Dynamic Large Deviations: In search of Matching Bounds

Kac's Process and the Zero-Range Process

D. Heydecker, partially joint work with Benjamin Gess

or danielheydecker.wordpress.com \rightarrow Research

Max-Planck Institut für Mathematik in den Naturwissenschaften, Leipzig

• Starting point:

- Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_t^N \to \mu_t$

 Starting point: Kac's model of the spatially homogeneous Boltzmann equation μ^N_t → μ_t, Zero-range process η^N_t → u_t:

• Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_t^N \to \mu_t$, Zero-range process $\eta_t^N \to u_t$: microscopic models for the nonlinear PDEs

• Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_t^N \to \mu_t$, Zero-range process $\eta_t^N \to u_t$: microscopic models for the nonlinear PDEs

$$\partial_t \mu_t = Q(\mu_t, \mu_t); \qquad \partial_t u_t = \frac{1}{2} \Delta \Phi(u_t).$$

• Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_t^N \to \mu_t$, Zero-range process $\eta_t^N \to u_t$: microscopic models for the nonlinear PDEs

$$\partial_t \mu_t = Q(\mu_t, \mu_t); \qquad \partial_t u_t = \frac{1}{2} \Delta \Phi(u_t).$$

• Seek to characterise the large deviations around these limits:

$$\mathbb{P}(\mu_{\bullet}^{N} \approx \mu_{\bullet}) \sim \exp(-N\mathcal{I}_{\mathrm{KP}}(\mu_{\bullet}));$$
$$\mathbb{P}(\eta_{\bullet}^{N} \approx u_{\bullet}) \sim \exp(-N^{d}\mathcal{I}_{\mathrm{ZRP}}(u_{\bullet}))$$

• Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_t^N \to \mu_t$, Zero-range process $\eta_t^N \to u_t$: microscopic models for the nonlinear PDEs

$$\partial_t \mu_t = Q(\mu_t, \mu_t); \qquad \partial_t u_t = \frac{1}{2} \Delta \Phi(u_t).$$

• Seek to characterise the large deviations around these limits:

$$\mathbb{P}(\mu_{\bullet}^{N} \approx \mu_{\bullet}) \sim \exp(-N\mathcal{I}_{\mathrm{KP}}(\mu_{\bullet}));$$
$$\mathbb{P}(\eta_{\bullet}^{N} \approx u_{\bullet}) \sim \exp(-N^{d}\mathcal{I}_{\mathrm{ZRP}}(u_{\bullet}))$$

• ... and to know when we've found the sharpest rate of decay

• Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_t^N \to \mu_t$, Zero-range process $\eta_t^N \to u_t$: microscopic models for the nonlinear PDEs

$$\partial_t \mu_t = Q(\mu_t, \mu_t); \qquad \partial_t u_t = \frac{1}{2} \Delta \Phi(u_t).$$

• Seek to characterise the large deviations around these limits:

$$\mathbb{P}(\mu_{\bullet}^{N} \approx \mu_{\bullet}) \sim \exp(-N\mathcal{I}_{\mathrm{KP}}(\mu_{\bullet}));$$
$$\mathbb{P}(\eta_{\bullet}^{N} \approx u_{\bullet}) \sim \exp(-N^{d}\mathcal{I}_{\mathrm{ZRP}}(u_{\bullet}))$$

• ... and to know when we've found the sharpest rate of decay (i.e. matching upper and lower bounds).

• Starting point: Kac's model of the spatially homogeneous Boltzmann equation $\mu_t^N \to \mu_t$, Zero-range process $\eta_t^N \to u_t$: microscopic models for the nonlinear PDEs

$$\partial_t \mu_t = Q(\mu_t, \mu_t); \qquad \partial_t u_t = \frac{1}{2} \Delta \Phi(u_t).$$

• Seek to characterise the large deviations around these limits:

$$\mathbb{P}(\mu_{\bullet}^{N} \approx \mu_{\bullet}) \sim \exp(-N\mathcal{I}_{\mathrm{KP}}(\mu_{\bullet}));$$
$$\mathbb{P}(\eta_{\bullet}^{N} \approx u_{\bullet}) \sim \exp(-N^{d}\mathcal{I}_{\mathrm{ZRP}}(u_{\bullet}))$$

- ... and to know when we've found the sharpest rate of decay (i.e. matching upper and lower bounds).
- Relation to aspects of the original PDE?

 $\bullet\,$ Often find bounds of the form, on a suitable path space $\mathbb{X},$

$$\limsup_{N} r_{N}^{-1} \log \mathbb{P} \left(X_{\bullet}^{N} \in \mathcal{A} \right) \leq -\inf \left\{ \mathcal{I}(u) : u \in \mathcal{A} \right\}$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$\liminf_{N} r_{N}^{-1} \log \mathbb{P}\left(X_{\bullet}^{N} \in \mathcal{U}\right) \geq -\inf\left\{\mathcal{I}(u) : u \in \mathcal{U} \cap \mathcal{X}\right\}$$

for $\mathcal{U} \subset \mathbb{X}$ open,

• Often find bounds of the form, on a suitable path space $\mathbb{X},$

$$\limsup_{N} r_{N}^{-1} \log \mathbb{P} \left(X_{\bullet}^{N} \in \mathcal{A} \right) \leq -\inf \left\{ \mathcal{I}(u) : u \in \mathcal{A} \right\}$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$\liminf_{N} r_N^{-1} \log \mathbb{P}\left(X^N_{\bullet} \in \mathcal{U}\right) \ge -\inf\left\{\mathcal{I}(u) : u \in \mathcal{U} \cap \mathcal{X}\right\}$$

for $\mathcal{U} \subset \mathbb{X}$ open, and some universal set $\mathcal{X} \subset \mathbb{X}$.

• Often find bounds of the form, on a suitable path space $\mathbb{X},$

$$\limsup_{N} r_{N}^{-1} \log \mathbb{P} \left(X_{\bullet}^{N} \in \mathcal{A} \right) \leq -\inf \left\{ \mathcal{I}(u) : u \in \mathcal{A} \right\}$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$\liminf_{N} r_N^{-1} \log \mathbb{P}\left(X^N_{\bullet} \in \mathcal{U}\right) \ge -\inf\left\{\mathcal{I}(u) : u \in \mathcal{U} \cap \mathcal{X}\right\}$$

for $\mathcal{U} \subset \mathbb{X}$ open, and some universal set $\mathcal{X} \subset \mathbb{X}$.

• (Kipnis, Landim for ZRP; Rezakanlou for a collisional model).

• Often find bounds of the form, on a suitable path space $\mathbb{X},$

$$\limsup_{N} r_{N}^{-1} \log \mathbb{P} \left(X_{\bullet}^{N} \in \mathcal{A} \right) \leq -\inf \left\{ \mathcal{I}(u) : u \in \mathcal{A} \right\}$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$\liminf_{N} r_N^{-1} \log \mathbb{P}\left(X_{\bullet}^N \in \mathcal{U}\right) \geq -\inf\left\{\mathcal{I}(u) : u \in \mathcal{U} \cap \mathcal{X}\right\}$$

for $\mathcal{U}\subset\mathbb{X}$ open, and some universal set $\mathcal{X}\subset\mathbb{X}.$

- (Kipnis, Landim for ZRP; Rezakanlou for a collisional model).
- Leaves open the possibility that there is a better upper bound $\mathcal{I}' > \mathcal{I}.$

• Often find bounds of the form, on a suitable path space $\mathbb{X},$

$$\limsup_{N} r_{N}^{-1} \log \mathbb{P} \left(X_{\bullet}^{N} \in \mathcal{A} \right) \leq -\inf \left\{ \mathcal{I}(u) : u \in \mathcal{A} \right\}$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$\liminf_{N} r_N^{-1} \log \mathbb{P}\left(X_{\bullet}^N \in \mathcal{U}\right) \geq -\inf\left\{\mathcal{I}(u) : u \in \mathcal{U} \cap \mathcal{X}\right\}$$

for $\mathcal{U} \subset \mathbb{X}$ open, and some universal set $\mathcal{X} \subset \mathbb{X}$.

- (Kipnis, Landim for ZRP; Rezakanlou for a collisional model).
- Leaves open the possibility that there is a better upper bound
 \$\mathcal{I}' > \mathcal{I}\$. Can we work harder to get matching bounds?

• Often find bounds of the form, on a suitable path space $\mathbb{X},$

$$\limsup_{N} r_{N}^{-1} \log \mathbb{P} \left(X_{\bullet}^{N} \in \mathcal{A} \right) \leq -\inf \left\{ \mathcal{I}(u) : u \in \mathcal{A} \right\}$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$\liminf_{N} r_N^{-1} \log \mathbb{P}\left(X_{\bullet}^N \in \mathcal{U}\right) \geq -\inf\left\{\mathcal{I}(u) : u \in \mathcal{U} \cap \mathcal{X}\right\}$$

for $\mathcal{U}\subset\mathbb{X}$ open, and some universal set $\mathcal{X}\subset\mathbb{X}.$

- (Kipnis, Landim for ZRP; Rezakanlou for a collisional model).
- Leaves open the possibility that there is a better upper bound $\mathcal{I}' > \mathcal{I}$. Can we work harder to get matching bounds?
- Key difficulty: analysis of a modified PDE (controlled Boltzmann equation, skeleton equation)

• Often find bounds of the form, on a suitable path space $\mathbb{X},$

$$\limsup_{N} r_{N}^{-1} \log \mathbb{P} \left(X_{\bullet}^{N} \in \mathcal{A} \right) \leq -\inf \left\{ \mathcal{I}(u) : u \in \mathcal{A} \right\}$$

for $\mathcal{A} \subset \mathbb{X}$ closed, and

$$\liminf_{N} r_N^{-1} \log \mathbb{P}\left(X_{\bullet}^N \in \mathcal{U}\right) \geq -\inf\left\{\mathcal{I}(u) : u \in \mathcal{U} \cap \mathcal{X}\right\}$$

for $\mathcal{U} \subset \mathbb{X}$ open, and some universal set $\mathcal{X} \subset \mathbb{X}$.

- (Kipnis, Landim for ZRP; Rezakanlou for a collisional model).
- Leaves open the possibility that there is a better upper bound

 I' > *I*. Can we work harder to get matching bounds?
- Key difficulty: analysis of a modified PDE (controlled Boltzmann equation, skeleton equation) with qualitatively different properties.

Restricted Large Deviations: Kac's Process

• Empirical measure μ_t^N of N interacting velocities $V_1(t), \ldots, V_N(t)$.

