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I. Introduction
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The model(s)

We will be interested here with particles system in mean field interactions

dX i
t =

√
2σNdB i

t −∇U(X i
t )dt − 1

N

∑
j 6=i

K (X i
t − X j

t )dt ,

where

• σN diffusion coefficient, σN =
√

2σ/N or σ,

• ((B i
t )t≥0)i independent Brownian motions,

• U confining potential, e.g. ∇U(x) = λx with λ > 0 or 0,

• W is an interaction potential :

• K (x) = ∇W , regular, but not too large,
• in dimension 2, Biot Savart kernel

K (x) =
1

2π
x⊥

|x |2 =
1

2π

(
− x2

|x |2 ,
x1

|x |2

)
.
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Particles system and its long time behavior

Focus on

dX i
t =
√

2dB i
t −∇U(X i

t )dt − 1
N

∑
j 6=i

∇W (X i
t − X j

t )dt ,

whose invariant measure is

dµN = e−
∑N

i=1 U(xi )− 1
N

∑
ij W (xi−xj )dx

How can we study the convergence to equilibrium, if possible uniform in N ?

• Meyn-Tweedie’s techniques... very general but poorly quantitative and
never uniform in N.

• Coupling... story for another day

• functional inequalities !

Extensions to the kinetic case possible.
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Particles system and its limit in N

dX i
t =

√
2σNdB i

t − U ′(X i
t )dt − 1

N

∑
j 6=i

W ′(X i
t − X j

t )dt .

Formally, notice 1
N

∑N
j=1 W ′(X i

t − X j
t ) = V ′ ∗ µN

t (X i
t ), where

µN
t :=

1
N

N∑
i=1

δX i
t
.

Denote also ρN
t = Law(X 1

t , · · · ,X N
t ).

Assuming σN → σ, we should get a nonlinear McKean-Vlasov equation{
dXt =

√
2σdBt − U ′(Xt )dt −W ′ ∗ ρ̄t (Xt )dt ,

ρ̄t = Law(Xt ),

which is linked to

∂t ρ̄t = ∂x
((

U ′ + V ′ ∗ ρ̄t
)
ρ̄t
)

+ σ∂2
xx ρ̄t .
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Idea

In a system of N exchangeable interacting particles, as N increases, two
particles become more and more statistically independent.

Mark Kac introduced the terminology Propagation of chaos to describe this
phenomenon.

There is equivalence between

• Local estimate ρN,k
t = L(X 1

t , ...,X
k
t )→ ρ̄⊗k

t

• Global estimate µN
t → ρ̄t

6



7/34

Usual methods

Goal : Show µN
t → ρ̄t , or ρ1

t → ρ̄t quantitatively and uniformly in time.

Some methods :

• Tightness (Rogers-Shi, Méléard, Cépa-Lépingle,
Fournier-Hauray-Mischler, ...).

• Coupling methods (McKean, Sznitman, Malrieu, Durmus, Eberle,...) :

W2 (µ, ν)2 = inf
X∼µ,Y∼ν

E
(
|X − Y |2

)
.

• Energy/Entropy estimates (Malrieu, Mischler, Mouhot, Rosenzweig,
Serfaty, Jabin, Wang, Lacker, Bresch, Soler, Poyato, Delgadino, Carrillo,
Pavliotis, Gvalani, Tugaut,...).
For example the rescaled relative entropy

HN(ν, µ) =

{
1
N Eµ

(
dν
dµ log dν

dµ

)
if ν � µ,

+∞ otherwise.

• Weak norm and Lions derivatives calculus (Chassagneux, Szpruch,
Tse, Delarue, ...)
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Logarithmic Sobolev inequality
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Entropy and long time convergence of diffusions

Let us first focus on the simple case

dXt =
√

2dBt −∇U(xt )dt

reversible wrt µ = e−U , semigroup denoted Pt and generator L.

Definition
We say that µ satisfies a logarithmic Sobolev inequality if for all nice function f

Entµ(f 2) =

∫
f 2 log

(
f 2∫ 2 fdµ

)
dµ ≤ 2CLS

∫
|∇f |2dµ.

We say that µ satisfies a Poincaré inequality if for all nice function f

Varµ(f ) =

∫
(f −

∫
fdµ)2dµ ≤ CP

∫
|∇f |2dµ.

