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e Starting point: Kac's model of the spatially homogeneous
Boltzmann equation u — p;, Zero-range process ¥ — u;:
microscopic models for the nonlinear PDEs

1
at/th = Q(Nt,ﬂt); 81;Uf = EAq)(Ut)

e Seek to characterise the large deviations around these limits:
P(ud' ~ pa) ~ exp(—NIkp(ka));

P(nf’ R Ug) ~ exp(—NdIZRp(u.))

e ...and to know when we've found the sharpest rate of decay (i.e.
matching upper and lower bounds).

e Relation to aspects of the original PDE?
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Introduction, 2

e Often find bounds of the form, on a suitable path space X,
Iimliup rytlogP (XY € A) < —inf{Z(v) : u € A}
for A C X closed, and
lim inf rytlogP (XY e U) > —inf {Z(u) : u e UNX}

for U C X open, and some universal set X' C X.
e (Kipnis, Landim for ZRP; Rezakanlou for a collisional model).

e Leaves open the possibility that there is a better upper bound
7' > 7. Can we work harder to get matching bounds?

e Key difficulty: analysis of a modified PDE (controlled Boltzmann
equation, skeleton equation) with qualitatively different
properties.
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e Empirical measure ;Y of N interacting velocities Vi(t),..., Va(t).

e Energy-conserving collisions: pairs (v, v,) update to
vie vV =v+((v—w)- o), Ve = v = vy + ((vi — v) - 0)o.

at rate N71B(v — v,,0)do = N71|v — v,|do,0 € ST71.

e Propagation of chaos: Sznitzman, Griinbaum, Mischler-Mouhot.

For LDP, start in N-particle equilibrium

i 1
Vo ~iid. v(dv) = exp(—|v|?/2d)dv.
V2rd"

™

e Sanov:
P (1o = po) ~ exp (—NH(uol7)) -
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recording collisions.

e Dynamic cost: set J(ie, w) = 00 unless (jiq, w) is a measure-flux
pair, in which case set

T (e, w) := Ent(w| |v — vy | (dv)ue(dv, ) dtdo).

o If J < oo, then p, solves a modified Boltzmann equation (BEg),
K= 9 |f 7 =0, we recover (BE).
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e Total cost Z(pe, w) = H(poly) + T (tte, w).
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e Foralld C D x M(E) open,

lim inf % log P ((ul, w") € U) > —inf {Z(pte, W) : (pte, w) €UNX}
(RLB)
where X = { (e, w) : (|v|? + ||, w) < oo}
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Positive Result: Main ideas

e Upper bound: variational formulation

Z(pte, w) = sup {Z(te, w, 0, f,8)7 : 0 € Cov, f € G}, 8 € C(E)}
where = is constructed so that, for each N,
ZN = exp(N=(ul, w", o, f, g):) is a mean 1 martingale.
e (UB) follows from a standard martingale argument.

e First step in lower bound: for (ue, w) with |v — v,|K bounded and
bounded away from 0, we can write down a change of measure making

>€>*>0.

(pre, w) the typical trajectory as N — oo with

d N
Q" (‘,b log % — Z(pte, w)

e Argument exploits uniqueness for (BEy).
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e Call the set where we have a lower bound Ay. By a diagonal
argument, we automatically get a lower bound on the set A; of
(146, w) for which there exists a recovery sequence

(1", W) € Xy : (1, W) = (p1a, w), I, W) = (10, w).

o (i.e. where the L.S.C. envelope Z|x, coincides with T).

e Argument: suppression of collisions in various ‘bad’ regions of
collision space, then convolution p; — g5 * ;.

e Truncation argument critically uses (1 + |v|? + |vi|?, w) < oo.
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e (RLB) has the prototypical form of a restricted lower bound.
e Counterexample without restriction:

Theorem (H, 2021; see also Basile-Bernadetto-Bertini-Caglioti

2021)
Let ©: [0, T] — [0,00) be a bounded energy profile satisfying certain technical

assumptions. Then the set
'A@ = {(/’L'v W) o =, He solves (BE)7 w = mlh <|V|2,,U¢> = e(t)}

is compact, nonempty, and Z =0 on Ag. For someV D Ao,

lim inf % log P ((HI.V, w') € V) < 0= —inf{Z(pe,w) : (ite,w) € Ao}

while 1
inf liminf = logP ((ul,w") e ) > —.
nf ~logP ((ue', w") e )
....S0 such behaviour cannot be excluded, but the rate function predicts
the exponential occurrence wrongly.