- Empirical measure μ_t^N of N interacting velocities $V_1(t), \ldots, V_N(t)$.
- Energy-conserving collisions: pairs (v, v_{\star}) update to

$$v \mapsto v' = v + ((v - v_*) \cdot \sigma)\sigma; \qquad v_* \mapsto v'_* = v_* + ((v_* - v) \cdot \sigma)\sigma.$$

- Empirical measure μ_t^N of N interacting velocities $V_1(t), \ldots, V_N(t)$.
- Energy-conserving collisions: pairs (v, v_{\star}) update to

$$v\mapsto v'=v+((v-v_{\star})\cdot\sigma)\sigma; \qquad v_{\star}\mapsto v_{\star}'=v_{\star}+((v_{\star}-v)\cdot\sigma)\sigma.$$

at rate $N^{-1}B(v - v_{\star}, \sigma)d\sigma = N^{-1}|v - v_{\star}|d\sigma, \sigma \in \mathbb{S}^{d-1}.$

- Empirical measure μ_t^N of N interacting velocities $V_1(t), \ldots, V_N(t)$.
- Energy-conserving collisions: pairs (v, v_{\star}) update to

$$v \mapsto v' = v + ((v - v_*) \cdot \sigma)\sigma; \qquad v_* \mapsto v'_* = v_* + ((v_* - v) \cdot \sigma)\sigma.$$

at rate $N^{-1}B(v - v_{\star}, \sigma)d\sigma = N^{-1}|v - v_{\star}|d\sigma, \sigma \in \mathbb{S}^{d-1}.$

• Propagation of chaos: Sznitzman, Grünbaum, Mischler-Mouhot.

- Empirical measure μ_t^N of N interacting velocities $V_1(t), \ldots, V_N(t)$.
- Energy-conserving collisions: pairs (v, v_{\star}) update to

$$v\mapsto v'=v+((v-v_{\star})\cdot\sigma)\sigma; \qquad v_{\star}\mapsto v_{\star}'=v_{\star}+((v_{\star}-v)\cdot\sigma)\sigma.$$

at rate $N^{-1}B(v - v_{\star}, \sigma)d\sigma = N^{-1}|v - v_{\star}|d\sigma, \sigma \in \mathbb{S}^{d-1}$.

- Propagation of chaos: Sznitzman, Grünbaum, Mischler-Mouhot.
- For LDP, start in *N*-particle equilibrium

$$V_0^i \sim_{ ext{i.i.d.}} \gamma(dv) = rac{1}{\sqrt{2\pi d^d}} \exp(-|v|^2/2d) dv.$$

- Empirical measure μ_t^N of N interacting velocities $V_1(t), \ldots, V_N(t)$.
- Energy-conserving collisions: pairs (v, v_{\star}) update to

$$v\mapsto v'=v+((v-v_{\star})\cdot\sigma)\sigma; \qquad v_{\star}\mapsto v_{\star}'=v_{\star}+((v_{\star}-v)\cdot\sigma)\sigma.$$

at rate $N^{-1}B(v - v_{\star}, \sigma)d\sigma = N^{-1}|v - v_{\star}|d\sigma, \sigma \in \mathbb{S}^{d-1}$.

- Propagation of chaos: Sznitzman, Grünbaum, Mischler-Mouhot.
- For LDP, start in N-particle equilibrium

$$V_0^i \sim_{ ext{i.i.d.}} \gamma(dv) = rac{1}{\sqrt{2\pi d^d}} \exp(-|v|^2/2d) dv.$$

• Sanov:

$$\mathbb{P}\left(\mu_0^N \approx \mu_0\right) \sim \exp\left(-NH(\mu_0|\gamma)\right).$$

• Seek joint LDP on the trajectory $\mu_{\bullet}^{N} = (\mu_{t}^{N})_{0 \le t \le T}$ and the empirical flux w^{N} recording collisions.

- Seek joint LDP on the trajectory $\mu_{\bullet}^N = (\mu_t^N)_{0 \le t \le T}$ and the empirical flux w^N recording collisions.
- Candidate rate function: Léonard, 1995; Rezakhanlou, 1998; Bouchet, 2020.

- Seek joint LDP on the trajectory $\mu_{\bullet}^{N} = (\mu_{t}^{N})_{0 \le t \le T}$ and the empirical flux w^{N} recording collisions.
- Candidate rate function: Léonard, 1995; Rezakhanlou, 1998; Bouchet, 2020.
- Dynamic cost: set J(µ_●, w) = ∞ unless (µ_●, w) is a measure-flux pair

- Seek joint LDP on the trajectory μ^N_● = (μ^N_t)_{0≤t≤T} and the empirical flux w^N recording collisions.
- Candidate rate function: Léonard, 1995; Rezakhanlou, 1998; Bouchet, 2020.
- Dynamic cost: set J(µ_●, w) = ∞ unless (µ_●, w) is a measure-flux pair, in which case set

$$\mathcal{J}(\mu_{\bullet}, w) := \operatorname{Ent}(w|\underbrace{|v - v_{\star}|\mu_t(dv)\mu_t(dv_{\star})dtd\sigma}_{=:\overline{m}_{\mu}}).$$

- Seek joint LDP on the trajectory μ^N_● = (μ^N_t)_{0≤t≤T} and the empirical flux w^N recording collisions.
- Candidate rate function: Léonard, 1995; Rezakhanlou, 1998; Bouchet, 2020.
- Dynamic cost: set $\mathcal{J}(\mu_{\bullet}, w) = \infty$ unless (μ_{\bullet}, w) is a measure-flux pair, in which case set

$$\mathcal{J}(\mu_{\bullet}, w) := \operatorname{Ent}(w|\underbrace{|v - v_{\star}|\mu_t(dv)\mu_t(dv_{\star})dtd\sigma}_{=:\overline{m}_{\mu}}).$$

• If $\mathcal{J} < \infty$, then μ_{\bullet} solves a modified Boltzmann equation (BE_K), $K = \frac{dw}{d\overline{m}_{\mu}}$.

- Seek joint LDP on the trajectory $\mu_{\bullet}^{N} = (\mu_{t}^{N})_{0 \le t \le T}$ and the empirical flux w^{N} recording collisions.
- Candidate rate function: Léonard, 1995; Rezakhanlou, 1998; Bouchet, 2020.
- Dynamic cost: set $\mathcal{J}(\mu_{\bullet}, w) = \infty$ unless (μ_{\bullet}, w) is a measure-flux pair, in which case set

$$\mathcal{J}(\mu_{\bullet}, w) := \operatorname{Ent}(w|\underbrace{|v - v_{\star}|\mu_t(dv)\mu_t(dv_{\star})dtd\sigma}_{=:\overline{m}_{\mu}}).$$

• If $\mathcal{J} < \infty$, then μ_{\bullet} solves a modified Boltzmann equation (BE_K), $K = \frac{dw}{d\overline{m}_{\mu}}$. If $\mathcal{J} = 0$, we recover (BE).

- Seek joint LDP on the trajectory $\mu_{\bullet}^{N} = (\mu_{t}^{N})_{0 \le t \le T}$ and the empirical flux w^{N} recording collisions.
- Candidate rate function: Léonard, 1995; Rezakhanlou, 1998; Bouchet, 2020.
- Dynamic cost: set J(µ_●, w) = ∞ unless (µ_●, w) is a measure-flux pair, in which case set

$$\mathcal{J}(\mu_{\bullet}, w) := \operatorname{Ent}(w|\underbrace{|v - v_{\star}|\mu_t(dv)\mu_t(dv_{\star})dtd\sigma}_{=:\overline{m}_{\mu}}).$$

- If $\mathcal{J} < \infty$, then μ_{\bullet} solves a modified Boltzmann equation (BE_K), $K = \frac{dw}{d\overline{m}_{\mu}}$. If $\mathcal{J} = 0$, we recover (BE).
- Total cost $\mathcal{I}(\mu_{\bullet}, w) = H(\mu_0|\gamma) + \mathcal{J}(\mu_{\bullet}, w).$

Theorem 1: Positive Result

The rate function ${\mathcal I}$ written above captures at least some of the correct large deviations behaviour:

Theorem (H, 2021; see also Basile-Benedetto-Bertini-Orierri, 2021)

- The variables $(\mu_{\bullet}^{N}, w^{N})$ are exponentially tight in $\mathbb{D} \times \mathcal{M}(E)$.
- For all $\mathcal{A} \subset \mathbb{D} \times \mathcal{M}(E)$ closed,

$$\limsup \frac{1}{N} \log \mathbb{P}\left((\mu_{\bullet}^{N}, w^{N}) \in \mathcal{A}\right) \leq -\inf \left\{ \mathcal{I}(\mu_{\bullet}, w) : (\mu_{\bullet}, w) \in \mathcal{A} \right\}.$$
(UB)
Theorem 1: Positive Result

The rate function ${\cal I}$ written above captures at least some of the correct large deviations behaviour:

Theorem (H, 2021; see also Basile-Benedetto-Bertini-Orierri, 2021)

- The variables (μ^N_•, w^N) are exponentially tight in D × M(E).
- For all $\mathcal{A} \subset \mathbb{D} \times \mathcal{M}(E)$ closed,

$$\limsup \frac{1}{N} \log \mathbb{P}\left((\mu_{\bullet}^{N}, w^{N}) \in \mathcal{A}\right) \leq -\inf \left\{ \mathcal{I}(\mu_{\bullet}, w) : (\mu_{\bullet}, w) \in \mathcal{A} \right\}.$$
(UB)

• For all $\mathcal{U} \subset \mathbb{D} \times \mathcal{M}(E)$ open,

$$\liminf \frac{1}{N} \log \mathbb{P}\left((\mu_{\bullet}^{N}, w^{N}) \in \mathcal{U}\right) \ge -\inf \left\{\mathcal{I}(\mu_{\bullet}, w) : (\mu_{\bullet}, w) \in \mathcal{U} \cap \mathcal{X}\right\}$$
(RLB)

where $\mathcal{X} = \{(\mu_{\bullet}, w) : \langle |v|^2 + |v_{\star}|^2, w \rangle < \infty\}.$

• Upper bound: variational formulation

$$\mathcal{I}(\mu_{\bullet}, w) = \sup \left\{ \Xi(\mu_{\bullet}, w, \varphi, f, g)_{T} : \varphi \in C_{b,v}, f \in C^{1,0}_{b,t,v}, g \in C_{c}(E) \right\}$$

Positive Result: Main ideas

• Upper bound: variational formulation

$$\mathcal{I}(\mu_{\bullet}, w) = \sup \left\{ \Xi(\mu_{\bullet}, w, \varphi, f, g)_{\mathcal{T}} : \varphi \in C_{b,v}, f \in C^{1,0}_{b,t,v}, g \in C_{c}(E) \right\}$$

where Ξ is constructed so that, for each N, $Z^N = \exp(N \Xi(\mu_{\bullet}^N, w^N, \varphi, f, g)_t)$ is a mean 1 martingale.

Positive Result: Main ideas

• Upper bound: variational formulation

$$\mathcal{I}(\mu_{\bullet},w) = \sup \left\{ \Xi(\mu_{\bullet},w,\varphi,f,g)_{\mathcal{T}} : \varphi \in C_{b,v}, f \in C^{1,0}_{b,t,v}, g \in C_{c}(E) \right\}$$

where Ξ is constructed so that, for each N, $Z^N = \exp(N \Xi(\mu_{\bullet}^N, w^N, \varphi, f, g)_t)$ is a mean 1 martingale.

