{FP}}$? How much more do we need to improve the upper bound?

Large Deviations: Beyond Kipnis-Landim

- Large deviation result of Kipnis-Landim: variational rate function $\mathcal{I}_{\text {Var }}$, lower bound restricted to a set \mathcal{X}.
- In the lower bound, $\mathcal{I}_{\text {Var }}$ coincides with

$$
\mathcal{I}_{\mathrm{FP}}\left(u_{\bullet}\right):=\mathcal{I}_{0}\left(u_{0}\right)+\frac{1}{2} \inf _{H \in C_{t, x}^{1,3}}\left\{\int_{t, x} \Phi(u)|\nabla H|^{2}: \partial_{t} u_{t}=\Delta \Phi\left(u_{t}\right)-\nabla \cdot(\Phi(u) \nabla H)\right\}
$$

(and \mathcal{X} is the set of u_{0} where the infimum is finite).

- What is the L.S.C. envelope of $\mathcal{I}_{\mathrm{FP}}$? How much more do we need to improve the upper bound?
- Theorem (Fehrman-Gess, 2019) Under general hypotheses on Φ, inclduing all porous medium nonlinearities $\Phi(u)=u^{\alpha}, \alpha \geq 1$, the LSC envelope is given by

$$
\mathcal{I}\left(u_{\bullet}\right)=\mathcal{I}_{0}\left(u_{0}\right)+\frac{1}{2} \inf _{g \in L_{t, x}^{2}}\left\{\|g\|_{L_{t, x}^{2}}^{2}: \partial_{t} u_{t}=\Delta \Phi\left(u_{t}\right)-\nabla \cdot\left(\Phi(u)^{1 / 2} g\right)\right\} .
$$

Large Deviations: Beyond Kipnis-Landim

- Large deviation result of Kipnis-Landim: variational rate function $\mathcal{I}_{\text {Var }}$, lower bound restricted to a set \mathcal{X}.
- In the lower bound, $\mathcal{I}_{\text {Var }}$ coincides with

$$
\mathcal{I}_{\mathrm{FP}}\left(u_{\bullet}\right):=\mathcal{I}_{0}\left(u_{0}\right)+\frac{1}{2} \inf _{H \in C_{t, x}^{1,3}}\left\{\int_{t, x} \Phi(u)|\nabla H|^{2}: \partial_{t} u_{t}=\Delta \Phi\left(u_{t}\right)-\nabla \cdot(\Phi(u) \nabla H)\right\}
$$

(and \mathcal{X} is the set of u_{0} where the infimum is finite).

- What is the L.S.C. envelope of $\mathcal{I}_{\mathrm{FP}}$? How much more do we need to improve the upper bound?
- Theorem (Fehrman-Gess, 2019) Under general hypotheses on Φ, inclduing all porous medium nonlinearities $\Phi(u)=u^{\alpha}, \alpha \geq 1$, the LSC envelope is given by
$\mathcal{I}\left(u_{\bullet}\right)=\mathcal{I}_{0}\left(u_{0}\right)+\frac{1}{2} \inf _{g \in L_{t, x}^{2}}\left\{\|g\|_{L_{t, x}^{2}}^{2}: \partial_{t} u_{t}=\Delta \Phi\left(u_{t}\right)-\nabla \cdot\left(\Phi(u)^{1 / 2} g\right)\right\}$.
(Skeleton equation (Sk_{g})).

The Skeleton Equation (Fehrman-Gess 2019)

The Skeleton Equation (Fehrman-Gess 2019)

- $\left(S k_{g}\right)$ is critical in L_{x}^{1} and supercritical in L_{x}^{p} for any $p>1$.

The Skeleton Equation (Fehrman-Gess 2019)

- $\left(\mathrm{Sk}_{g}\right)$ is critical in L_{x}^{1} and supercritical in L_{x}^{p} for any $p>1$.
- Not a pertubation of a parabolic equation!

The Skeleton Equation (Fehrman-Gess 2019)

- $\left(S k_{g}\right)$ is critical in L_{x}^{1} and supercritical in L_{x}^{p} for any $p>1$.
- Not a pertubation of a parabolic equation! Rough drift: e.g. LeBris-Lions, Karlssen-Risebro-Ohlberger-Chen need $g \in W_{\text {loc }}^{1,1}$, $\operatorname{div}(g) \in L^{\infty}$.

The Skeleton Equation (Fehrman-Gess 2019)

- $\left(\mathrm{Sk}_{g}\right)$ is critical in L_{x}^{1} and supercritical in L_{x}^{p} for any $p>1$.
- Not a pertubation of a parabolic equation! Rough drift: e.g. LeBris-Lions, Karlssen-Risebro-Ohlberger-Chen need $g \in W_{\text {loc }}^{1,1}$, $\operatorname{div}(g) \in L^{\infty}$.
- A priori estimate: for a suitable entropy \mathcal{H}_{Φ}

$$
\mathcal{H}_{\Phi}\left(u_{T}\right)+\int_{0}^{T} \underbrace{\left\|\nabla \Phi^{1 / 2}\left(u_{s}\right)\right\|_{L_{x}}^{2}}_{=: \mathcal{D}_{\boldsymbol{\Phi}}\left(u_{s}\right)} d s \leq \mathcal{H}_{\Phi}\left(u_{0}\right)+c\|g\|_{L_{t, x}^{2}}^{2}
$$

The Skeleton Equation (Fehrman-Gess 2019)