Counterexample: (One Possible) Proof

o Easiest case: O(t) =1+ 01(t > 0), for some 6 > 0.



Counterexample: (One Possible) Proof

o Easiest case: O(t) =1+ 01(t > 0), for some 6 > 0.
e The Gaussian satisfies 0 < sup(z : fezsz(dv)) =d < o0.



Counterexample: (One Possible) Proof

o Easiest case: O(t) =1+ 01(t > 0), for some 6 > 0.
e The Gaussian satisfies 0 < sup(z : fezsz(dv)) =d < o0.
e Construct QV under which

Vo ~iid. &xp (Am [vI21(Jv] = M(N))) 7(dv)
with Ayny < d chosen so that E[V{] =146,



Counterexample: (One Possible) Proof

o Easiest case: O(t) =1+ 01(t > 0), for some 6 > 0.
e The Gaussian satisfies 0 < sup(z : fezsz(dv)) =d < o0.
e Construct QV under which
Vo ~iid. exp (Amw|vI*1(lv] = M(N))) 7(dv)
with Ayny < d chosen so that E[V{] = 1+ 6, and M(N) — oo
slowly enough that, for all § > 0,

Q" ({IvP o) = (1 +0) >06) > 0: QY (W(g', ymny) > 8) = 0.



Counterexample: (One Possible) Proof

o Easiest case: O(t) =1+ 01(t > 0), for some 6 > 0.
e The Gaussian satisfies 0 < sup(z : fezsz(dv)) =d < o0.
e Construct QV under which

VG ~iia. exp (A [vI1(v| = M(N))) (dv)

with Ayny < d chosen so that E[V{] = 1+ 6, and M(N) — oo
slowly enough that, for all § > 0,

Q" ({IvP o) = (1 +0) >06) > 0: QY (W(g', ymny) > 8) = 0.

o Because Ayqy) < d, 420 < eM(1+0+) with high Q-probability.




Counterexample: (One Possible) Proof

o Easiest case: O(t) =1+ 01(t > 0), for some 6 > 0.
e The Gaussian satisfies 0 < sup(z : fezsz(dv)) =d < o0.
e Construct QV under which
Vo ~iid. exp (Amw|vI*1(lv] = M(N))) 7(dv)
with Ayny < d chosen so that E[V{] = 1+ 6, and M(N) — oo
slowly enough that, for all § > 0,

QY (KIvIP pg) — (14 0) > 68) =0 QY (W(pg, ymwy) > 6) — 0.

o Because Ayqy) < d, 420 < eM(1+0+) with high Q-probability.
e Chaotic, but not entropically chaotic.



Counterexample: (One Possible) Proof

o Easiest case: O(t) =1+ 01(t > 0), for some 6 > 0.
e The Gaussian satisfies 0 < sup(z : fezsz(dv)) =d < o0.
e Construct QV under which
Vo ~iid. exp (Amw|vI*1(lv] = M(N))) 7(dv)
with Ayny < d chosen so that E[V{] = 1+ 6, and M(N) — oo
slowly enough that, for all § > 0,

QY (KIvIP pg) — (14 0) > 68) =0 QY (W(pg, ymwy) > 6) — 0.

o Because Ayqy) < d, 420 < eM(1+0+) with high Q-probability.

e Chaotic, but not entropically chaotic.

e Using martingale arguments, Pozvner inequality..., all distributional
limits (11, w) are supported on Ag, so for all open U D A,

lim inf Nt log P((ul, w) e ) > —d(1 + 6).
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I|mN|an log P (1, w") € V) < ||mN|an|og]P’ <<|V|27:u’0> >14 5) < 0

and

using pathwise energy conservation and Cramér’s theorem.
e Theorem of Basile-Benedetto-Bertini-Caglioti: counterexample
by a different construction, improved rate function which is > 0 on

Aeo.

e LDP rate function still not correct for other Boltzmann kernels (e.g.
cutoff Maxwell Molecules).
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Zero-Range Process

e Fix a (nondecreasing) function g : N — R.

Place a bin at each site of T§ := {0, N7%,...,1 - N71}%
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for some ® determined by the jump rate g.
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Z:DQ(Us)

e Theorem: existence and uniqueness in
-
R =< ue € L3°LL - u>0,supHo(u:) < oo,/ Do(us)ds < 0o ¢ .
0

Key ideas: Renormalised kinetic solutions (generalising
DiPerna-Lions, Ambrosio, LeBris-Lions). Uniqueness of renormalised
solutions via variable doubling argument.

e In particular, Z = oo outside of R. "
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e Consider ZRP 7V with jump rate g(k) = 2dk®. The corresponding
nonlinearity is still nondegenerate!

e See (PME) as a limit with a further rescaling nM(x) := XNﬁ;Va—lt(X)y

N
(1,a/2)

Xxn — 0. Impose N2y bounded as N — co.