• (UB) follows from a standard martingale argument.

Positive Result: Main ideas

• Upper bound: variational formulation

 $\mathcal{I}(\mu_{\bullet},w) = \sup \left\{ \Xi(\mu_{\bullet},w,\varphi,f,g)_{T} : \varphi \in C_{b,v}, f \in C^{1,0}_{b,t,v}, g \in C_{c}(E) \right\}$

where Ξ is constructed so that, for each N, $Z^N = \exp(N \Xi(\mu_{\bullet}^N, w^N, \varphi, f, g)_t)$ is a mean 1 martingale.

- (UB) follows from a standard martingale argument.
- First step in lower bound: for (μ_●, w) with |v v_{*}|K bounded and bounded away from 0, we can write down a change of measure making (μ_●, w) the typical trajectory as N → ∞

• Upper bound: variational formulation

 $\mathcal{I}(\mu_{\bullet},w) = \sup \left\{ \Xi(\mu_{\bullet},w,\varphi,f,g)_{T} : \varphi \in C_{b,v}, f \in C^{1,0}_{b,t,v}, g \in C_{c}(E) \right\}$

where Ξ is constructed so that, for each N, $Z^N = \exp(N \Xi(\mu_{\bullet}^N, w^N, \varphi, f, g)_t)$ is a mean 1 martingale.

- (UB) follows from a standard martingale argument.
- First step in lower bound: for (μ_●, w) with |v v_{*}|K bounded and bounded away from 0, we can write down a change of measure making (μ_●, w) the typical trajectory as N → ∞ with

$$\mathbb{Q}^N\left(\left|\frac{1}{N}\log \frac{d\mathbb{Q}^N}{d\mathbb{P}} - \mathcal{I}(\mu_{ullet},w)\right| > \epsilon\right) o 0.$$

• Upper bound: variational formulation

 $\mathcal{I}(\mu_{\bullet}, w) = \sup \left\{ \Xi(\mu_{\bullet}, w, \varphi, f, g)_{T} : \varphi \in C_{b,v}, f \in C^{1,0}_{b,t,v}, g \in C_{c}(E) \right\}$

where Ξ is constructed so that, for each N, $Z^N = \exp(N \Xi(\mu_{\bullet}^N, w^N, \varphi, f, g)_t)$ is a mean 1 martingale.

- (UB) follows from a standard martingale argument.
- First step in lower bound: for (μ_●, w) with |v v_{*}|K bounded and bounded away from 0, we can write down a change of measure making (μ_●, w) the typical trajectory as N → ∞ with

$$\mathbb{Q}^{N}\left(\left|\frac{1}{N}\log\frac{d\mathbb{Q}^{N}}{d\mathbb{P}}-\mathcal{I}(\mu_{\bullet},w)\right|>\epsilon\right)
ightarrow0.$$

• Argument exploits uniqueness for (BE_K).

• Call the set where we have a lower bound $\mathcal{X}_{0}.$

Call the set where we have a lower bound X₀. By a diagonal argument, we automatically get a lower bound on the set X₁ of (μ_•, w) for which there exists a recovery sequence

$$(\mu_{ullet}^{(n)},w^{(n)})\in\mathcal{X}_0:(\mu_{ullet}^{(n)},w^{(n)})
ightarrow(\mu_{ullet},w),\mathcal{I}(\mu_{ullet}^{(n)},w^{(n)})
ightarrow\mathcal{I}(\mu_{ullet},w).$$

• (i.e. where the L.S.C. envelope $\overline{\mathcal{I}}|_{\mathcal{X}_0}$ coincides with \mathcal{I}).

Call the set where we have a lower bound X₀. By a diagonal argument, we automatically get a lower bound on the set X₁ of (μ_•, w) for which there exists a recovery sequence

$$(\mu_{ullet}^{(n)},w^{(n)})\in\mathcal{X}_0:(\mu_{ullet}^{(n)},w^{(n)})
ightarrow(\mu_{ullet},w),\mathcal{I}(\mu_{ullet}^{(n)},w^{(n)})
ightarrow\mathcal{I}(\mu_{ullet},w).$$

- (i.e. where the L.S.C. envelope $\overline{\mathcal{I}}|_{\mathcal{X}_0}$ coincides with \mathcal{I}).
- Argument: suppression of collisions in various 'bad' regions of collision space, then convolution $\mu_t \mapsto g_{\delta} \star \mu_t$.

Call the set where we have a lower bound X₀. By a diagonal argument, we automatically get a lower bound on the set X₁ of (μ_•, w) for which there exists a recovery sequence

$$(\mu_{ullet}^{(n)},w^{(n)})\in\mathcal{X}_0:(\mu_{ullet}^{(n)},w^{(n)})
ightarrow(\mu_{ullet},w),\mathcal{I}(\mu_{ullet}^{(n)},w^{(n)})
ightarrow\mathcal{I}(\mu_{ullet},w).$$

- (i.e. where the L.S.C. envelope $\overline{\mathcal{I}}|_{\mathcal{X}_0}$ coincides with \mathcal{I}).
- Argument: suppression of collisions in various 'bad' regions of collision space, then convolution μ_t → g_δ ★ μ_t.
 - Truncation argument critically uses $\langle 1+|v|^2+|v_{\star}|^2,w
 angle <\infty.$

• (RLB) has the prototypical form of a restricted lower bound.

- (RLB) has the prototypical form of a restricted lower bound.
- Counterexample without restriction:

- (RLB) has the prototypical form of a restricted lower bound.
- Counterexample without restriction:

Theorem (H, 2021; see also Basile-Bernadetto-Bertini-Caglioti 2021)

Let $\Theta': [0, T] \to [0, \infty)$ be a bounded energy profile satisfying certain technical assumptions. Then the set

$$\mathcal{A}_{\Theta} = \{(\mu_{ullet}, w) : \mu_0 = \gamma, \mu_{ullet} \text{ solves (BE)}, w = \overline{m}_{\mu}, \langle |v|^2, \mu_t
angle = \Theta(t) \}$$

is compact, nonempty, and $\mathcal{I}=0$ on $\mathcal{A}_\Theta.$ For some $\mathcal{V}\supset\mathcal{A}_\Theta,$

$$\liminf \frac{1}{N} \log \mathbb{P}\left((\mu_{\bullet}^{N}, w^{N}) \in \mathcal{V}\right) < 0 = -\inf \left\{\mathcal{I}(\mu_{\bullet}, w) : (\mu_{\bullet}, w) \in \mathcal{A}_{\Theta}\right\}$$

while

$$\inf_{\mathcal{U}\supset\mathcal{A}_{\Theta}}\liminf\frac{1}{N}\log\mathbb{P}\left(\left(\mu_{\bullet}^{N},w^{N}\right)\in\mathcal{U}\right)>-\infty.$$

- (RLB) has the prototypical form of a restricted lower bound.
- Counterexample without restriction:

Theorem (H, 2021; see also Basile-Bernadetto-Bertini-Caglioti 2021)

Let $\Theta': [0, T] \to [0, \infty)$ be a bounded energy profile satisfying certain technical assumptions. Then the set

$$\mathcal{A}_{\Theta} = \{(\mu_{ullet}, w) : \mu_0 = \gamma, \mu_{ullet} \text{ solves (BE)}, w = \overline{m}_{\mu}, \langle |v|^2, \mu_t
angle = \Theta(t) \}$$

is compact, nonempty, and $\mathcal{I}=0$ on $\mathcal{A}_\Theta.$ For some $\mathcal{V}\supset\mathcal{A}_\Theta,$

$$\liminf \frac{1}{N} \log \mathbb{P}\left((\mu_{\bullet}^{N}, w^{N}) \in \mathcal{V}\right) < 0 = -\inf \left\{\mathcal{I}(\mu_{\bullet}, w) : (\mu_{\bullet}, w) \in \mathcal{A}_{\Theta}\right\}$$

while

$$\inf_{\mathcal{U}\supset\mathcal{A}_{\Theta}}\liminf\frac{1}{N}\log\mathbb{P}\left(\left(\mu_{\bullet}^{N},w^{N}\right)\in\mathcal{U}\right)>-\infty.$$

....so such behaviour cannot be excluded, but the rate function predicts the exponential occurrence wrongly.

• Easiest case: $\Theta(t) = 1 + \theta \mathbf{1}(t > 0)$, for some $\theta > 0$.

- Easiest case: $\Theta(t) = 1 + \theta \mathbf{1}(t > 0)$, for some $\theta > 0$.
- The Gaussian satisfies $0 < \sup(z : \int e^{z|v|^2} \gamma(dv)) = d < \infty$.

- Easiest case: $\Theta(t) = 1 + \theta 1(t > 0)$, for some $\theta > 0$.
- The Gaussian satisfies $0 < \sup(z : \int e^{z|v|^2} \gamma(dv)) = d < \infty$.
- Construct \mathbb{Q}^N under which

 $V_0^i \sim_{ ext{i.i.d.}} \exp\left(\lambda_{M(N)} |v|^2 \mathbb{1}(|v| \ge M(N))\right) \gamma(dv)$

with $\lambda_{M(N)} < d$ chosen so that $\mathbb{E}[V_0^i] = 1 + \theta$,

- Easiest case: $\Theta(t) = 1 + \theta \mathbf{1}(t > 0)$, for some $\theta > 0$.
- The Gaussian satisfies $0 < \sup(z : \int e^{z|v|^2} \gamma(dv)) = d < \infty$.
- Construct \mathbb{Q}^N under which

$$V_0^i \sim_{ ext{i.i.d.}} \exp\left(\lambda_{M(N)} |v|^2 \mathbb{1}(|v| \ge M(N))\right) \gamma(dv)$$

with $\lambda_{M(N)} < d$ chosen so that $\mathbb{E}[V_0^i] = 1 + \theta$, and $M(N) \to \infty$ slowly enough that, for all $\delta > 0$,

$$\mathbb{Q}^{N}\left(|\langle|v|^{2},\mu_{0}^{N}
angle-(1+ heta)|>\delta
ight)
ightarrow 0;\qquad \mathbb{Q}^{N}\left(\mathcal{W}(\mu_{0}^{N},\gamma_{\mathcal{M}(N)})>\delta
ight)
ightarrow 0.$$

- Easiest case: $\Theta(t) = 1 + \theta \mathbf{1}(t > 0)$, for some $\theta > 0$.
- The Gaussian satisfies $0 < \sup(z : \int e^{z|v|^2} \gamma(dv)) = d < \infty$.
- Construct \mathbb{Q}^N under which

$$V_0^i \sim_{\text{i.i.d.}} \exp\left(\lambda_{M(N)} |v|^2 \mathbb{1}(|v| \ge M(N))\right) \gamma(dv)$$

with $\lambda_{M(N)} < d$ chosen so that $\mathbb{E}[V_0^i] = 1 + \theta$, and $M(N) \to \infty$ slowly enough that, for all $\delta > 0$,

$$\mathbb{Q}^{N}\left(|\langle|\mathbf{v}|^{2},\mu_{0}^{N}
angle-(1+ heta)|>\delta
ight)
ightarrow 0;\qquad \mathbb{Q}^{N}\left(W(\mu_{0}^{N},\gamma_{M(N)})>\delta
ight)
ightarrow 0.$$

• Because $\lambda_{M(N)} < d$, $\frac{d\mathbb{Q}^N}{d\mathbb{P}} \le e^{Nd(1+\theta+\epsilon)}$ with high \mathbb{Q}^N -probability.