- $\left(S k_{g}\right)$ is critical in L_{x}^{1} and supercritical in L_{x}^{p} for any $p>1$.
- Not a pertubation of a parabolic equation! Rough drift: e.g. LeBris-Lions, Karlssen-Risebro-Ohlberger-Chen need $g \in W_{\text {loc }}^{1,1}$, $\operatorname{div}(g) \in L^{\infty}$.
- A priori estimate: for a suitable entropy \mathcal{H}_{Φ}

$$
\mathcal{H}_{\Phi}\left(u_{T}\right)+\int_{0}^{T} \underbrace{\left\|\nabla \Phi^{1 / 2}\left(u_{s}\right)\right\|_{L_{x}^{2}}^{2}}_{=: D_{\Phi}\left(u_{s}\right)} d s \leq \mathcal{H}_{\Phi}\left(u_{0}\right)+c\|g\|_{L_{t, x}^{2}}^{2}
$$

- Theorem: existence and uniqueness in

$$
\mathcal{R}:=\left\{u_{\bullet} \in L_{t}^{\infty} L_{x}^{1}: u \geq 0, \sup \mathcal{H}_{\Phi}\left(u_{t}\right)<\infty, \int_{0}^{T} \mathcal{D}_{\Phi}\left(u_{s}\right) d s<\infty\right\} .
$$

The Skeleton Equation (Fehrman-Gess 2019)

- $\left(S k_{g}\right)$ is critical in L_{x}^{1} and supercritical in L_{x}^{p} for any $p>1$.
- Not a pertubation of a parabolic equation! Rough drift: e.g. LeBris-Lions, Karlssen-Risebro-Ohlberger-Chen need $g \in W_{\text {loc }}^{1,1}$, $\operatorname{div}(g) \in L^{\infty}$.
- A priori estimate: for a suitable entropy \mathcal{H}_{Φ}

$$
\mathcal{H}_{\Phi}\left(u_{T}\right)+\int_{0}^{T} \underbrace{\left\|\nabla \Phi^{1 / 2}\left(u_{s}\right)\right\|_{L_{x}^{2}}^{2}}_{=: D_{\Phi}\left(u_{s}\right)} d s \leq \mathcal{H}_{\Phi}\left(u_{0}\right)+c\|g\|_{L_{t, x}^{2}}^{2}
$$

- Theorem: existence and uniqueness in
$\mathcal{R}:=\left\{u_{\bullet} \in L_{t}^{\infty} L_{x}^{1}: u \geq 0, \sup \mathcal{H}_{\Phi}\left(u_{t}\right)<\infty, \int_{0}^{T} \mathcal{D}_{\Phi}\left(u_{s}\right) d s<\infty\right\}$.
Key ideas: Renormalised kinetic solutions (generalising DiPerna-Lions, Ambrosio, LeBris-Lions).

The Skeleton Equation (Fehrman-Gess 2019)

- $\left(S k_{g}\right)$ is critical in L_{x}^{1} and supercritical in L_{x}^{p} for any $p>1$.
- Not a pertubation of a parabolic equation! Rough drift: e.g. LeBris-Lions, Karlssen-Risebro-Ohlberger-Chen need $g \in W_{\text {loc }}^{1,1}$, $\operatorname{div}(g) \in L^{\infty}$.
- A priori estimate: for a suitable entropy \mathcal{H}_{Φ}

$$
\mathcal{H}_{\Phi}\left(u_{T}\right)+\int_{0}^{T} \underbrace{\left\|\nabla \Phi^{1 / 2}\left(u_{s}\right)\right\|_{L_{x}^{2}}^{2}}_{=: D_{\Phi}\left(u_{s}\right)} d s \leq \mathcal{H}_{\Phi}\left(u_{0}\right)+c\|g\|_{L_{t, x}^{2}}^{2}
$$

- Theorem: existence and uniqueness in
$\mathcal{R}:=\left\{u_{\bullet} \in L_{t}^{\infty} L_{x}^{1}: u \geq 0, \sup \mathcal{H}_{\Phi}\left(u_{t}\right)<\infty, \int_{0}^{T} \mathcal{D}_{\Phi}\left(u_{s}\right) d s<\infty\right\}$.
Key ideas: Renormalised kinetic solutions (generalising DiPerna-Lions, Ambrosio, LeBris-Lions). Uniqueness of renormalised solutions via variable doubling argument.

The Skeleton Equation (Fehrman-Gess 2019)

- $\left(S k_{g}\right)$ is critical in L_{x}^{1} and supercritical in L_{x}^{p} for any $p>1$.
- Not a pertubation of a parabolic equation! Rough drift: e.g. LeBris-Lions, Karlssen-Risebro-Ohlberger-Chen need $g \in W_{\text {loc }}^{1,1}$, $\operatorname{div}(g) \in L^{\infty}$.
- A priori estimate: for a suitable entropy \mathcal{H}_{Φ}

$$
\mathcal{H}_{\Phi}\left(u_{T}\right)+\int_{0}^{T} \underbrace{\left\|\nabla \Phi^{1 / 2}\left(u_{s}\right)\right\|_{L_{x}^{2}}^{2}}_{=: D_{\Phi}\left(u_{s}\right)} d s \leq \mathcal{H}_{\Phi}\left(u_{0}\right)+c\|g\|_{L_{t, x}^{2}}^{2}
$$

- Theorem: existence and uniqueness in
$\mathcal{R}:=\left\{u_{\bullet} \in L_{t}^{\infty} L_{x}^{1}: u \geq 0, \sup \mathcal{H}_{\Phi}\left(u_{t}\right)<\infty, \int_{0}^{T} \mathcal{D}_{\Phi}\left(u_{s}\right) d s<\infty\right\}$.
Key ideas: Renormalised kinetic solutions (generalising
DiPerna-Lions, Ambrosio, LeBris-Lions). Uniqueness of renormalised solutions via variable doubling argument.
- In particular, $\mathcal{I}=\infty$ outside of \mathcal{R}.

