Entropy and mean field models

Arnaud Guillin
With: Wei Liu, Liming Wu, Chaoen Zhang, Pierre Le Bris, Pierre Monmarché
About Entropy in Large Classical Particle Systems
Université Clermont Auvergne / IUF

I. Introduction

The model(s)

We will be interested here with particles system in mean field interactions

$$
d X_{t}^{i}=\sqrt{2 \sigma_{N}} d B_{t}^{i}-\nabla U\left(X_{t}^{i}\right) d t-\frac{1}{N} \sum_{j \neq i} K\left(X_{t}^{i}-X_{t}^{j}\right) d t
$$

where

- σ_{N} diffusion coefficient, $\sigma_{N}=\sqrt{2 \sigma / N}$ or σ,
- $\left(\left(B_{t}^{i}\right)_{t \geq 0}\right)_{i}$ independent Brownian motions,
- U confining potential, e.g. $\nabla U(x)=\lambda x$ with $\lambda>0$ or 0 ,
- W is an interaction potential :
- $K(x)=\nabla W$, regular, but not too large,
- in dimension 2, Biot Savart kernel

$$
K(x)=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}=\frac{1}{2 \pi}\left(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}}\right) .
$$

Particles system and its long time behavior

Focus on

$$
d X_{t}^{i}=\sqrt{2} d B_{t}^{i}-\nabla U\left(X_{t}^{i}\right) d t-\frac{1}{N} \sum_{j \neq i} \nabla W\left(X_{t}^{i}-X_{t}^{j}\right) d t
$$

whose invariant measure is

$$
d \mu^{N}=e^{-\sum_{i=1}^{N} U\left(x_{i}\right)-\frac{1}{N} \sum_{i j} W\left(x_{i}-x_{j}\right)} d x
$$

How can we study the convergence to equilibrium, if possible uniform in N ?

- Meyn-Tweedie's techniques... very general but poorly quantitative and never uniform in N.
- Coupling... story for another day
- functional inequalities !

Extensions to the kinetic case possible.

Particles system and its limit in N

$$
d X_{t}^{i}=\sqrt{2 \sigma_{N}} d B_{t}^{i}-U^{\prime}\left(X_{t}^{i}\right) d t-\frac{1}{N} \sum_{j \neq i} W^{\prime}\left(X_{t}^{i}-X_{t}^{j}\right) d t .
$$

Particles system and its limit in N

$$
d X_{t}^{i}=\sqrt{2 \sigma_{N}} d B_{t}^{i}-U^{\prime}\left(X_{t}^{i}\right) d t-\frac{1}{N} \sum_{j \neq i} W^{\prime}\left(X_{t}^{i}-X_{t}^{j}\right) d t .
$$

Formally, notice $\frac{1}{N} \sum_{j=1}^{N} W^{\prime}\left(X_{t}^{i}-X_{t}^{j}\right)=V^{\prime} * \mu_{t}^{N}\left(X_{t}^{i}\right)$, where

$$
\mu_{t}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}} .
$$

Denote also $\rho_{t}^{N}=\operatorname{Law}\left(X_{t}^{1}, \cdots, X_{t}^{N}\right)$.

Particles system and its limit in N

$$
d X_{t}^{i}=\sqrt{2 \sigma_{N}} d B_{t}^{i}-U^{\prime}\left(X_{t}^{i}\right) d t-\frac{1}{N} \sum_{j \neq i} W^{\prime}\left(X_{t}^{i}-X_{t}^{j}\right) d t .
$$

Formally, notice $\frac{1}{N} \sum_{j=1}^{N} W^{\prime}\left(X_{t}^{j}-X_{t}^{j}\right)=V^{\prime} * \mu_{t}^{N}\left(X_{t}^{i}\right)$, where

$$
\mu_{t}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}} .
$$

Denote also $\rho_{t}^{N}=\operatorname{Law}\left(X_{t}^{1}, \cdots, X_{t}^{N}\right)$.
Assuming $\sigma_{N} \rightarrow \sigma$, we should get a nonlinear McKean-Vlasov equation

$$
\left\{\begin{array}{l}
d X_{t}=\sqrt{2 \sigma} d B_{t}-U^{\prime}\left(X_{t}\right) d t-W^{\prime} * \bar{\rho}_{t}\left(X_{t}\right) d t, \\
\bar{\rho}_{t}=\operatorname{Law}\left(X_{t}\right),
\end{array}\right.
$$