- Easiest case: $\Theta(t) = 1 + \theta \mathbf{1}(t > 0)$, for some $\theta > 0$.
- The Gaussian satisfies $0 < \sup(z : \int e^{z|v|^2} \gamma(dv)) = d < \infty$.
- Construct \mathbb{Q}^N under which

$$V_0^i \sim_{ ext{i.i.d.}} \exp\left(\lambda_{M(N)} |v|^2 \mathbb{1}(|v| \ge M(N))\right) \gamma(dv)$$

with $\lambda_{M(N)} < d$ chosen so that $\mathbb{E}[V_0^i] = 1 + \theta$, and $M(N) \to \infty$ slowly enough that, for all $\delta > 0$,

$$\mathbb{Q}^{N}\left(|\langle |v|^{2}, \mu_{0}^{N}\rangle - (1+\theta)| > \delta\right) \to 0; \qquad \mathbb{Q}^{N}\left(W(\mu_{0}^{N}, \gamma_{M(N)}) > \delta\right) \to 0.$$

- Because $\lambda_{M(N)} < d$, $\frac{d\mathbb{Q}^N}{d\mathbb{P}} \le e^{Nd(1+\theta+\epsilon)}$ with high \mathbb{Q}^N -probability.
- Chaotic, but not entropically chaotic.

- Easiest case: $\Theta(t) = 1 + \theta \mathbf{1}(t > 0)$, for some $\theta > 0$.
- The Gaussian satisfies $0 < \sup(z : \int e^{z|v|^2} \gamma(dv)) = d < \infty$.
- Construct \mathbb{Q}^N under which

$$V_0^i \sim_{ ext{i.i.d.}} \exp\left(\lambda_{M(N)} |v|^2 \mathbb{1}(|v| \ge M(N))\right) \gamma(dv)$$

with $\lambda_{M(N)} < d$ chosen so that $\mathbb{E}[V_0^i] = 1 + \theta$, and $M(N) \to \infty$ slowly enough that, for all $\delta > 0$,

$$\mathbb{Q}^{N}\left(|\langle |v|^{2}, \mu_{0}^{N}\rangle - (1+\theta)| > \delta\right) \to 0; \qquad \mathbb{Q}^{N}\left(W(\mu_{0}^{N}, \gamma_{M(N)}) > \delta\right) \to 0.$$

- Because $\lambda_{M(N)} < d$, $\frac{d\mathbb{Q}^N}{d\mathbb{P}} \le e^{Nd(1+\theta+\epsilon)}$ with high \mathbb{Q}^N -probability.
- Chaotic, but not entropically chaotic.
- Using martingale arguments, Pozvner inequality..., all distributional limits (μ_●, w) are supported on A_Θ, so for all open U ⊃ A,

$$\liminf_N N^{-1} \log \mathbb{P}((\mu^N_{\bullet}, w) \in \mathcal{U}) \geq -d(1+\theta).$$

• Why doesn't the expected bound hold on $\mathcal{A}?$

- Why doesn't the expected bound hold on $\mathcal{A}?$
- $\mathcal{J} = 0$ on \mathcal{A}_{Θ} because all paths have $w = \overline{m}_{\mu}$, and $H(\mu_0|\gamma) = 0$.

- $\bullet\,$ Why doesn't the expected bound hold on $\mathcal{A}?$
- $\mathcal{J} = 0$ on \mathcal{A}_{Θ} because all paths have $w = \overline{m}_{\mu}$, and $H(\mu_0|\gamma) = 0$.
- For well-chosen $f \in C_c(\mathbb{R}^d), 0 \le f \le |v|^2$,

$$\mathcal{V} = \left\{ (\mu_{\bullet}, w) : \int_{T/2}^{T} \langle f, \mu_t \rangle dt > \frac{T}{2} \left(1 + \frac{\theta}{2} \right) \right\} \supset \mathcal{A}_{\Theta}.$$

- $\bullet\,$ Why doesn't the expected bound hold on $\mathcal{A}?$
- $\mathcal{J} = 0$ on \mathcal{A}_{Θ} because all paths have $w = \overline{m}_{\mu}$, and $H(\mu_0|\gamma) = 0$.
- For well-chosen $f \in C_c(\mathbb{R}^d), 0 \le f \le |v|^2$,

$$\mathcal{V} = \left\{ (\mu_{\bullet}, w) : \int_{T/2}^{T} \langle f, \mu_t \rangle dt > \frac{T}{2} \left(1 + \frac{\theta}{2} \right) \right\} \supset \mathcal{A}_{\Theta}.$$

and

$$\liminf_{N} \frac{1}{N} \log \mathbb{P}\left(\left(\mu_{\bullet}^{N}, w^{N} \right) \in \mathcal{V} \right) \leq \liminf_{N} \frac{1}{N} \log \mathbb{P}\left(\left\langle |v|^{2}, \mu_{0}^{N} \right\rangle > 1 + \frac{\theta}{2} \right) < 0$$

- $\bullet\,$ Why doesn't the expected bound hold on $\mathcal{A}?$
- $\mathcal{J} = 0$ on \mathcal{A}_{Θ} because all paths have $w = \overline{m}_{\mu}$, and $H(\mu_0|\gamma) = 0$.
- For well-chosen $f \in C_c(\mathbb{R}^d), 0 \leq f \leq |v|^2$,

$$\mathcal{V} = \left\{ (\mu_{\bullet}, w) : \int_{T/2}^{T} \langle f, \mu_t \rangle dt > \frac{T}{2} \left(1 + \frac{\theta}{2} \right) \right\} \supset \mathcal{A}_{\Theta}.$$

and

$$\liminf_{N} \frac{1}{N} \log \mathbb{P}\left((\mu_{\bullet}^{N}, w^{N}) \in \mathcal{V}\right) \leq \liminf_{N} \frac{1}{N} \log \mathbb{P}\left(\langle |v|^{2}, \mu_{0}^{N} \rangle > 1 + \frac{\theta}{2}\right) < 0$$

using pathwise energy conservation and Cramér's theorem.

- Why doesn't the expected bound hold on $\mathcal{A}?$
- $\mathcal{J} = 0$ on \mathcal{A}_{Θ} because all paths have $w = \overline{m}_{\mu}$, and $H(\mu_0|\gamma) = 0$.
- For well-chosen $f \in C_c(\mathbb{R}^d), 0 \leq f \leq |v|^2$,

$$\mathcal{V} = \left\{ (\mu_{ullet}, w) : \int_{T/2}^{T} \langle f, \mu_t \rangle dt > \frac{T}{2} \left(1 + \frac{ heta}{2} \right) \right\} \supset \mathcal{A}_{\Theta}.$$

and

$$\liminf_{N} \frac{1}{N} \log \mathbb{P}\left((\mu_{\bullet}^{N}, w^{N}) \in \mathcal{V} \right) \leq \liminf_{N} \frac{1}{N} \log \mathbb{P}\left(\langle |v|^{2}, \mu_{0}^{N} \rangle > 1 + \frac{\theta}{2} \right) < 0$$

using pathwise energy conservation and Cramér's theorem.

• Theorem of Basile-Benedetto-Bertini-Caglioti: counterexample by a different construction, improved rate function which is > 0 on \mathcal{A}_{Θ} .

- Why doesn't the expected bound hold on $\mathcal{A}?$
- $\mathcal{J} = 0$ on \mathcal{A}_{Θ} because all paths have $w = \overline{m}_{\mu}$, and $H(\mu_0|\gamma) = 0$.
- For well-chosen $f \in C_c(\mathbb{R}^d), 0 \leq f \leq |v|^2$,

$$\mathcal{V} = \left\{ (\mu_{ullet}, w) : \int_{T/2}^{T} \langle f, \mu_t \rangle dt > \frac{T}{2} \left(1 + \frac{ heta}{2} \right) \right\} \supset \mathcal{A}_{\Theta}.$$

and

$$\liminf_{N} \frac{1}{N} \log \mathbb{P}\left((\mu_{\bullet}^{N}, w^{N}) \in \mathcal{V}\right) \leq \liminf_{N} \frac{1}{N} \log \mathbb{P}\left(\langle |v|^{2}, \mu_{0}^{N} \rangle > 1 + \frac{\theta}{2}\right) < 0$$

using pathwise energy conservation and Cramér's theorem.

- Theorem of Basile-Benedetto-Bertini-Caglioti: counterexample by a different construction, improved rate function which is > 0 on \mathcal{A}_{Θ} .
- LDP rate function still not correct for other Boltzmann kernels (e.g. cutoff Maxwell Molecules).

Zero-Range Process: An Example with Matching Bounds

Zero-Range Process

• Fix a (nondecreasing) function $g:\mathbb{N}\to\mathbb{R}.$

- Fix a (nondecreasing) function $g: \mathbb{N} \to \mathbb{R}$.
 - Place a bin at each site of $\mathbb{T}_N^d := \{0, N^{-1}, \dots, 1 N^{-1}\}^d;$

- Fix a (nondecreasing) function $g: \mathbb{N} \to \mathbb{R}$.
 - Place a bin at each site of $\mathbb{T}_N^d := \{0, N^{-1}, \dots, 1 N^{-1}\}^d;$
 - $\tilde{\eta}^N =$ empirical partical configuration;
- Fix a (nondecreasing) function $g : \mathbb{N} \to \mathbb{R}$.
 - Place a bin at each site of $\mathbb{T}_N^d := \{0, N^{-1}, \dots, 1 N^{-1}\}^d;$
 - $\tilde{\eta}^N$ =empirical partical configuration;
 - At rate $g(\eta^N(x))$, a particle jumps from x to a randomly chosen neighbour y.

- Fix a (nondecreasing) function $g : \mathbb{N} \to \mathbb{R}$.
 - Place a bin at each site of $\mathbb{T}_N^d:=\{0,N^{-1},\ldots,1-N^{-1}\}^d;$
 - $\tilde{\eta}^{N} =$ empirical partical configuration;
 - At rate g(η^N(x)), a particle jumps from x to a randomly chosen neighbour y.
 - Identify $\tilde{\eta}^N \in L^1_{\geq 0}(\mathbb{T}^d_N) \subset L^1_{\geq 0}(\mathbb{T}^d)$ and give path space \mathbb{D} the Skorokhod topology for a metric inducing weak convergence.