Pinsker inequality. Let f be a density wrt µ

‖fµ− µ‖TV ≤
√

2Entµ(f ).

9
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Some nice properties of LSI

Theorem

1. LSI is equivalent to

Entµ(Pt f ) ≤ e−2t/CLS Entµ(f ).

2. LSI is equivalent to hypercontractivity.

3. LSI implies Talagrand Inequality : ∀f , W 2
2 (fµ, µ) ≤ 2C Entµ(f ).

4. LSI implies Poincaré inequality (equivalent to L2 convergence to
equilibrium).

5. LSI implies Gaussian concentration

µ(f − µ(f ) > r) ≤ e−cr2
.

6. Perturbation : if µ satisfies LSI and dν = eV dµ with V bounded then ν
satisfies LSI.

7. Tensorization : if µ satisfies LSI(CLS) then so does µ⊗N .

(see the excellent book of Bakry-Gentil-Ledoux)
10
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How to prove LSI?

There are some general well known sufficient conditions

• Bakry-Emery Γ2 condition : HessU ≥ κ > 0
(refined multi-scale Bakry-Emery condition by Bauerschmidt-Bodineau)

• Capacity-measure condition : Capµ(A) ≥ c µ(A) log(1/µ(A)) which can
be transfered to Hardy’s type condition in dimension 1.

• Lyapunov condition : ∃V ≥ 1, c > 0, b > 0 such that

LV (x) ≤ −cU(x) V (x) + b.

Combined with tensorisation and perturbation, it leads to nice examples...

However for our mean field model where

dµN = e−
∑N

i=1 U(xi )+ 1
N

∑
i,j W (x i ,x j )

it is harder to get adimensional LSI.

11
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Some litterature

• spin systems

• Stroock-Zegarlinski (92) on LSI, Dobrushin condition and
conitnuous spin system,

• Zegarlinski (92, 96) on Dobrushin uniqueness theorem and LSI,
• Bodineau-Helffer (99) on LSI for unbounded spin systems,
• Yoshida (00,01) on LSI and mixing condition,
• Ledoux (01) for nice review/results,
• Guionnet-Zegarlinski (04) for a survey,
• Bodineau-Bauerschmidt (19) for the introduction of the multi-scale

Bakry Emery condition, via stochastic localization,

• mean field models

• Malrieu (01,03) via Bakry-Emery
• Carrillo-McCann-Villani (03) for the non linear limit,
• Cattiaux-G-Malrieu (08), Eberle-G-Zimmer (19) via coupling
• Bolley-Gentil-G (13) via functional inequalities for the non linear

limit

12
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LSI for mean field model

Theorem (G-Liu-Wu-Zhang)

Recall dµN = e−
∑N

i=1 U(xi )+ 1
N

∑
i,j W (x i ,x j ). Assume

1. that the one-dimensional conditional distribution µx̂i
satisfies a

LSi(ĈLS,m) independently of x̂i ,

2. that γ0 := Clip,m supx,y,|z|=1 |∇21x,y W (x , y)z| < 1 where

Clip,m :=
1
4

∫ ∞
0

exp

(
1
4

∫ s

0
b0(u)du

)
sds

b0(r) = sup
|x−y|=r

− x − y
|x − y | .((∇U(x)−∇U(y))+(∇x W (x , z)−∇x (W (y , z)))

then µN satisfies a LSI(ĈLS,m : (1− γ0)2).

13
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Some elements of proof

We have to control Zegarlinski’s interdependance coefficients cZ
ij defined as

|∇i (µx̂ j (f 2))1/2| ≤ (µx̂ j (|∇i f |2))1/2 + cZ
ij (µx̂ j (|∇j f |2))1/2.

Step 1.

First remark that for C1
b function, if

|∇iµx̂ j (g)| ≤ cijµx̂ j (|∇g|), ∀x̂ j

then cZ
ij ≤ cij .

14
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Some elements of proof

Step 2.