Theorem 3: Large Deviations for a Zero-Range Process

- Aim: LDPs for a particle system around PME $\partial_{t} u=\frac{1}{2} \Delta u^{\alpha}, \alpha \geq 1$.

Theorem 3: Large Deviations for a Zero-Range Process

- Aim: LDPs for a particle system around PME $\partial_{t} u=\frac{1}{2} \Delta u^{\alpha}, \alpha \geq 1$.
- Consider ZRP $\tilde{\eta}_{t}^{N}$ with jump rate $g(k)=2 d k^{\alpha}$.

Theorem 3: Large Deviations for a Zero-Range Process

- Aim: LDPs for a particle system around PME $\partial_{t} u=\frac{1}{2} \Delta u^{\alpha}, \alpha \geq 1$.
- Consider ZRP $\tilde{\eta}_{t}^{N}$ with jump rate $g(k)=2 d k^{\alpha}$. The corresponding nonlinearity is still nondegenerate!

Theorem 3: Large Deviations for a Zero-Range Process

- Aim: LDPs for a particle system around PME $\partial_{t} u=\frac{1}{2} \Delta u^{\alpha}, \alpha \geq 1$.
- Consider ZRP $\tilde{\eta}_{t}^{N}$ with jump rate $g(k)=2 d k^{\alpha}$. The corresponding nonlinearity is still nondegenerate!
- See (PME) as a limit with a further rescaling $\eta_{t}^{N}(x):=\chi_{N} \tilde{\eta}_{\chi_{N}^{\alpha-1}{ }_{t}}^{N}(x)$, $\chi_{N} \rightarrow 0$.

Theorem 3: Large Deviations for a Zero-Range Process

- Aim: LDPs for a particle system around PME $\partial_{t} u=\frac{1}{2} \Delta u^{\alpha}, \alpha \geq 1$.
- Consider ZRP $\tilde{\eta}_{t}^{N}$ with jump rate $g(k)=2 d k^{\alpha}$. The corresponding nonlinearity is still nondegenerate!
- See (PME) as a limit with a further rescaling $\eta_{t}^{N}(x):=\chi_{N} \tilde{\eta}_{\chi_{N}^{\alpha-1}{ }_{t}}^{N}(x)$, $\chi_{N} \rightarrow 0$. Impose $N^{2} \chi_{N}^{\min (1, \alpha / 2)}$ bounded as $N \rightarrow \infty$.

Theorem (H.-Gess, 2023)
Let η_{0}^{N} be drawn from a local equilibrium $\rho \in C\left(\mathbb{T}^{d},(0, \infty)\right)$. Then we have matching large deviations upper and lower bounds with speed N^{d} / χ_{N}, and the rate function given by taking $\mathcal{I}_{0}\left(u_{0}\right):=\alpha H\left(u_{0} \mid \rho\right)$ and nonlinearity $\Phi(u)=u^{\alpha}$.

Theorem 3: Large Deviations for a Zero-Range Process

- Aim: LDPs for a particle system around PME $\partial_{t} u=\frac{1}{2} \Delta u^{\alpha}, \alpha \geq 1$.
- Consider ZRP $\tilde{\eta}_{t}^{N}$ with jump rate $g(k)=2 d k^{\alpha}$. The corresponding nonlinearity is still nondegenerate!
- See (PME) as a limit with a further rescaling $\eta_{t}^{N}(x):=\chi_{N} \tilde{\eta}_{\chi_{N}^{\alpha-1}{ }_{t}}^{N}(x)$, $\chi_{N} \rightarrow 0$. Impose $N^{2} \chi_{N}^{\min (1, \alpha / 2)}$ bounded as $N \rightarrow \infty$.

Theorem (H.-Gess, 2023)
Let η_{0}^{N} be drawn from a local equilibrium $\rho \in C\left(\mathbb{T}^{d},(0, \infty)\right)$. Then we have matching large deviations upper and lower bounds with speed N^{d} / χ_{N}, and the rate function given by taking $\mathcal{I}_{0}\left(u_{0}\right):=\alpha H\left(u_{0} \mid \rho\right)$ and nonlinearity $\Phi(u)=u^{\alpha}$.

- Innovations: remove paths outside \mathcal{R} by trajectorial estimates, recovery sequences for paths inside \mathcal{R}.

The Scaling Relation

- Possible limits:

The Scaling Relation

- Possible limits:

- The scaling hypothesis $N^{2} \chi_{N}^{\min (1, \alpha / 2)}$ bounded puts us in regime (e).

The Scaling Relation

- Possible limits:

- The scaling hypothesis $N^{2} \chi_{N}^{\min (1, \alpha / 2)}$ bounded puts us in regime (e).
- (c), (f) are 'classical hydrodynamics';

The Scaling Relation

- Possible limits:

- The scaling hypothesis $N^{2} \chi_{N}^{\min (1, \alpha / 2)}$ bounded puts us in regime (e).
- (c), (f) are 'classical hydrodynamics'; (b, e) are different.
- Fehrman-Gess: Matching bounds with rate \mathcal{I} for SPDE

$$
d u_{t}^{\epsilon}=\frac{1}{2} \Delta \Phi\left(u_{t}^{\epsilon}\right) d t-\sqrt{\epsilon} \nabla \cdot\left(\Phi\left(u_{t}\right)^{1 / 2} \xi^{\delta}\right)
$$

The Scaling Relation

- Possible limits:

- The scaling hypothesis $N^{2} \chi_{N}^{\min (1, \alpha / 2)}$ bounded puts us in regime (e).
- (c), (f) are 'classical hydrodynamics'; (b, e) are different.
- Fehrman-Gess: Matching bounds with rate \mathcal{I} for SPDE

$$
d u_{t}^{\epsilon}=\frac{1}{2} \Delta \Phi\left(u_{t}^{\epsilon}\right) d t-\sqrt{\epsilon} \nabla \cdot\left(\Phi\left(u_{t}\right)^{1 / 2} \xi^{\delta}\right)
$$

with a scaling relation on $(\epsilon, \delta) \rightarrow 0$. Our condition plays the same role.