Particles system and its limit in N

$$
d X_{t}^{i}=\sqrt{2 \sigma_{N}} d B_{t}^{i}-U^{\prime}\left(X_{t}^{i}\right) d t-\frac{1}{N} \sum_{j \neq i} W^{\prime}\left(X_{t}^{i}-X_{t}^{j}\right) d t
$$

Formally, notice $\frac{1}{N} \sum_{j=1}^{N} W^{\prime}\left(X_{t}^{i}-X_{t}^{j}\right)=V^{\prime} * \mu_{t}^{N}\left(X_{t}^{i}\right)$, where

$$
\mu_{t}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}} .
$$

Denote also $\rho_{t}^{N}=\operatorname{Law}\left(X_{t}^{1}, \cdots, X_{t}^{N}\right)$.
Assuming $\sigma_{N} \rightarrow \sigma$, we should get a nonlinear McKean-Vlasov equation

$$
\left\{\begin{array}{l}
d X_{t}=\sqrt{2 \sigma} d B_{t}-U^{\prime}\left(X_{t}\right) d t-W^{\prime} * \bar{\rho}_{t}\left(X_{t}\right) d t, \\
\bar{\rho}_{t}=\operatorname{Law}\left(X_{t}\right),
\end{array}\right.
$$

which is linked to

$$
\partial_{t} \bar{\rho}_{t}=\partial_{x}\left(\left(U^{\prime}+V^{\prime} * \bar{\rho}_{t}\right) \bar{\rho}_{t}\right)+\sigma \partial_{x x}^{2} \bar{\rho}_{t} .
$$

Idea

In a system of N exchangeable interacting particles, as N increases, two particles become more and more statistically independent.

Mark Kac introduced the terminology Propagation of chaos to describe this phenomenon.

There is equivalence between

- Local estimate $\rho_{t}^{N, k}=\mathcal{L}\left(X_{t}^{1}, \ldots, X_{t}^{k}\right) \rightarrow \bar{\rho}_{t}^{\otimes k}$
- Global estimate $\mu_{t}^{N} \rightarrow \bar{\rho}_{t}$

Usual methods

Goal : Show $\mu_{t}^{N} \rightarrow \bar{\rho}_{t}$, or $\rho_{t}^{1} \rightarrow \bar{\rho}_{t}$ quantitatively and uniformly in time.

Usual methods

Goal : Show $\mu_{t}^{N} \rightarrow \bar{\rho}_{t}$, or $\rho_{t}^{1} \rightarrow \bar{\rho}_{t}$ quantitatively and uniformly in time. Some methods:

Usual methods

Goal : Show $\mu_{t}^{N} \rightarrow \bar{\rho}_{t}$, or $\rho_{t}^{1} \rightarrow \bar{\rho}_{t}$ quantitatively and uniformly in time.

Some methods :

- Tightness (Rogers-Shi, Méléard, Cépa-Lépingle, Fournier-Hauray-Mischler, ...).

Usual methods

Goal : Show $\mu_{t}^{N} \rightarrow \bar{\rho}_{t}$, or $\rho_{t}^{1} \rightarrow \bar{\rho}_{t}$ quantitatively and uniformly in time.

Some methods :

- Tightness (Rogers-Shi, Méléard, Cépa-Lépingle, Fournier-Hauray-Mischler, ...).
- Coupling methods (McKean, Sznitman, Malrieu, Durmus, Eberle,...) :

$$
\mathcal{W}_{2}(\mu, \nu)^{2}=\inf _{X \sim \mu, Y \sim \nu} \mathbb{E}\left(|X-Y|^{2}\right)
$$

Usual methods

Goal : Show $\mu_{t}^{N} \rightarrow \bar{\rho}_{t}$, or $\rho_{t}^{1} \rightarrow \bar{\rho}_{t}$ quantitatively and uniformly in time.