∇jµx̂ i (g) = ∇j

(∫
g(xi )e−H(x1,··· ,xN )dxi/

∫
e−H(x1,··· ,xN )dxi

)
=

∫
g(xi )(−∇jH)e−Hdxi∫

e−Hdxi
+

∫
g(xi )e−Hdxi

∫
∇jH · e−Hdxi

(
∫

e−Hdxi )2

= −
∫

g(xi )∇jHdµx̂ i +

∫
g(xi )dµx̂ i

∫
∇jHdµx̂ i

= Covµx̂ i

(
g,− 1

N − 1
(∇y W )(xi , xj )

)
and then

z · ∇xjµx̂ i (g) = Covµx̂ i (g,−
1

N − 1
(∇y W )(xi , xj ) · z)

= − 1
N − 1

< g, (∇y W )(xi , xj ) · z − µx̂ i ((∇y W )(·, xj ) · z) >µx̂ i

= − 1
N − 1

< (−Li )g, (−Li )
−1[same] >µx̂ i

= − 1
N − 1

∫
∇ig · ∇i (−Li )

−1[same]dµx̂ i .

15
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Some elements of proof

Step 3.

Now we have that

||(−Li )
−1||Lip ≤ cLip,m

and thus

‖∇i (−Li )
−1((∇y W )(·, xj ) · z − µx̂ i ((∇y W )(·, xj ) · z))‖L∞(µx̂ i )

≤ cLip,m sup
xi ,xj

|∇xi ((∇y W )(xi , xj ) · z)|

= cLip,m sup
x,y
|∇2

x,y W (x , y)z|

≤cLip,m‖∇2
x,y W‖∞.

16
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Example and application

• 1d Curie-Weiss model. U(x) = β( x4

4 −
x2

2 ), W (x , y) = −βKxy then

Clip,m ≤
√
π

β
eβ/4 γ0 ≤

√
πβeβ/4|K |.

• Application. for dν = fdx

E(ν) =

∫
f log f +

1
2

∫ ∫
W (x , y)dν(x)dν(y), HW (ν = E(ν)− inf E

IW :=
1
4

∫ ∣∣∣∣∇f
f

+∇V +∇x

∫
W (x , y)dν(y)

∣∣∣∣2 dν

Theorem
Under the previous assumptions,

1. HW has a unique minimizer ν∞

2. the non-linear LSI holds : HW (ν) ≤ 2CLS IW (ν).

3. HW (νt ) ≤ e−t/(2CLS )HW (ν0).

Let us refer also to the work of Delgadino-Pavliotis-Rabshani-Smith who
relates the (uniform in N) LSI to uniform in time propagation of chaos. 17
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LSI and uniform in time propagation of
chaos for vortex 2D case

18
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Motivation : the 2D vortex model

The Biot-Savart kernel, defined in T2 by

K (x) =
1

2π
x⊥

|x |2 =
1

2π

(
− x2

|x |2 ,
x1

|x |2

)
.

Consider the 2D incompressible Navier-Stokes system on u ∈ T2

∂tu =− u · ∇u −∇p + ∆u

∇ · u =0,

where p is the local pressure. Curl of the equation leads to
ω(t , x) = ∇× u(t , x) satisfies

∂tω = −∇ · ((K ∗ ω)ω) + ∆ω.

Goal : Use a particle system to approximate the solution of the 2D vortex
model !
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the 2D vortex model

The Biot-Savart kernel, defined in T2 by

K (x) =
1

2π
x⊥

|x |2 =
1

2π

(
− x2

|x |2 ,
x1

|x |2

)
.

and the 2D vortex equation

∂t ρ̄ = −∇ · ((K ∗ ρ̄) ρ̄) + ∆ρ̄.

and the particles system

dX i
t =
√

2dB i
t +

1
N

∑
j 6=i

K (X i
t − X j

t )dt

with law ρN .

20
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Results

Theorem (adapted from Jabin-Wang (’18))

Under some assumptions (satisfied by the Biot-Savart kernel) there are
positive C1 and C2 such that for all N ∈ N, all exchangeable probability
density ρN

0 and all t ≥ 0

HN(ρN
t , ρ̄

N
t ) ≤ eC1t

(
HN(ρN

0 , ρ̄
N
0 ) +

C2(t)
N

)
where ρ̄N stands for the law of N independent copies of non linear particles.