The Scaling Relation

- Possible limits:

- The scaling hypothesis $N^{2} \chi_{N}^{\min (1, \alpha / 2)}$ bounded puts us in regime (e).
- (c), (f) are 'classical hydrodynamics'; (b, e) are different.
- Fehrman-Gess: Matching bounds with rate \mathcal{I} for SPDE

$$
d u_{t}^{\epsilon}=\frac{1}{2} \Delta \Phi\left(u_{t}^{\epsilon}\right) d t-\sqrt{\epsilon} \nabla \cdot\left(\Phi\left(u_{t}\right)^{1 / 2} \xi^{\delta}\right)
$$

with a scaling relation on $(\epsilon, \delta) \rightarrow 0$. Our condition plays the same role.

- 'pathwise regularity in (b,e); rapid local equilibration in (c,f).'

Key Technical Step: Restriction to \mathcal{R} \& Replacement Lemma

- Main difficulty in LDP: weak convergence of configuration \Longleftrightarrow convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).

Key Technical Step: Restriction to \mathcal{R} \& Replacement Lemma

- Main difficulty in LDP: weak convergence of configuration \Longleftrightarrow convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{\bullet} \notin \mathcal{R}$ then

$$
\inf _{\mathcal{U} \ni u_{\bullet}} \limsup \frac{\chi_{N}}{N^{d}} \log \mathbb{P}\left(\eta_{\bullet}^{N} \in \mathcal{U}\right)=-\infty
$$

Key Technical Step: Restriction to \mathcal{R} \& Replacement Lemma

- Main difficulty in LDP: weak convergence of configuration \Longleftrightarrow convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{\bullet} \notin \mathcal{R}$ then

$$
\inf _{\mathcal{U} \ni u_{\bullet}} \limsup _{N} \frac{\chi_{N}}{N^{d}} \log \mathbb{P}\left(\eta_{\bullet}^{N} \in \mathcal{U}\right)=-\infty
$$

- Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration.

Key Technical Step: Restriction to \mathcal{R} \& Replacement Lemma

- Main difficulty in LDP: weak convergence of configuration convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{\bullet} \notin \mathcal{R}$ then

$$
\inf _{\mathcal{U} \ni u_{\bullet}} \limsup _{N} \frac{\chi_{N}}{N^{d}} \log \mathbb{P}\left(\eta_{\bullet}^{N} \in \mathcal{U}\right)=-\infty
$$

- Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration. For us, both achieved through pathwise regularity using ideas of Aubin-Lions-Simon:

Key Technical Step: Restriction to \mathcal{R} \& Replacement Lemma

- Main difficulty in LDP: weak convergence of configuration convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{\bullet} \notin \mathcal{R}$ then

$$
\inf _{\mathcal{U} \ni u_{\bullet}} \limsup _{N} \frac{\chi_{N}}{N^{d}} \log \mathbb{P}\left(\eta_{\bullet}^{N} \in \mathcal{U}\right)=-\infty
$$

- Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration. For us, both achieved through pathwise regularity using ideas of Aubin-Lions-Simon:
- Probabilistic Step: Obtain discrete estimate on $\mathcal{F}_{N}\left(\eta_{\bullet}^{N}\right)$ at LDP level

Key Technical Step: Restriction to \mathcal{R} \& Replacement Lemma

- Main difficulty in LDP: weak convergence of configuration convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{\bullet} \notin \mathcal{R}$ then

$$
\inf _{\mathcal{U} \ni u_{\bullet}} \limsup _{N} \frac{\chi_{N}}{N^{d}} \log \mathbb{P}\left(\eta_{\bullet}^{N} \in \mathcal{U}\right)=-\infty
$$

- Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration. For us, both achieved through pathwise regularity using ideas of Aubin-Lions-Simon:
- Probabilistic Step: Obtain discrete estimate on $\mathcal{F}_{N}\left(\eta_{\bullet}^{N}\right)$ at LDP level, for the functional

$$
\mathcal{F}_{N}\left(\eta_{\bullet}^{N}\right)=\sup _{t} \mathcal{H}\left(\eta_{t}^{N}\right)+\frac{1}{N^{d-2}} \int_{0}^{T} \sum_{x \sim y}\left(\left(\eta_{t}^{N}(x)\right)^{\alpha / 2}-\left(\eta_{t}^{N}(y)\right)^{\alpha / 2}\right)^{2} d t .
$$

Key Technical Step: Restriction to \mathcal{R} \& Replacement Lemma

- Main difficulty in LDP: weak convergence of configuration convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{\bullet} \notin \mathcal{R}$ then

$$
\inf _{\mathcal{U} \ni u_{\bullet}} \limsup _{N} \frac{\chi_{N}}{N^{d}} \log \mathbb{P}\left(\eta_{\bullet}^{N} \in \mathcal{U}\right)=-\infty
$$

- Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration. For us, both achieved through pathwise regularity using ideas of Aubin-Lions-Simon:
- Probabilistic Step: Obtain discrete estimate on $\mathcal{F}_{N}\left(\eta_{\bullet}^{N}\right)$ at LDP level, for the functional

$$
\mathcal{F}_{N}\left(\eta_{\bullet}^{N}\right)=\sup _{t} \mathcal{H}\left(\eta_{t}^{N}\right)+\frac{1}{N^{d-2}} \int_{0}^{T} \sum_{x \sim y}\left(\left(\eta_{t}^{N}(x)\right)^{\alpha / 2}-\left(\eta_{t}^{N}(y)\right)^{\alpha / 2}\right)^{2} d t .
$$