- Fix a (nondecreasing) function $g : \mathbb{N} \to \mathbb{R}$.
 - Place a bin at each site of $\mathbb{T}_N^d:=\{0,N^{-1},\ldots,1-N^{-1}\}^d;$
 - $\tilde{\eta}^{N} =$ empirical partical configuration;
 - At rate g(η^N(x)), a particle jumps from x to a randomly chosen neighbour y.
 - Identify $\tilde{\eta}^N \in L^1_{\geq 0}(\mathbb{T}^d_N) \subset L^1_{\geq 0}(\mathbb{T}^d)$ and give path space \mathbb{D} the Skorokhod topology for a metric inducing weak convergence.
- Hydrodynamic scaling: limit of $\eta_t^N(x) := \tilde{\eta}_{N^2 t}^N(x)$

- Fix a (nondecreasing) function $g: \mathbb{N} \to \mathbb{R}$.
 - Place a bin at each site of $\mathbb{T}_N^d:=\{0,N^{-1},\ldots,1-N^{-1}\}^d;$
 - $\tilde{\eta}^{N} =$ empirical partical configuration;
 - At rate g(η^N(x)), a particle jumps from x to a randomly chosen neighbour y.
 - Identify $\tilde{\eta}^N \in L^1_{\geq 0}(\mathbb{T}^d_N) \subset L^1_{\geq 0}(\mathbb{T}^d)$ and give path space \mathbb{D} the Skorokhod topology for a metric inducing weak convergence.
- Hydrodynamic scaling: limit of η^N_t(x) := η^N_{N²t}(x) (e.g. Kipnis-Landim)

- Fix a (nondecreasing) function $g: \mathbb{N} \to \mathbb{R}$.
 - Place a bin at each site of $\mathbb{T}_N^d:=\{0,N^{-1},\ldots,1-N^{-1}\}^d;$
 - $\tilde{\eta}^{N} =$ empirical partical configuration;
 - At rate g(η^N(x)), a particle jumps from x to a randomly chosen neighbour y.
 - Identify $\tilde{\eta}^N \in L^1_{\geq 0}(\mathbb{T}^d_N) \subset L^1_{\geq 0}(\mathbb{T}^d)$ and give path space \mathbb{D} the Skorokhod topology for a metric inducing weak convergence.
- Hydrodynamic scaling: limit of η^N_t(x) := η̃^N_{N²t}(x) (e.g.
 Kipnis-Landim) (nondegenerate) nonlinear parabolic equation

- Fix a (nondecreasing) function $g : \mathbb{N} \to \mathbb{R}$.
 - Place a bin at each site of $\mathbb{T}_N^d:=\{0,N^{-1},\ldots,1-N^{-1}\}^d;$
 - $\tilde{\eta}^{N} =$ empirical partical configuration;
 - At rate g(η^N(x)), a particle jumps from x to a randomly chosen neighbour y.
 - Identify η̃^N ∈ L¹_{≥0}(T^d_N) ⊂ L¹_{≥0}(T^d) and give path space D the Skorokhod topology for a metric inducing weak convergence.
- Hydrodynamic scaling: limit of η^N_t(x) := η^N_{N²t}(x) (e.g. Kipnis-Landim) (nondegenerate) nonlinear parabolic equation

$$\partial_t u_t = \Delta \Phi(u_t)$$

- Fix a (nondecreasing) function $g : \mathbb{N} \to \mathbb{R}$.
 - Place a bin at each site of $\mathbb{T}_N^d:=\{0,N^{-1},\ldots,1-N^{-1}\}^d;$
 - $\tilde{\eta}^{N} =$ empirical partical configuration;
 - At rate g(η^N(x)), a particle jumps from x to a randomly chosen neighbour y.
 - Identify $\tilde{\eta}^N \in L^1_{\geq 0}(\mathbb{T}^d_N) \subset L^1_{\geq 0}(\mathbb{T}^d)$ and give path space \mathbb{D} the Skorokhod topology for a metric inducing weak convergence.
- Hydrodynamic scaling: limit of η^N_t(x) := η^N_{N²t}(x) (e.g. Kipnis-Landim) (nondegenerate) nonlinear parabolic equation

$$\partial_t u_t = \Delta \Phi(u_t)$$

for some Φ determined by the jump rate g.

• Large deviation result of Kipnis-Landim:

- Large deviation result of Kipnis-Landim: variational rate function $\mathcal{I}_{\rm Var}$

• Large deviation result of Kipnis-Landim: variational rate function \mathcal{I}_{Var} , lower bound restricted to a set $\mathcal{X}.$

- Large deviation result of Kipnis-Landim: variational rate function \mathcal{I}_{Var} , lower bound restricted to a set \mathcal{X} .
- $\bullet\,$ In the lower bound, $\mathcal{I}_{\rm Var}$ coincides with

$$\mathcal{I}_{\mathrm{FP}}(u_{\bullet}) := \mathcal{I}_{0}(u_{0}) + \frac{1}{2} \inf_{H \in C_{t,x}^{1,3}} \left\{ \int_{t,x} \Phi(u) |\nabla H|^{2} : \partial_{t} u_{t} = \Delta \Phi(u_{t}) - \nabla \cdot (\Phi(u) \nabla H) \right\}$$

- Large deviation result of Kipnis-Landim: variational rate function \mathcal{I}_{Var} , lower bound restricted to a set \mathcal{X} .
- $\bullet\,$ In the lower bound, $\mathcal{I}_{\rm Var}$ coincides with

$$\mathcal{I}_{\mathrm{FP}}(u_{\bullet}) := \mathcal{I}_{0}(u_{0}) + \frac{1}{2} \inf_{H \in \mathcal{C}_{t,x}^{1,3}} \left\{ \int_{t,x} \Phi(u) |\nabla H|^{2} : \partial_{t} u_{t} = \Delta \Phi(u_{t}) - \nabla \cdot (\Phi(u) \nabla H) \right\}$$

(and \mathcal{X} is the set of u_{\bullet} where the infimum is finite).

- Large deviation result of Kipnis-Landim: variational rate function \mathcal{I}_{Var} , lower bound restricted to a set \mathcal{X} .
- $\bullet\,$ In the lower bound, $\mathcal{I}_{\rm Var}$ coincides with

$$\mathcal{I}_{\mathrm{FP}}(u_{\bullet}) := \mathcal{I}_{0}(u_{0}) + \frac{1}{2} \inf_{H \in \mathcal{C}_{t,x}^{1,3}} \left\{ \int_{t,x} \Phi(u) |\nabla H|^{2} : \partial_{t} u_{t} = \Delta \Phi(u_{t}) - \nabla \cdot (\Phi(u) \nabla H) \right\}$$

(and \mathcal{X} is the set of u_{\bullet} where the infimum is finite).

• What is the L.S.C. envelope of $\mathcal{I}_{\mathrm{FP}}$?

- Large deviation result of Kipnis-Landim: variational rate function \mathcal{I}_{Var} , lower bound restricted to a set \mathcal{X} .
- $\bullet\,$ In the lower bound, $\mathcal{I}_{\rm Var}$ coincides with

$$\mathcal{I}_{\mathrm{FP}}(u_{\bullet}) := \mathcal{I}_{0}(u_{0}) + \frac{1}{2} \inf_{H \in \mathcal{C}_{t,x}^{1,3}} \left\{ \int_{t,x} \Phi(u) |\nabla H|^{2} : \partial_{t} u_{t} = \Delta \Phi(u_{t}) - \nabla \cdot (\Phi(u) \nabla H) \right\}$$

(and \mathcal{X} is the set of u_{\bullet} where the infimum is finite).

 What is the L.S.C. envelope of *I*_{FP}? How much more do we need to improve the upper bound?

- Large deviation result of Kipnis-Landim: variational rate function \mathcal{I}_{Var} , lower bound restricted to a set \mathcal{X} .
- $\bullet\,$ In the lower bound, $\mathcal{I}_{\rm Var}$ coincides with

$$\mathcal{I}_{\mathrm{FP}}(u_{\bullet}) := \mathcal{I}_{0}(u_{0}) + \frac{1}{2} \inf_{H \in \mathcal{C}_{t,x}^{1,3}} \left\{ \int_{t,x} \Phi(u) |\nabla H|^{2} : \partial_{t} u_{t} = \Delta \Phi(u_{t}) - \nabla \cdot (\Phi(u) \nabla H) \right\}$$

(and \mathcal{X} is the set of u_{\bullet} where the infimum is finite).

- What is the L.S.C. envelope of $\mathcal{I}_{\mathrm{FP}}$? How much more do we need to improve the upper bound?
- Theorem (Fehrman-Gess, 2019) Under general hypotheses on Φ, inclduing all porous medium nonlinearities Φ(u) = u^α, α ≥ 1, the LSC envelope is given by

$$\mathcal{I}(u_{\bullet}) = \mathcal{I}_0(u_0) + \frac{1}{2} \inf_{g \in L^2_{t,x}} \left\{ \|g\|^2_{L^2_{t,x}} : \partial_t u_t = \Delta \Phi(u_t) - \nabla \cdot (\Phi(u)^{1/2}g) \right\}.$$

- Large deviation result of Kipnis-Landim: variational rate function \mathcal{I}_{Var} , lower bound restricted to a set \mathcal{X} .
- $\bullet\,$ In the lower bound, $\mathcal{I}_{\rm Var}$ coincides with

$$\mathcal{I}_{\mathrm{FP}}(u_{\bullet}) := \mathcal{I}_{0}(u_{0}) + \frac{1}{2} \inf_{H \in C_{t,x}^{1,3}} \left\{ \int_{t,x} \Phi(u) |\nabla H|^{2} : \partial_{t} u_{t} = \Delta \Phi(u_{t}) - \nabla \cdot (\Phi(u) \nabla H) \right\}$$

(and \mathcal{X} is the set of u_{\bullet} where the infimum is finite).

- What is the L.S.C. envelope of $\mathcal{I}_{\mathrm{FP}}$? How much more do we need to improve the upper bound?
- Theorem (Fehrman-Gess, 2019) Under general hypotheses on Φ, inclduing all porous medium nonlinearities Φ(u) = u^α, α ≥ 1, the LSC envelope is given by

$$\mathcal{I}(u_{\bullet}) = \mathcal{I}_0(u_0) + \frac{1}{2} \inf_{g \in L^2_{t,x}} \left\{ \|g\|^2_{L^2_{t,x}} : \partial_t u_t = \Delta \Phi(u_t) - \nabla \cdot (\Phi(u)^{1/2}g) \right\}.$$

(Skeleton equation (Sk_g)).

• (Sk_g) is critical in L^1_x and supercritical in L^p_x for any p > 1.

- (Sk_g) is critical in L^1_x and supercritical in L^p_x for any p > 1.
- Not a pertubation of a parabolic equation!

- (Sk_g) is critical in L^1_x and supercritical in L^p_x for any p > 1.
- Not a pertubation of a parabolic equation! Rough drift: e.g. LeBris-Lions, Karlssen-Risebro-Ohlberger-Chen need $g \in W_{loc}^{1,1}$, $div(g) \in L^{\infty}$.