Theorem (G-Le Bris-Monmarché)

Under some assumptions (satisfied by the Biot-Savart kernel) there are
positive constants C1, C2 and C3 such that for all N ∈ N, all exchangeable
probability density ρN

0 and all t ≥ 0

HN(ρN
t , ρ̄

N
t ) ≤ C1e−C2tHN(ρN

0 , ρ̄
N
0 ) +

C3

N
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Various distances

Corollary

Under some assumptions (satisfied by the Biot-Savart kernel), assuming
moreover that ρN

0 = ρ̄N
0 , there is a constant C such that for all k ≤ N ∈ N and

all t ≥ 0,

‖ρk,N
t − ρ̄k

t ‖L1 +W2

(
ρk,N

t , ρ̄k
t

)
≤ C

(⌊
N
k

⌋)− 1
2

22
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Step one : Time evolution of the relative entropy

We write

HN(t) = HN(ρN
t , ρ̄

N
t ) , IN(t) =

1
N

∑
i

∫
TdN

ρN
t

∣∣∣∣∇xi log
ρN

t

ρ̄N
t

∣∣∣∣2 dXN .

By derivating

d
dt
HN(t) ≤− IN(t)

− 1
N2

∑
i,j

∫
TdN

ρN
t (K (xi − xj )− K ∗ ρ(xi )) · ∇xi log ρ̄N

t dXN

− 1
N2

∑
i,j

∫
TdN

ρN
t (div K (xi − xj )− div K ∗ ρ̄t (xi )) dXN .
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Assumptions?

Goal : K (x) = 1
2π

x⊥

|x|2 = 1
2π

(
− x2
|x|2 ,

x1
|x|2

)
Justifying the calculations

• ρ̄ ∈ C∞(R+ ×Td )

• There is λ > 1 such that ρ̄0 ∈ C∞λ (Td )

=⇒ ρ̄ ∈ C∞λ (R+ ×Td ) (Ben-Artzi (’94))

• ρN ∈ C∞λ (R+ ×TNd ) ( ???)

Dealing with the terms

• In the sense of distributions, ∇ · K = 0.
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Step one : Time evolution of the relative entropy

We write

HN(t) = HN(ρN
t , ρ̄

N
t ) , IN(t) =

1
N

∑
i

∫
TdN

ρN
t

∣∣∣∣∇xi log
ρN

t

ρ̄N
t

∣∣∣∣2 dXN .

By properly derivating

d
dt
HN(t) ≤− IN(t)

− 1
N2

∑
i,j

∫
TdN

ρN
t (K (xi − xj )− K ∗ ρ(xi )) · ∇xi log ρ̄N

t dXN
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Step two : Integration by part

We are left with

d
dt
HN(t) ≤− IN(t)

− 1
N2

∑
i,j

∫
TdN

ρN
t (K (xi − xj )− K ∗ ρ(xi )) · ∇xi log ρ̄N

t dXN .

Idea : Use the regularity of ρ̄ to deal with the singularity of K

Remark : Notice that, for the Biot-Savart kernel on the whole space R2

K̃ (x) =
1

2π
x⊥

|x |2 ,

we have K̃ = ∇ · Ṽ with Ṽ bounded :

Ṽ (x) =
1

2π

 − arctan
(

x1
x2

)
0

0 arctan
(

x2
x1

)  .
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Step two : Integration by part

For all t > 0,
d
dt
HN(t) ≤ AN(t) +

1
2

BN(t)− 1
2
IN(t),

with

AN(t) :=
1

N2

∑
i,j

∫
TdN

ρN
t (V (xi − xj )− V ∗ ρ̄(xi )) :

∇2
xi ρ̄

N
t

ρ̄N
t

dXN

BN(t) :=
1
N

∑
i

∫
TdN

ρN
t

∣∣∇xi ρ̄
N
t

∣∣2
|ρ̄N

t |2

∣∣∣∣∣∣ 1
N

∑
j

V (xi − xj )− V ∗ ρ̄(xi )

∣∣∣∣∣∣
2

dXN .

Note that we would prefer to deal with the non linear particles which are i.i.d.
We want also to get rid of the derivatives

∣∣∇xi ρ̄
N
t

∣∣ or
∣∣∇2

xi ρ̄
N
t

∣∣.
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Step three : Change of reference measure and large deviation
estimates

Lemma
For two probability densities µ and ν on a set Ω, and any Φ ∈ L∞(Ω), η > 0
and N ∈ N,

EµΦ ≤ ηHN(µ, ν) +
η

N
logEνeNΦ/η.