- Analytic Step: Pass to the limit on sequences with $\mathcal{F}_{N}\left(u_{\bullet}^{N}\right) \leq C$ and $t \mapsto u_{t}$ continuous;

Key Technical Step: Restriction to \mathcal{R} \& Replacement Lemma

- Main difficulty in LDP: weak convergence of configuration convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{\bullet} \notin \mathcal{R}$ then

$$
\inf _{\mathcal{U} \ni u_{\bullet}} \limsup _{N} \frac{\chi_{N}}{N^{d}} \log \mathbb{P}\left(\eta_{\bullet}^{N} \in \mathcal{U}\right)=-\infty
$$

- Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration. For us, both achieved through pathwise regularity using ideas of Aubin-Lions-Simon:
- Probabilistic Step: Obtain discrete estimate on $\mathcal{F}_{N}\left(\eta_{\bullet}^{N}\right)$ at LDP level, for the functional

$$
\mathcal{F}_{N}\left(\eta_{\bullet}^{N}\right)=\sup _{t} \mathcal{H}\left(\eta_{t}^{N}\right)+\frac{1}{N^{d-2}} \int_{0}^{T} \sum_{x \sim y}\left(\left(\eta_{t}^{N}(x)\right)^{\alpha / 2}-\left(\eta_{t}^{N}(y)\right)^{\alpha / 2}\right)^{2} d t .
$$

- Analytic Step: Pass to the limit on sequences with $\mathcal{F}_{N}\left(u_{\bullet}^{N}\right) \leq C$ and $t \mapsto u_{t}$ continuous;
- Probabilistic Step: eliminate non-continuous u_{\bullet}

Key Technical Step: Restriction to \mathcal{R} \& Replacement Lemma

- Main difficulty in LDP: weak convergence of configuration convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{\bullet} \notin \mathcal{R}$ then

$$
\inf _{\mathcal{U} \ni u_{\bullet}} \limsup _{N} \frac{\chi_{N}}{N^{d}} \log \mathbb{P}\left(\eta_{\bullet}^{N} \in \mathcal{U}\right)=-\infty
$$

- Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration. For us, both achieved through pathwise regularity using ideas of Aubin-Lions-Simon:
- Probabilistic Step: Obtain discrete estimate on $\mathcal{F}_{N}\left(\eta_{\bullet}^{N}\right)$ at LDP level, for the functional

$$
\mathcal{F}_{N}\left(\eta_{\bullet}^{N}\right)=\sup _{t} \mathcal{H}\left(\eta_{t}^{N}\right)+\frac{1}{N^{d-2}} \int_{0}^{T} \sum_{x \sim y}\left(\left(\eta_{t}^{N}(x)\right)^{\alpha / 2}-\left(\eta_{t}^{N}(y)\right)^{\alpha / 2}\right)^{2} d t .
$$

- Analytic Step: Pass to the limit on sequences with $\mathcal{F}_{N}\left(u_{\bullet}^{N}\right) \leq C$ and $t \mapsto u_{t}$ continuous;
- Probabilistic Step: eliminate non-continuous u_{\bullet}

PME as Gradient Flow

- PME as gradient flow in space of measures M : Brézis (flat H^{-1}), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....)

PME as Gradient Flow

- PME as gradient flow in space of measures M : Brézis (flat H^{-1}), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....): tangent vectors ζ characterised by $\zeta+\nabla \cdot\left(u^{\alpha} \nabla \xi\right)=0$

PME as Gradient Flow

- PME as gradient flow in space of measures M : Brézis (flat H^{-1}), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....): tangent vectors ζ characterised by $\zeta+\nabla \cdot\left(u^{\alpha} \nabla \xi\right)=0$ with Riemann tensor

$$
\left(\zeta_{1}, \zeta_{2}\right)_{u}:=\int_{\mathbb{T}^{d}} u^{\alpha} \nabla \xi_{1} \cdot \nabla \xi_{2} .
$$

PME as Gradient Flow

- PME as gradient flow in space of measures M : Brézis (flat H^{-1}), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....): tangent vectors ζ characterised by $\zeta+\nabla \cdot\left(u^{\alpha} \nabla \xi\right)=0$ with Riemann tensor

$$
\left(\zeta_{1}, \zeta_{2}\right)_{u}:=\int_{\mathbb{T}^{d}} u^{\alpha} \nabla \xi_{1} \cdot \nabla \xi_{2} .
$$

(Generalises Otto's Wasserstein calculus from $\alpha=1$).

PME as Gradient Flow

- PME as gradient flow in space of measures M : Brézis (flat H^{-1}), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....): tangent vectors ζ characterised by $\zeta+\nabla \cdot\left(u^{\alpha} \nabla \xi\right)=0$ with Riemann tensor

$$
\left(\zeta_{1}, \zeta_{2}\right)_{u}:=\int_{\mathbb{T}^{d}} u^{\alpha} \nabla \xi_{1} \cdot \nabla \xi_{2} .
$$

(Generalises Otto's Wasserstein calculus from $\alpha=1$).

- (PME) is formally $\partial_{t} u=-D_{u}[\alpha \mathcal{H}(u)]$.

PME as Gradient Flow

- PME as gradient flow in space of measures M : Brézis (flat H^{-1}), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....): tangent vectors ζ characterised by $\zeta+\nabla \cdot\left(u^{\alpha} \nabla \xi\right)=0$ with Riemann tensor

$$
\left(\zeta_{1}, \zeta_{2}\right)_{u}:=\int_{\mathbb{T}^{d}} u^{\alpha} \nabla \xi_{1} \cdot \nabla \xi_{2}
$$

(Generalises Otto's Wasserstein calculus from $\alpha=1$).