- (Sk_g) is critical in L^1_x and supercritical in L^p_x for any p > 1.
- Not a pertubation of a parabolic equation! Rough drift: e.g. LeBris-Lions, Karlssen-Risebro-Ohlberger-Chen need $g \in W_{loc}^{1,1}$, $\operatorname{div}(g) \in L^{\infty}$.
- A priori estimate: for a suitable entropy \mathcal{H}_{Φ}

$$\mathcal{H}_{\Phi}(u_{T}) + \int_{0}^{T} \underbrace{\|
abla \Phi^{1/2}(u_{s}) \|_{L^{2}_{x}}^{2}}_{=:\mathcal{D}_{\Phi}(u_{s})} ds \leq \mathcal{H}_{\Phi}(u_{0}) + c \|g\|_{L^{2}_{t,x}}^{2}$$

- (Sk_g) is critical in L^1_x and supercritical in L^p_x for any p > 1.
- Not a pertubation of a parabolic equation! Rough drift: e.g. LeBris-Lions, Karlssen-Risebro-Ohlberger-Chen need $g \in W_{loc}^{1,1}$, $div(g) \in L^{\infty}$.
- A priori estimate: for a suitable entropy \mathcal{H}_{Φ}

$$\mathcal{H}_{\Phi}(u_{T}) + \int_{0}^{T} \underbrace{\|\nabla \Phi^{1/2}(u_{s})\|_{L^{2}_{x}}^{2}}_{=:\mathcal{D}_{\Phi}(u_{s})} ds \leq \mathcal{H}_{\Phi}(u_{0}) + c \|g\|_{L^{2}_{t,x}}^{2}$$

• Theorem: existence and uniqueness in

$$\mathcal{R} := \left\{ u_{\bullet} \in L^{\infty}_{t} L^{1}_{x} : u \geq 0, \sup \mathcal{H}_{\Phi}(u_{t}) < \infty, \int_{0}^{T} \mathcal{D}_{\Phi}(u_{s}) ds < \infty \right\}.$$

- (Sk_g) is critical in L^1_x and supercritical in L^p_x for any p > 1.
- Not a pertubation of a parabolic equation! Rough drift: e.g. LeBris-Lions, Karlssen-Risebro-Ohlberger-Chen need $g \in W_{loc}^{1,1}$, $div(g) \in L^{\infty}$.
- A priori estimate: for a suitable entropy \mathcal{H}_{Φ}

$$\mathcal{H}_{\Phi}(u_{T}) + \int_{0}^{T} \underbrace{\|\nabla \Phi^{1/2}(u_{s})\|_{L^{2}_{x}}^{2}}_{=:\mathcal{D}_{\Phi}(u_{s})} ds \leq \mathcal{H}_{\Phi}(u_{0}) + c \|g\|_{L^{2}_{t,x}}^{2}$$

• Theorem: existence and uniqueness in

$$\mathcal{R} := \left\{ u_{\bullet} \in L^{\infty}_t L^1_x : u \ge 0, \sup \mathcal{H}_{\Phi}(u_t) < \infty, \int_0^T \mathcal{D}_{\Phi}(u_s) ds < \infty \right\}.$$

Key ideas: Renormalised kinetic solutions (generalising DiPerna-Lions, Ambrosio, LeBris-Lions).

- (Sk_g) is critical in L^1_x and supercritical in L^p_x for any p > 1.
- Not a pertubation of a parabolic equation! Rough drift: e.g. LeBris-Lions, Karlssen-Risebro-Ohlberger-Chen need $g \in W_{loc}^{1,1}$, $div(g) \in L^{\infty}$.
- A priori estimate: for a suitable entropy \mathcal{H}_{Φ}

$$\mathcal{H}_{\Phi}(u_{T}) + \int_{0}^{T} \underbrace{\|\nabla \Phi^{1/2}(u_{s})\|_{L^{2}_{x}}^{2}}_{=:\mathcal{D}_{\Phi}(u_{s})} ds \leq \mathcal{H}_{\Phi}(u_{0}) + c \|g\|_{L^{2}_{t,x}}^{2}$$

• Theorem: existence and uniqueness in

$$\mathcal{R} := \left\{ u_{\bullet} \in L^{\infty}_{t} L^{1}_{x} : u \geq 0, \sup \mathcal{H}_{\Phi}(u_{t}) < \infty, \int_{0}^{T} \mathcal{D}_{\Phi}(u_{s}) ds < \infty \right\}.$$

Key ideas: Renormalised kinetic solutions (generalising DiPerna-Lions, Ambrosio, LeBris-Lions). Uniqueness of renormalised solutions via variable doubling argument.

- (Sk_g) is critical in L^1_x and supercritical in L^p_x for any p > 1.
- Not a pertubation of a parabolic equation! Rough drift: e.g. LeBris-Lions, Karlssen-Risebro-Ohlberger-Chen need $g \in W_{loc}^{1,1}$, $div(g) \in L^{\infty}$.
- A priori estimate: for a suitable entropy \mathcal{H}_{Φ}

$$\mathcal{H}_{\Phi}(u_{T}) + \int_{0}^{T} \underbrace{\|\nabla \Phi^{1/2}(u_{s})\|_{L^{2}_{x}}^{2}}_{=:\mathcal{D}_{\Phi}(u_{s})} ds \leq \mathcal{H}_{\Phi}(u_{0}) + c \|g\|_{L^{2}_{t,x}}^{2}$$

• Theorem: existence and uniqueness in

$$\mathcal{R} := \left\{ u_{\bullet} \in L^{\infty}_t L^1_x : u \ge 0, \sup \mathcal{H}_{\Phi}(u_t) < \infty, \int_0^T \mathcal{D}_{\Phi}(u_s) ds < \infty \right\}.$$

Key ideas: Renormalised kinetic solutions (generalising DiPerna-Lions, Ambrosio, LeBris-Lions). Uniqueness of renormalised solutions via variable doubling argument.

• In particular, $\mathcal{I} = \infty$ outside of \mathcal{R} .

• Aim: LDPs for a particle system around PME $\partial_t u = \frac{1}{2} \Delta u^{\alpha}, \alpha \ge 1$.

- Aim: LDPs for a particle system around PME $\partial_t u = \frac{1}{2}\Delta u^{\alpha}, \alpha \ge 1$.
- Consider ZRP $\tilde{\eta}_t^N$ with jump rate $g(k) = 2dk^{\alpha}$.

- Aim: LDPs for a particle system around PME $\partial_t u = \frac{1}{2} \Delta u^{\alpha}, \alpha \ge 1$.
- Consider ZRP $\tilde{\eta}_t^N$ with jump rate $g(k) = 2dk^{\alpha}$. The corresponding nonlinearity is still nondegenerate!

- Aim: LDPs for a particle system around PME $\partial_t u = \frac{1}{2} \Delta u^{\alpha}, \alpha \ge 1$.
- Consider ZRP $\tilde{\eta}_t^N$ with jump rate $g(k) = 2dk^{\alpha}$. The corresponding nonlinearity is still nondegenerate!
- See (PME) as a limit with a further rescaling $\eta_t^N(x) := \chi_N \tilde{\eta}_{\chi_N^{N-1}t}^N(x)$, $\chi_N \to 0$.

- Aim: LDPs for a particle system around PME $\partial_t u = \frac{1}{2}\Delta u^{\alpha}, \alpha \ge 1$.
- Consider ZRP $\tilde{\eta}_t^N$ with jump rate $g(k) = 2dk^{\alpha}$. The corresponding nonlinearity is still nondegenerate!
- See (PME) as a limit with a further rescaling $\eta_t^N(x) := \chi_N \tilde{\eta}_{\chi_N^{\alpha-1}t}^N(x)$, $\chi_N \to 0$. Impose $N^2 \chi_N^{\min(1,\alpha/2)}$ bounded as $N \to \infty$.

Theorem (H.-Gess, 2023)

Let η_0^N be drawn from a local equilibrium $\rho \in C(\mathbb{T}^d, (0, \infty))$. Then we have **matching** large deviations upper and lower bounds with speed N^d/χ_N , and the rate function given by taking $\mathcal{I}_0(u_0) := \alpha H(u_0|\rho)$ and nonlinearity $\Phi(u) = u^{\alpha}$.

- Aim: LDPs for a particle system around PME $\partial_t u = \frac{1}{2}\Delta u^{\alpha}, \alpha \ge 1$.
- Consider ZRP $\tilde{\eta}_t^N$ with jump rate $g(k) = 2dk^{\alpha}$. The corresponding nonlinearity is still nondegenerate!
- See (PME) as a limit with a further rescaling $\eta_t^N(x) := \chi_N \tilde{\eta}_{\chi_N^{\alpha-1}t}^N(x)$, $\chi_N \to 0$. Impose $N^2 \chi_N^{\min(1,\alpha/2)}$ bounded as $N \to \infty$.

Theorem (H.-Gess, 2023)

Let η_0^N be drawn from a local equilibrium $\rho \in C(\mathbb{T}^d, (0, \infty))$. Then we have **matching** large deviations upper and lower bounds with speed N^d/χ_N , and the rate function given by taking $\mathcal{I}_0(u_0) := \alpha H(u_0|\rho)$ and nonlinearity $\Phi(u) = u^{\alpha}$.

• Innovations: remove paths outside \mathcal{R} by trajectorial estimates, recovery sequences for paths inside \mathcal{R} .

• Possible limits:

• Possible limits:

• The scaling hypothesis $N^2\chi_N^{\min(1,\alpha/2)}$ bounded puts us in regime (e).

• Possible limits:

- The scaling hypothesis $N^2 \chi_N^{\min(1,\alpha/2)}$ bounded puts us in regime (e).
- (c), (f) are 'classical hydrodynamics';

• Possible limits:

- The scaling hypothesis $N^2 \chi_N^{\min(1,\alpha/2)}$ bounded puts us in regime (e).
- (c), (f) are 'classical hydrodynamics'; (b, e) are different.
- \bullet Fehrman-Gess: Matching bounds with rate ${\cal I}$ for SPDE

$$du^{\epsilon}_t = rac{1}{2} \Delta \Phi(u^{\epsilon}_t) dt - \sqrt{\epsilon}
abla \cdot (\Phi(u_t)^{1/2} \xi^{\delta})$$

• Possible limits:

- The scaling hypothesis $N^2 \chi_N^{\min(1,\alpha/2)}$ bounded puts us in regime (e).
- (c), (f) are 'classical hydrodynamics'; (b, e) are different.
- \bullet Fehrman-Gess: Matching bounds with rate ${\cal I}$ for SPDE

$$du^{\epsilon}_t = rac{1}{2} \Delta \Phi(u^{\epsilon}_t) dt - \sqrt{\epsilon}
abla \cdot (\Phi(u_t)^{1/2} \xi^{\delta})$$

with a scaling relation on $(\epsilon, \delta) \rightarrow 0$. Our condition plays the same role.
The Scaling Relation

• Possible limits:

- The scaling hypothesis $N^2 \chi_N^{\min(1,\alpha/2)}$ bounded puts us in regime (e).
- (c), (f) are 'classical hydrodynamics'; (b, e) are different.
- \bullet Fehrman-Gess: Matching bounds with rate ${\cal I}$ for SPDE

$$du^{\epsilon}_t = rac{1}{2} \Delta \Phi(u^{\epsilon}_t) dt - \sqrt{\epsilon}
abla \cdot (\Phi(u_t)^{1/2} \xi^{\delta})$$

with a scaling relation on $(\epsilon, \delta) \rightarrow 0$. Our condition plays the same role.