Theorem (H.-Gess, 2023)

Let n)! be drawn from a local equilibrium p € C(T¢,(0,00)). Then we
have matching large deviations upper and lower bounds with speed
N?/xn, and the rate function given by taking To(up) := aH(uo|p) and
nonlinearity ®(u) = u®.

e Innovations: remove paths outside R by trajectorial estimates,
recovery sequences for paths inside R.
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e Still formally, |a«DH(u)2 = oD, (u). .
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Full proof via LDP.

e Consider LDP with global equilibrium p = 1 initial conditions.
Detailed balance = (7nl), :=nY . has the same law as the
original process!

Contraction principle and uniqueness of rate functions:
Z(T ue) = Z(us)

for all u,.

“Improbability of starting at nonequilibrium ug and evolving forwards
by (PME) = Improbability of evolving via backwards (PME) into up".
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Theorem 4: Gradient Flow

Theorem (H.-Gess 2023)

Let ue € D with H(up) < co. Then we have the identity

1 T 1
T (ue) = 5 (a?—l(ur) —aHM(up) + %/ Do (us)ds + 5A(u.)> (EDI)
0
allowing both sides to be infinite, where
_ 1 2 Lo,y
A(U.)— Elnf HGHL%X .8tut+V~(§ut Qt)—O o
In particular, the functional on the right-hand side is nonnegative, and

vanishes if and only if ue is a solution to (PME).
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Gradient Flow: Sketch Proof

e The unique optimisers for g, 6 are characterised by

12
g,0 € Ny, :={u*/2Vyp:pe CL2([0, T] x T)} .
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e The unique optimisers for g, 6 are characterised by

12
g,0 € Ny, :={u*/2Vyp:pe CL2([0, T] x T)} .

Geometric interpretation: tangent vectors for a.e. t.

e If g is optimal for ue, optimal control for v, := T u, is
g = 2MN[v]Vv*/2 — g.
Substitute into

1 1
T(ve) = aM(ur) + 5llgrl = T(u.) = aH(uo) + 5 gl -
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Gradient Flow: Sketch Proof

e The unique optimisers for g, 6 are characterised by

2
g,0 € Ny, :={u*/2Vyp:pe CL2([0, T] x T)} .

Geometric interpretation: tangent vectors for a.e. t.

e If g is optimal for ue, optimal control for v, := T u, is
g = 2MN[v]Vv*/2 — g.
Substitute into

1 1
T(va) = a#i(ur) + 5 el = T(u) = a#i(uo) + 5 lgll; .

e After some manipulations,
1 2
J(ue) = 5 (a?—l(ur) — aH(up) + HI‘I[U.]VU(’/2 p

—I—A(u.)) )

t,x
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Gradient Flow: Sketch Proof, 2

o |Mu]Vue/?|2, < g fOT Do (us)ds, so the previous argument yields
the inequality

-
T (ue) < % <a7—[(ur) — aH(u) + % /0 Do(us)ds + ;A(u.)> )
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inequalities are equalities.
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Gradient Flow: Sketch Proof, 2

° HI'I[u.]Vua/ZHfz < & fo ~(Us)ds, so the previous argument yields
the inequality

o [T
T (ue) < % <a7—[(ur) — aH(u) + > /o Do(us)ds + ;A(u.)> )

o If u, € X, then Vu®/2 = %uo‘pVIogu € N\,,, so both of the
inequalities are equalities.

e For the general case, use recovery sequences and use (1) again.

21



Gradient Flow: Remark
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Gradient Flow: Remark

e LDP* allows us to shortcut proving a ‘chain rule for entropy’ (Erbar,

'16).

e Same argument: equality in the H-Theorem for (PME) and (BE),
at least for solutions in ARE.

e A new look at properties of controlled equations:

Construction of g shows how antidissipative effects can arise.
Hence why L% estimates had to be false: trajectories with ug & L%,
ur € CF give reversal vo € C° but v ¢ LX.

Same argument works for (BEk): no possible regularity or moment
estimates beyond finite entropy.

(*): Could be done purely by PDE tools from Fehrman-Gess - but
not obvious starting from PME!
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