- (PME) is formally $\partial_{t} u=-D_{u}[\alpha \mathcal{H}(u)]$.
- Manipulate the dynamic cost to the entropy-dissipation inequality:

$$
\begin{aligned}
\mathcal{J}\left(u_{\bullet}\right) & =\frac{1}{2} \int_{0}^{T}\left|\partial_{t} u+\alpha D \mathcal{H}\left(u_{t}\right)\right|_{u_{t}}^{2} d t \\
" & ={ }^{\prime \prime} \underbrace{\alpha \int_{0}^{T}\left(\partial_{t} u, D \mathcal{H}\left(u_{t}\right)\right)_{u_{t}} d t}_{"=" \alpha\left(\mathcal{H}\left(u_{T}\right)-\mathcal{H}\left(u_{0}\right)\right)}+\frac{1}{2} \int_{0}^{T}\left(\left|\partial_{t} u_{t}\right|_{u_{t}}^{2}+\left|\alpha D \mathcal{H}\left(u_{t}\right)\right|_{u_{t}}^{2}\right) d t
\end{aligned}
$$

PME as Gradient Flow

- PME as gradient flow in space of measures M : Brézis (flat H^{-1}), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....): tangent vectors ζ characterised by $\zeta+\nabla \cdot\left(u^{\alpha} \nabla \xi\right)=0$ with Riemann tensor

$$
\left(\zeta_{1}, \zeta_{2}\right)_{u}:=\int_{\mathbb{T}^{d}} u^{\alpha} \nabla \xi_{1} \cdot \nabla \xi_{2}
$$

(Generalises Otto's Wasserstein calculus from $\alpha=1$).

- (PME) is formally $\partial_{t} u=-D_{u}[\alpha \mathcal{H}(u)]$.
- Manipulate the dynamic cost to the entropy-dissipation inequality:

$$
\begin{aligned}
\mathcal{J}\left(u_{\bullet}\right) & =\frac{1}{2} \int_{0}^{T}\left|\partial_{t} u+\alpha D \mathcal{H}\left(u_{t}\right)\right|_{u_{t}}^{2} d t \\
" & ={ }^{\prime \prime} \underbrace{\alpha \int_{0}^{T}\left(\partial_{t} u, D \mathcal{H}\left(u_{t}\right)\right)_{u_{t}} d t}_{"=" \alpha\left(\mathcal{H}\left(u_{T}\right)-\mathcal{H}\left(u_{0}\right)\right)}+\frac{1}{2} \int_{0}^{T}\left(\left|\partial_{t} u_{t}\right|_{u_{t}}^{2}+\left|\alpha D \mathcal{H}\left(u_{t}\right)\right|_{u_{t}}^{2}\right) d t
\end{aligned}
$$

- Still formally, $|\alpha D \mathcal{H}(u)|_{u}^{2}=\alpha \mathcal{D}_{\alpha}(u)$.

PME as Gradient Flow via LDP

PME as Gradient Flow via LDP

- Full proof via LDP.

PME as Gradient Flow via LDP

- Full proof via LDP.
- Consider LDP with global equilibrium $\rho=1$ initial conditions. Detailed balance $\Longrightarrow\left(\mathcal{T} \eta_{\bullet}^{N}\right)_{t}:=\eta_{T-t-}^{N}$ has the same law as the original process!

PME as Gradient Flow via LDP

- Full proof via LDP.
- Consider LDP with global equilibrium $\rho=1$ initial conditions. Detailed balance $\Longrightarrow\left(\mathcal{T} \eta_{\bullet}^{N}\right)_{t}:=\eta_{T-t-}^{N}$ has the same law as the original process!
- Contraction principle and uniqueness of rate functions:

$$
\mathcal{I}\left(\mathcal{T} u_{\mathbf{0}}\right)=\mathcal{I}\left(u_{\mathbf{0}}\right)
$$

for all u_{\bullet}.

PME as Gradient Flow via LDP

- Full proof via LDP.
- Consider LDP with global equilibrium $\rho=1$ initial conditions. Detailed balance $\Longrightarrow\left(\mathcal{T} \eta_{\bullet}^{N}\right)_{t}:=\eta_{T-t-}^{N}$ has the same law as the original process!
- Contraction principle and uniqueness of rate functions:

$$
\mathcal{I}\left(\mathcal{T} u_{\mathbf{0}}\right)=\mathcal{I}\left(u_{\mathbf{0}}\right)
$$

for all u_{0}.

- "Improbability of starting at nonequilibrium u_{0} and evolving forwards by $(P M E)=$ Improbability of evolving via backwards (PME) into u_{0} ".

Theorem 4: Gradient Flow

Theorem (H.-Gess 2023)

Let $u_{\bullet} \in \mathbb{D}$ with $\mathcal{H}\left(u_{0}\right)<\infty$. Then we have the identity

$$
\begin{equation*}
\mathcal{J}\left(u_{\bullet}\right)=\frac{1}{2}\left(\alpha \mathcal{H}\left(u_{T}\right)-\alpha \mathcal{H}\left(u_{0}\right)+\frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}\left(u_{s}\right) d s+\frac{1}{2} \mathcal{A}\left(u_{\bullet}\right)\right) \tag{EDI}
\end{equation*}
$$

allowing both sides to be infinite, where

$$
\mathcal{A}\left(u_{\bullet}\right)=\frac{1}{2} \inf \left\{\|\theta\|_{L_{t, x}^{2}}^{2}: \partial_{t} u_{t}+\nabla \cdot\left(\frac{1}{2} u_{t}^{\alpha / 2} \theta_{t}\right)=0\right\} .
$$

In particular, the functional on the right-hand side is nonnegative, and vanishes if and only if u_{\bullet} is a solution to (PME).