• 'pathwise regularity in (b,e); rapid local equilibration in (c,f).'

 Main difficulty in LDP: weak convergence of configuration → convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).

- Main difficulty in LDP: weak convergence of configuration → convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{ullet}
 ot\in \mathcal{R}$ then

$$\inf_{\mathcal{U}\ni u_{\bullet}}\limsup_{N}\frac{\chi_{N}}{N^{d}}\log\mathbb{P}\left(\eta_{\bullet}^{N}\in\mathcal{U}\right)=-\infty.$$

- Main difficulty in LDP: weak convergence of configuration → convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{ullet}
 ot\in \mathcal{R}$ then

$$\inf_{\mathcal{U}\ni u_{\bullet}}\limsup_{N}\frac{\chi_{N}}{N^{d}}\log\mathbb{P}\left(\eta_{\bullet}^{N}\in\mathcal{U}\right)=-\infty.$$

• Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration.

- Main difficulty in LDP: weak convergence of configuration → convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{ullet}
 ot\in \mathcal{R}$ then

$$\inf_{\mathcal{U}\ni u_{\bullet}}\limsup_{N}\frac{\chi_{N}}{N^{d}}\log\mathbb{P}\left(\eta_{\bullet}^{N}\in\mathcal{U}\right)=-\infty.$$

• Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration. For us, both achieved through pathwise regularity using ideas of Aubin-Lions-Simon:

- Main difficulty in LDP: weak convergence of configuration → convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{ullet}
 ot\in \mathcal{R}$ then

$$\inf_{\mathcal{U}\ni u_{\bullet}}\limsup_{N}\frac{\chi_{N}}{N^{d}}\log\mathbb{P}\left(\eta_{\bullet}^{N}\in\mathcal{U}\right)=-\infty.$$

- Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration. For us, both achieved through pathwise regularity using ideas of Aubin-Lions-Simon:
 - Probabilistic Step: Obtain discrete estimate on $\mathcal{F}_N(\eta^N_{\bullet})$ at LDP level

- Main difficulty in LDP: weak convergence of configuration → convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{ullet}
 ot\in \mathcal{R}$ then

$$\inf_{\mathcal{U}\ni u_{\bullet}}\limsup_{N}\frac{\chi_{N}}{N^{d}}\log\mathbb{P}\left(\eta_{\bullet}^{N}\in\mathcal{U}\right)=-\infty.$$

- Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration. For us, both achieved through pathwise regularity using ideas of Aubin-Lions-Simon:
 - Probabilistic Step: Obtain discrete estimate on *F_N(η_•^N)* at LDP level, for the functional

$$\mathcal{F}_{N}(\eta_{\bullet}^{N}) = \sup_{t} \mathcal{H}(\eta_{t}^{N}) + \frac{1}{N^{d-2}} \int_{0}^{T} \sum_{x \sim y} ((\eta_{t}^{N}(x))^{\alpha/2} - (\eta_{t}^{N}(y))^{\alpha/2})^{2} dt.$$

- Main difficulty in LDP: weak convergence of configuration → convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{ullet}
 ot\in \mathcal{R}$ then

$$\inf_{\mathcal{U}\ni u_{\bullet}}\limsup_{N}\frac{\chi_{N}}{N^{d}}\log\mathbb{P}\left(\eta_{\bullet}^{N}\in\mathcal{U}\right)=-\infty.$$

- Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration. For us, both achieved through pathwise regularity using ideas of Aubin-Lions-Simon:
 - Probabilistic Step: Obtain discrete estimate on *F_N(η*^N_•) at LDP level, for the functional

$$\mathcal{F}_{N}(\eta_{\bullet}^{N}) = \sup_{t} \mathcal{H}(\eta_{t}^{N}) + \frac{1}{N^{d-2}} \int_{0}^{T} \sum_{x \sim y} ((\eta_{t}^{N}(x))^{\alpha/2} - (\eta_{t}^{N}(y))^{\alpha/2})^{2} dt.$$

 Analytic Step: Pass to the limit on sequences with *F_N(u^N_●) ≤ C* and *t* → *u_t* continuous;

- Main difficulty in LDP: weak convergence of configuration → convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{ullet}
 ot\in \mathcal{R}$ then

$$\inf_{\mathcal{U}\ni u_{\bullet}}\limsup_{N}\frac{\chi_{N}}{N^{d}}\log\mathbb{P}\left(\eta_{\bullet}^{N}\in\mathcal{U}\right)=-\infty.$$

- Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration. For us, both achieved through pathwise regularity using ideas of Aubin-Lions-Simon:
 - Probabilistic Step: Obtain discrete estimate on *F_N(η*^N_•) at LDP level, for the functional

$$\mathcal{F}_{N}(\eta_{\bullet}^{N}) = \sup_{t} \mathcal{H}(\eta_{t}^{N}) + \frac{1}{N^{d-2}} \int_{0}^{T} \sum_{x \sim y} ((\eta_{t}^{N}(x))^{\alpha/2} - (\eta_{t}^{N}(y))^{\alpha/2})^{2} dt.$$

- Analytic Step: Pass to the limit on sequences with *F_N(u^N_●)* ≤ *C* and *t* → *u_t* continuous;
- Probabilistic Step: eliminate non-continuous u.

- Main difficulty in LDP: weak convergence of configuration → convergence of nonlinearity (Benois-Kipnis-Landim, Kipnis-Landim).
- To complete the LDP, we also need to show that, if $u_{ullet}
 ot\in \mathcal{R}$ then

$$\inf_{\mathcal{U}\ni u_{\bullet}}\limsup_{N}\frac{\chi_{N}}{N^{d}}\log\mathbb{P}\left(\eta_{\bullet}^{N}\in\mathcal{U}\right)=-\infty.$$

- Kipnis-Landim: replacement lemma in regime (c) via fast macroscopic equilibration. For us, both achieved through pathwise regularity using ideas of Aubin-Lions-Simon:
 - Probabilistic Step: Obtain discrete estimate on *F_N(η*^N_•) at LDP level, for the functional

$$\mathcal{F}_{N}(\eta_{\bullet}^{N}) = \sup_{t} \mathcal{H}(\eta_{t}^{N}) + \frac{1}{N^{d-2}} \int_{0}^{T} \sum_{x \sim y} ((\eta_{t}^{N}(x))^{\alpha/2} - (\eta_{t}^{N}(y))^{\alpha/2})^{2} dt.$$

- Analytic Step: Pass to the limit on sequences with *F_N(u^N_●)* ≤ *C* and *t* → *u_t* continuous;
- Probabilistic Step: eliminate non-continuous u.

- PME as gradient flow in space of measures M: Brézis (flat H⁻¹), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....)

- PME as gradient flow in space of measures M: Brézis (flat H⁻¹), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....): tangent vectors ζ characterised by ζ + ∇ · (u^α∇ξ) = 0

- PME as gradient flow in space of measures M: Brézis (flat H⁻¹), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....): tangent vectors ζ characterised by ζ + ∇ · (u^α∇ξ) = 0 with Riemann tensor

$$(\zeta_1,\zeta_2)_u := \int_{\mathbb{T}^d} u^{lpha} \nabla \xi_1 \cdot \nabla \xi_2.$$

- PME as gradient flow in space of measures M: Brézis (flat H⁻¹), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....): tangent vectors ζ characterised by ζ + ∇ · (u^α∇ξ) = 0 with Riemann tensor

$$(\zeta_1,\zeta_2)_u := \int_{\mathbb{T}^d} u^{lpha} \nabla \xi_1 \cdot \nabla \xi_2.$$

(Generalises Otto's Wasserstein calculus from $\alpha = 1$).

- PME as gradient flow in space of measures M: Brézis (flat H⁻¹), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....): tangent vectors ζ characterised by ζ + ∇ · (u^α∇ξ) = 0 with Riemann tensor

$$(\zeta_1,\zeta_2)_u := \int_{\mathbb{T}^d} u^{\alpha} \nabla \xi_1 \cdot \nabla \xi_2.$$

(Generalises Otto's Wasserstein calculus from $\alpha = 1$).

• (PME) is formally $\partial_t u = -D_u[\alpha \mathcal{H}(u)]$.

- PME as gradient flow in space of measures M: Brézis (flat H⁻¹), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....): tangent vectors ζ characterised by ζ + ∇ · (u^α∇ξ) = 0 with Riemann tensor

$$(\zeta_1,\zeta_2)_u:=\int_{\mathbb{T}^d}u^{lpha}\nabla\xi_1\cdot\nabla\xi_2.$$

(Generalises Otto's Wasserstein calculus from $\alpha = 1$).

- (PME) is formally $\partial_t u = -D_u[\alpha \mathcal{H}(u)].$
- Manipulate the dynamic cost to the *entropy-dissipation inequality:*

$$\mathcal{J}(u_{\bullet}) = \frac{1}{2} \int_{0}^{T} |\partial_{t}u + \alpha D\mathcal{H}(u_{t})|^{2}_{u_{t}} dt$$

$$= \underbrace{\alpha}_{u_{t}} \underbrace{\alpha}_{u_{t}} \int_{0}^{T} (\partial_{t}u, D\mathcal{H}(u_{t}))_{u_{t}} dt}_{(u_{t}) - \mathcal{H}(u_{0}))} + \frac{1}{2} \int_{0}^{T} (|\partial_{t}u_{t}|^{2}_{u_{t}} + |\alpha D\mathcal{H}(u_{t})|^{2}_{u_{t}}) dt$$

- PME as gradient flow in space of measures M: Brézis (flat H⁻¹), Otto (Wasserstein).
- New formulation from LDP (Dirr, Peletier, Mielke....): tangent vectors ζ characterised by ζ + ∇ · (u^α∇ξ) = 0 with Riemann tensor

$$(\zeta_1,\zeta_2)_u := \int_{\mathbb{T}^d} u^{\alpha} \nabla \xi_1 \cdot \nabla \xi_2.$$

(Generalises Otto's Wasserstein calculus from $\alpha = 1$).

- (PME) is formally $\partial_t u = -D_u[\alpha \mathcal{H}(u)].$
- Manipulate the dynamic cost to the *entropy-dissipation inequality:*

$$\mathcal{J}(u_{\bullet}) = \frac{1}{2} \int_{0}^{T} |\partial_{t}u + \alpha D\mathcal{H}(u_{t})|_{u_{t}}^{2} dt$$

$$" = "\underbrace{\alpha}_{u_{t}} \int_{0}^{T} (\partial_{t}u, D\mathcal{H}(u_{t}))_{u_{t}} dt + \frac{1}{2} \int_{0}^{T} (|\partial_{t}u_{t}|_{u_{t}}^{2} + |\alpha D\mathcal{H}(u_{t})|_{u_{t}}^{2}) dt$$

• Still formally, $|\alpha D\mathcal{H}(u)|_u^2 = \alpha \mathcal{D}_\alpha(u)$.