Theorem (Jabin-Wang ’18)
For a p.m. µ on Td and φ ∈ L∞(Td ×Td ) with

γ :=
(

16002 + 36e4
)(

sup
p≥1

‖ supz |φ(·, z)|‖Lp(µ))

p

)2
< 1.

If φ satisfies
∫
Td φ(x , z)µ(dx) = 0 =

∫
Td φ(z, x)µ(dx). Then, for all N ∈ N,

∫
TdN

exp
( 1

N

N∑
i,j=1

φ(xi , xj )
)
µ⊗NdXN ≤ 2

1− γ <∞.
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Conclusion

For all t > 0,
d
dt
HN(t) ≤ C

(
HN(t) +

1
N

)
− 1

2
IN(t),

with
C = Ĉ1‖∇2ρ̄t‖L∞‖V‖L∞λ+ Ĉ2‖V‖2

L∞λ
2d2‖∇ρ̄t‖2

L∞

where Ĉ1, Ĉ2 are universal constants.

We have to compensate HN(t) by IN(t) !
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Step four : Uniform bounds and logarithmic Sobolev inequa-
lity

Two goals :

• A logarithmic Sobolev inequality for ρ̄N : HN(t) ≤ CLS IN(t)

• Uniform in time bounds on ‖∇ρ̄t‖L∞ and ‖∇2ρ̄t‖L∞
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A logarithmic Sobolev inequality

Lemma (Tensorization)
If ν is a probability measure on Td satisfying a LSI with constant CLS

ν , then for
all N ≥ 0, ν⊗N satisfies a LSI with constant CLS

ν

Lemma (Perturbation)
If ν is a probability measure on Td satisfying a LSI with constant CLS

ν , and µ
is a probability measure with density h with respect to ν such that, for some
constant λ > 0, 1

λ
≤ h ≤ λ, then µ satisfies a LSI with constant CLS

µ = λ2CLS
ν .

Lemma (LSI for the uniform distribution)
The uniform distribution u on Td satisfies a LSI with constant 1

8π2 .

For all N ∈ N, t ≥ 0 and all probability density µN ∈ C∞>0(TdN),

HN

(
µN , ρ̄

N
t

)
≤ λ2

8π2

1
N

N∑
i=1

∫
Td
µN

∣∣∣∣∇xi log
µN

ρ̄N
t

∣∣∣∣2 dXN
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Uniform in time bounds on the derivatives

Lemma
For all n > 1 and α1, ..., αn ∈ J1, dK, there exist Cu

n ,C∞n > 0 such that for all
t > 0,

‖∂α1,...,αn ρ̄t‖L∞ ≤ Cu
n and

∫ t

0
‖∂α1,...,αn ρ̄s‖2

L∞ds ≤ C∞n

Thanks to Morrey’s inequality and Sobolev embeddings, it is sufficient to
prove such bounds in the Sobolev space Hm for all m, i.e in L2
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Step five : Conclusion

There are constants C1,C∞2 ,C3 > 0 and a function t 7→ C2(t) > 0 with∫ t
0 C2(s)ds ≤ C∞2 for all t ≥ 0 such that for all t ≥ 0

d
dt
HN(t) ≤ −(C1 − C2(t))HN(t) +

C3

N
.

Multiplying by exp(C1t −
∫ t

0 C2(s)ds) and integrating in time we get

HN(t) ≤ e−C1t+
∫ t

0 C2(s)dsHN(0) +
C3

N

∫ t

0
eC1(s−t)+

∫ t
s C2(u)duds

≤ eC∞
2 −C1tHN(t) +

C3

C1N
eC∞

2 ,

which concludes.
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Open problems

There are of course a lot of problems remaining

• Adapted LSI and uniform in time propagation of chaos? see
Rozensweig-Serfaty.

• For vortex 2D case : up to now restricted to the torus... extend it
to whole space?

• Keller-Segel model? (see Bresch-Jabin, Serfaty & al. for
modulated energy, Tomasevic &al. for parabolic-parabolic case)

• Vlasov-Fokker-Planck equation with singular kernel as in
Bresch-Jabin-Soler very recent paper. Quantitative and uniform
in time?

• Optimal rate à la Lacker for singular models?

Thank you !
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