Gradient Flow: Sketch Proof

- The unique optimisers for g, θ are characterised by

$$
g, \theta \in \Lambda_{u_{\bullet}}:=\overline{\left\{u^{\alpha / 2} \nabla \varphi: \varphi \in C^{1,2}\left([0, T] \times \mathbb{T}^{d}\right)\right\}^{L_{t, x}^{2}} .}
$$

Gradient Flow: Sketch Proof

- The unique optimisers for g, θ are characterised by

$$
g, \theta \in \Lambda_{u_{\bullet}}:=\overline{\left\{u^{\alpha / 2} \nabla \varphi: \varphi \in C^{1,2}\left([0, T] \times \mathbb{T}^{d}\right)\right\}^{L_{t, x}^{2}} .}
$$

Geometric interpretation: tangent vectors for a.e. t.

Gradient Flow: Sketch Proof

- The unique optimisers for g, θ are characterised by

$$
g, \theta \in \Lambda_{u_{\bullet}}:=\overline{\left\{u^{\alpha / 2} \nabla \varphi: \varphi \in C^{1,2}\left([0, T] \times \mathbb{T}^{d}\right)\right\}^{L_{t, x}^{2}} .}
$$

Geometric interpretation: tangent vectors for a.e. t.

- If g is optimal for u_{\bullet}, optimal control for $v_{\bullet}:=\mathcal{T} u_{\bullet}$ is

$$
g_{\mathrm{r}}:=2 \Pi\left[v_{\bullet}\right] \nabla v^{\alpha / 2}-g
$$

Gradient Flow: Sketch Proof

- The unique optimisers for g, θ are characterised by

$$
g, \theta \in \Lambda_{u_{\bullet}}:=\overline{\left\{u^{\alpha / 2} \nabla \varphi: \varphi \in C^{1,2}\left([0, T] \times \mathbb{T}^{d}\right)\right\}^{L_{t, x}^{2}} .}
$$

Geometric interpretation: tangent vectors for a.e. t.

- If g is optimal for u_{\bullet}, optimal control for $v_{\mathbf{\bullet}}:=\mathcal{T} u_{\boldsymbol{\bullet}}$ is

$$
g_{\mathrm{r}}:=2 \Pi\left[v_{\mathbf{0}}\right] \nabla v^{\alpha / 2}-g .
$$

Substitute into

$$
\mathcal{I}\left(v_{\bullet}\right)=\alpha \mathcal{H}\left(u_{T}\right)+\frac{1}{2}\left\|g_{r}\right\|_{L_{t, x}^{2}}^{2}=\mathcal{I}\left(u_{\bullet}\right)=\alpha \mathcal{H}\left(u_{0}\right)+\frac{1}{2}\|g\|_{L_{t, x}}^{2} .
$$

Gradient Flow: Sketch Proof

- The unique optimisers for g, θ are characterised by

$$
g, \theta \in \Lambda_{u_{\bullet}}:=\overline{\left\{u^{\alpha / 2} \nabla \varphi: \varphi \in C^{1,2}\left([0, T] \times \mathbb{T}^{d}\right)\right\}^{L_{t, x}^{2}} .}
$$

Geometric interpretation: tangent vectors for a.e. t.

- If g is optimal for $u_{\mathbf{\bullet}}$, optimal control for $v_{\mathbf{0}}:=\mathcal{T} u_{\mathbf{\bullet}}$ is

$$
g_{\mathrm{r}}:=2 \Pi\left[v_{\mathbf{0}}\right] \nabla v^{\alpha / 2}-g .
$$

Substitute into

$$
\mathcal{I}\left(v_{\bullet}\right)=\alpha \mathcal{H}\left(u_{T}\right)+\frac{1}{2}\left\|g_{r}\right\|_{L_{t, x}^{2}}^{2}=\mathcal{I}\left(u_{\bullet}\right)=\alpha \mathcal{H}\left(u_{0}\right)+\frac{1}{2}\|g\|_{L_{t, x}}^{2} .
$$

- After some manipulations,

$$
\mathcal{J}\left(u_{0}\right)=\frac{1}{2}\left(\alpha \mathcal{H}\left(u_{T}\right)-\alpha \mathcal{H}\left(u_{0}\right)+\left\|\Pi\left[u_{0}\right] \nabla u^{\alpha / 2}\right\|_{L_{t, x}^{2}}^{2}+\mathcal{A}\left(u_{\bullet}\right)\right) .
$$

Gradient Flow: Sketch Proof, 2

- $\left\|\Pi\left[u_{\bullet}\right] \nabla u^{\alpha / 2}\right\|_{L_{t, x}^{2}}^{2} \leq \frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}\left(u_{s}\right) d s$, so the previous argument yields the inequality

$$
\begin{equation*}
\mathcal{J}\left(u_{\bullet}\right) \leq \frac{1}{2}\left(\alpha \mathcal{H}\left(u_{T}\right)-\alpha \mathcal{H}\left(u_{0}\right)+\frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}\left(u_{s}\right) d s+\frac{1}{2} \mathcal{A}\left(u_{\bullet}\right)\right) . \tag{1}
\end{equation*}
$$

Gradient Flow: Sketch Proof, 2

- $\left\|\Pi\left[u_{\bullet}\right] \nabla u^{\alpha / 2}\right\|_{L_{t, x}^{2}}^{2} \leq \frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}\left(u_{s}\right) d s$, so the previous argument yields the inequality

$$
\begin{equation*}
\mathcal{J}\left(u_{\bullet}\right) \leq \frac{1}{2}\left(\alpha \mathcal{H}\left(u_{T}\right)-\alpha \mathcal{H}\left(u_{0}\right)+\frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}\left(u_{s}\right) d s+\frac{1}{2} \mathcal{A}\left(u_{\bullet}\right)\right) . \tag{1}
\end{equation*}
$$

- If $u_{\bullet} \in \mathcal{X}$, then $\nabla u^{\alpha / 2}=\frac{2}{\alpha} u^{\alpha / 2} \nabla \log u \in \Lambda_{u_{\bullet}}$, so both of the inequalities are equalities.