• Full proof via LDP.

- Full proof via LDP.
- Consider LDP with global equilibrium $\rho = 1$ initial conditions. Detailed balance $\implies (\mathcal{T}\eta^N_{\bullet})_t := \eta^N_{\mathcal{T}-t-}$ has the same law as the original process!

- Full proof via LDP.
- Consider LDP with global equilibrium $\rho = 1$ initial conditions. Detailed balance $\implies (\mathcal{T}\eta^N_{\bullet})_t := \eta^N_{\mathcal{T}-t-}$ has the same law as the original process!
- Contraction principle and uniqueness of rate functions:

$$\mathcal{I}(\mathcal{T}u_{\bullet})=\mathcal{I}(u_{\bullet})$$

for all u_{\bullet} .

- Full proof via LDP.
- Consider LDP with global equilibrium $\rho = 1$ initial conditions. Detailed balance $\implies (\mathcal{T}\eta^N_{\bullet})_t := \eta^N_{\mathcal{T}-t-}$ has the same law as the original process!
- Contraction principle and uniqueness of rate functions:

$$\mathcal{I}(\mathcal{T}u_{\bullet})=\mathcal{I}(u_{\bullet})$$

for all u_{\bullet} .

 "Improbability of starting at nonequilibrium u₀ and evolving forwards by (PME) = Improbability of evolving via backwards (PME) into u₀".

Theorem (H.-Gess 2023)

Let $u_{\bullet} \in \mathbb{D}$ with $\mathcal{H}(u_0) < \infty$. Then we have the identity

$$\mathcal{J}(u_{\bullet}) = \frac{1}{2} \left(\alpha \mathcal{H}(u_{T}) - \alpha \mathcal{H}(u_{0}) + \frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}(u_{s}) ds + \frac{1}{2} \mathcal{A}(u_{\bullet}) \right) \quad (\mathsf{EDI})$$

allowing both sides to be infinite, where

$$\mathcal{A}(u_{\bullet}) = \frac{1}{2} \inf \left\{ \|\theta\|_{L^2_{t,x}}^2 : \partial_t u_t + \nabla \cdot (\frac{1}{2} u_t^{\alpha/2} \theta_t) = 0 \right\}.$$

In particular, the functional on the right-hand side is nonnegative, and vanishes if and only if u_{\bullet} is a solution to (PME).

• The unique optimisers for g, θ are characterised by

$$g, \theta \in \Lambda_{u_{\bullet}} := \overline{\left\{ u^{\alpha/2} \nabla \varphi : \varphi \in C^{1,2}([0,T] \times \mathbb{T}^d) \right\}}^{L^2_{t,x}}.$$

• The unique optimisers for g, θ are characterised by

$$g, \theta \in \Lambda_{u_{\bullet}} := \overline{\left\{ u^{\alpha/2} \nabla \varphi : \varphi \in C^{1,2}([0,T] \times \mathbb{T}^d) \right\}}^{L^2_{t,x}}$$

Geometric interpretation: tangent vectors for a.e. t.

• The unique optimisers for g, θ are characterised by

$$g, \theta \in \Lambda_{u_{\bullet}} := \overline{\left\{ u^{\alpha/2} \nabla \varphi : \varphi \in C^{1,2}([0,T] \times \mathbb{T}^d) \right\}}^{L^2_{t,x}}$$

Geometric interpretation: tangent vectors for a.e. t.

• If g is optimal for u_{ullet} , optimal control for $v_{ullet} := \mathcal{T} u_{ullet}$ is

$$g_{\rm r} := 2\Pi[v_{\bullet}]\nabla v^{\alpha/2} - g$$

• The unique optimisers for g, θ are characterised by

$$g, \theta \in \Lambda_{u_{\bullet}} := \overline{\left\{ u^{\alpha/2} \nabla \varphi : \varphi \in C^{1,2}([0,T] \times \mathbb{T}^d) \right\}}^{L^2_{t,x}}.$$

Geometric interpretation: tangent vectors for a.e. t.

• If g is optimal for u_{ullet} , optimal control for $v_{ullet} := \mathcal{T} u_{ullet}$ is

$$g_{\mathrm{r}} := 2\Pi[v_{\bullet}]\nabla v^{\alpha/2} - g$$

Substitute into

$$\mathcal{I}(v_{\bullet}) = \alpha \mathcal{H}(u_{T}) + \frac{1}{2} \|g_{r}\|_{L^{2}_{t,x}}^{2} = \mathcal{I}(u_{\bullet}) = \alpha \mathcal{H}(u_{0}) + \frac{1}{2} \|g\|_{L^{2}_{t,x}}^{2}.$$

• The unique optimisers for g, θ are characterised by

$$g, \theta \in \Lambda_{u_{\bullet}} := \overline{\left\{ u^{\alpha/2} \nabla \varphi : \varphi \in C^{1,2}([0,T] \times \mathbb{T}^d) \right\}}^{L^2_{t,x}}$$

Geometric interpretation: tangent vectors for a.e. t.

• If g is optimal for u_{ullet} , optimal control for $v_{ullet} := \mathcal{T} u_{ullet}$ is

$$g_{\mathrm{r}} := 2\Pi[v_{\bullet}]\nabla v^{\alpha/2} - g$$

Substitute into

$$\mathcal{I}(v_{\bullet}) = \alpha \mathcal{H}(u_{T}) + \frac{1}{2} \|g_{r}\|_{L^{2}_{t,x}}^{2} = \mathcal{I}(u_{\bullet}) = \alpha \mathcal{H}(u_{0}) + \frac{1}{2} \|g\|_{L^{2}_{t,x}}^{2}.$$

• After some manipulations,

$$\mathcal{J}(u_{\bullet}) = \frac{1}{2} \left(\alpha \mathcal{H}(u_{T}) - \alpha \mathcal{H}(u_{0}) + \left\| \Pi[u_{\bullet}] \nabla u^{\alpha/2} \right\|_{L^{2}_{t,x}}^{2} + \mathcal{A}(u_{\bullet}) \right).$$

$$\mathcal{J}(u_{\bullet}) \leq \frac{1}{2} \left(\alpha \mathcal{H}(u_{T}) - \alpha \mathcal{H}(u_{0}) + \frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}(u_{s}) ds + \frac{1}{2} \mathcal{A}(u_{\bullet}) \right).$$
(1)

$$\mathcal{J}(u_{\bullet}) \leq \frac{1}{2} \left(\alpha \mathcal{H}(u_{T}) - \alpha \mathcal{H}(u_{0}) + \frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}(u_{s}) ds + \frac{1}{2} \mathcal{A}(u_{\bullet}) \right).$$
(1)

If u_● ∈ X, then ∇u^{α/2} = ²/_αu^{α/2}∇ log u ∈ Λ_{u_●}, so both of the inequalities are equalities.

$$\mathcal{J}(u_{\bullet}) \leq \frac{1}{2} \left(\alpha \mathcal{H}(u_{T}) - \alpha \mathcal{H}(u_{0}) + \frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}(u_{s}) ds + \frac{1}{2} \mathcal{A}(u_{\bullet}) \right).$$
(1)

- If u_● ∈ X, then ∇u^{α/2} = ²/_αu^{α/2}∇ log u ∈ Λ_{u_●}, so both of the inequalities are equalities.
- For the general case, use recovery sequences

$$\mathcal{J}(u_{\bullet}) \leq \frac{1}{2} \left(\alpha \mathcal{H}(u_{T}) - \alpha \mathcal{H}(u_{0}) + \frac{\alpha}{2} \int_{0}^{T} \mathcal{D}_{\alpha}(u_{s}) ds + \frac{1}{2} \mathcal{A}(u_{\bullet}) \right).$$
(1)

- If u_● ∈ X, then ∇u^{α/2} = ²/_αu^{α/2}∇ log u ∈ Λ_{u_●}, so both of the inequalities are equalities.
- For the general case, use recovery sequences and use (1) again.

• LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the *H*-Theorem for (PME)

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\rm BE}.$
- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\rm BE}.$
- A new look at properties of controlled equations:

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\rm BE}.$
- A new look at properties of controlled equations:
 - Construction of g_r shows how *anti*dissipative effects can arise.

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\rm BE}.$
- A new look at properties of controlled equations:
 - Construction of g_r shows how *anti*dissipative effects can arise.
 - Hence why L_x^p estimates had to be false

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\rm BE}.$
- A new look at properties of controlled equations:
 - Construction of g_r shows how antidissipative effects can arise.
 - Hence why L_x^p estimates had to be false: trajectories with $u_0 \notin L_x^p$, $u_T \in C_x^\infty$ give reversal $v_0 \in C_x^\infty$ but $v_T \notin L_x^p$.

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\rm BE}.$
- A new look at properties of controlled equations:
 - Construction of g_r shows how antidissipative effects can arise.
 - Hence why L_x^p estimates had to be false: trajectories with $u_0 \notin L_x^p$, $u_T \in C_x^\infty$ give reversal $v_0 \in C_x^\infty$ but $v_T \notin L_x^p$.
 - Same argument works for (BE_K): no possible regularity or moment estimates beyond finite entropy.

- LDP* allows us to shortcut proving a 'chain rule for entropy' (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME) and (BE), at least for solutions in $\mathcal{X}_{\rm BE}.$
- A new look at properties of controlled equations:
 - Construction of g_r shows how antidissipative effects can arise.
 - Hence why L_x^p estimates had to be false: trajectories with $u_0 \notin L_x^p$, $u_T \in C_x^\infty$ give reversal $v_0 \in C_x^\infty$ but $v_T \notin L_x^p$.
 - Same argument works for (BE_K): no possible regularity or moment estimates beyond finite entropy.
 - (*): Could be done purely by PDE tools from Fehrman-Gess but not obvious starting from PME!

• Kac/Boltzmann:

- Heydecker, D., 2023. Large deviations of Kac's conservative particle system and energy nonconserving solutions to the Boltzmann equation: A counterexample to the predicted rate function. The Annals of Applied Probability, 33(3), pp.1758-1826.
- Basile, G., Benedetto, D., Bertini, L. and Caglioti, E., 2022. Asymptotic probability of energy increasing solutions to the homogeneous Boltzmann equation. arXiv preprint arXiv:2202.07311.

• ZRP / Skeleton Equation:

- Gess, B. and Heydecker, D., 2023. A Rescaled Zero-Range Process for the Porous Medium Equation: Hydrodynamic Limit, Large Deviations and Gradient Flow. arXiv preprint arXiv:2303.11289.
- Fehrman, B. and Gess, B., 2023. Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. Inventiones mathematicae, pp.1-64.