Gradient Flow: Sketch Proof, 2

- $\left\|\Pi\left[u_{\bullet}\right] \nabla u^{\alpha / 2}\right\|_{L_{t, x}^{2}}^{2} \leq \frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}\left(u_{s}\right) d s$, so the previous argument yields the inequality

$$
\begin{equation*}
\mathcal{J}\left(u_{\bullet}\right) \leq \frac{1}{2}\left(\alpha \mathcal{H}\left(u_{T}\right)-\alpha \mathcal{H}\left(u_{0}\right)+\frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}\left(u_{s}\right) d s+\frac{1}{2} \mathcal{A}\left(u_{\bullet}\right)\right) . \tag{1}
\end{equation*}
$$

- If $u_{\bullet} \in \mathcal{X}$, then $\nabla u^{\alpha / 2}=\frac{2}{\alpha} u^{\alpha / 2} \nabla \log u \in \Lambda_{u_{\bullet}}$, so both of the inequalities are equalities.
- For the general case, use recovery sequences

Gradient Flow: Sketch Proof, 2

- $\left\|\Pi\left[u_{\bullet}\right] \nabla u^{\alpha / 2}\right\|_{L_{t, x}^{2}}^{2} \leq \frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}\left(u_{s}\right) d s$, so the previous argument yields the inequality

$$
\begin{equation*}
\mathcal{J}\left(u_{\bullet}\right) \leq \frac{1}{2}\left(\alpha \mathcal{H}\left(u_{T}\right)-\alpha \mathcal{H}\left(u_{0}\right)+\frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}\left(u_{s}\right) d s+\frac{1}{2} \mathcal{A}\left(u_{\bullet}\right)\right) . \tag{1}
\end{equation*}
$$

- If $u_{\bullet} \in \mathcal{X}$, then $\nabla u^{\alpha / 2}=\frac{2}{\alpha} u^{\alpha / 2} \nabla \log u \in \Lambda_{u_{\bullet}}$, so both of the inequalities are equalities.
- For the general case, use recovery sequences and use (1) again.

Gradient Flow: Remark

Gradient Flow: Remark

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).

Gradient Flow: Remark

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME)

Gradient Flow: Remark

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\mathrm{BE}}$.

Gradient Flow: Remark

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\mathrm{BE}}$.
- A new look at properties of controlled equations:

Gradient Flow: Remark

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\mathrm{BE}}$.
- A new look at properties of controlled equations:
- Construction of g_{r} shows how antidissipative effects can arise.

Gradient Flow: Remark

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\mathrm{BE}}$.
- A new look at properties of controlled equations:
- Construction of g_{r} shows how antidissipative effects can arise.
- Hence why L_{x}^{p} estimates had to be false

Gradient Flow: Remark

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\mathrm{BE}}$.
- A new look at properties of controlled equations:
- Construction of g_{r} shows how antidissipative effects can arise.
- Hence why L_{x}^{p} estimates had to be false: trajectories with $u_{0} \notin L_{x}^{p}$, $u_{T} \in C_{x}^{\infty}$ give reversal $v_{0} \in C_{x}^{\infty}$ but $v_{T} \notin L_{x}^{p}$.

Gradient Flow: Remark

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\mathrm{BE}}$.
- A new look at properties of controlled equations:
- Construction of g_{r} shows how antidissipative effects can arise.
- Hence why L_{x}^{p} estimates had to be false: trajectories with $u_{0} \notin L_{x}^{p}$, $u_{T} \in C_{x}^{\infty}$ give reversal $v_{0} \in C_{x}^{\infty}$ but $v_{T} \notin L_{x}^{p}$.
- Same argument works for $\left(\mathrm{BE}_{K}\right)$: no possible regularity or moment estimates beyond finite entropy.

Gradient Flow: Remark

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\mathrm{BE}}$.
- A new look at properties of controlled equations:
- Construction of g_{r} shows how antidissipative effects can arise.
- Hence why L_{x}^{p} estimates had to be false: trajectories with $u_{0} \notin L_{x}^{p}$, $u_{T} \in C_{x}^{\infty}$ give reversal $v_{0} \in C_{x}^{\infty}$ but $v_{T} \notin L_{x}^{p}$.
- Same argument works for $\left(\mathrm{BE}_{K}\right)$: no possible regularity or moment estimates beyond finite entropy.
- (\star): Could be done purely by PDE tools from Fehrman-Gess - but not obvious starting from PME!

References

- Kac/Boltzmann:
- Heydecker, D., 2023. Large deviations of Kac's conservative particle system and energy nonconserving solutions to the Boltzmann equation: A counterexample to the predicted rate function. The Annals of Applied Probability, 33(3), pp.1758-1826.
- Basile, G., Benedetto, D., Bertini, L. and Caglioti, E., 2022. Asymptotic probability of energy increasing solutions to the homogeneous Boltzmann equation. arXiv preprint arXiv:2202.07311.
- ZRP / Skeleton Equation:
- Gess, B. and Heydecker, D., 2023. A Rescaled Zero-Range Process for the Porous Medium Equation: Hydrodynamic Limit, Large Deviations and Gradient Flow. arXiv preprint arXiv:2303.11289.
- Fehrman, B. and Gess, B., 2023. Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. Inventiones mathematicae, pp.1-64.