Some methods :

- Tightness (Rogers-Shi, Méléard, Cépa-Lépingle, Fournier-Hauray-Mischler, ...).
- Coupling methods (McKean, Sznitman, Malrieu, Durmus, Eberle,...) :

$$
\mathcal{W}_{2}(\mu, \nu)^{2}=\inf _{X \sim \mu, Y \sim \nu} \mathbb{E}\left(|X-Y|^{2}\right)
$$

- Energy/Entropy estimates (Malrieu, Mischler, Mouhot, Rosenzweig, Serfaty, Jabin, Wang, Lacker, Bresch, Soler, Poyato, Delgadino, Carrillo, Pavliotis, Gvalani, Tugaut,...).
For example the rescaled relative entropy

$$
\mathcal{H}_{N}(\nu, \mu)=\left\{\begin{array}{l}
\frac{1}{N} \mathbb{E}_{\mu}\left(\frac{d \nu}{d \mu} \log \frac{d \nu}{d \mu}\right) \text { if } \nu \ll \mu \\
+\infty \text { otherwise }
\end{array}\right.
$$

Usual methods

Goal : Show $\mu_{t}^{N} \rightarrow \bar{\rho}_{t}$, or $\rho_{t}^{1} \rightarrow \bar{\rho}_{t}$ quantitatively and uniformly in time.

Some methods :

- Tightness (Rogers-Shi, Méléard, Cépa-Lépingle, Fournier-Hauray-Mischler, ...).
- Coupling methods (McKean, Sznitman, Malrieu, Durmus, Eberle,...) :

$$
\mathcal{W}_{2}(\mu, \nu)^{2}=\inf _{X \sim \mu, Y \sim \nu} \mathbb{E}\left(|X-Y|^{2}\right)
$$

- Energy/Entropy estimates (Malrieu, Mischler, Mouhot, Rosenzweig, Serfaty, Jabin, Wang, Lacker, Bresch, Soler, Poyato, Delgadino, Carrillo, Pavliotis, Gvalani, Tugaut,...).
For example the rescaled relative entropy

$$
\mathcal{H}_{N}(\nu, \mu)=\left\{\begin{array}{l}
\frac{1}{N} \mathbb{E}_{\mu}\left(\frac{d \nu}{d \mu} \log \frac{d \nu}{d \mu}\right) \text { if } \nu \ll \mu \\
+\infty \text { otherwise }
\end{array}\right.
$$

- Weak norm and Lions derivatives calculus (Chassagneux, Szpruch, Tse, Delarue, ...)

Logarithmic Sobolev inequality

Entropy and long time convergence of diffusions

Let us first focus on the simple case

$$
d X_{t}=\sqrt{2} d B_{t}-\nabla U\left(x_{t}\right) d t
$$

reversible wrt $\mu=e^{-U}$, semigroup denoted P_{t} and generator L.

Definition

We say that μ satisfies a logarithmic Sobolev inequality if for all nice function f

$$
\operatorname{Ent}_{\mu}\left(f^{2}\right)=\int f^{2} \log \left(\frac{f^{2}}{\int^{2} f d \mu}\right) d \mu \leq 2 C_{L S} \int|\nabla f|^{2} d \mu
$$

We say that μ satisfies a Poincaré inequality if for all nice function f

$$
\operatorname{Var}_{\mu}(f)=\int\left(f-\int f d \mu\right)^{2} d \mu \leq C_{P} \int|\nabla f|^{2} d \mu
$$

Pinsker inequality. Let f be a density wrt μ

$$
\|f \mu-\mu\|_{T V} \leq \sqrt{2 \operatorname{Ent}_{\mu}(f)}
$$

Some nice properties of LSI

Theorem

1. $L S I$ is equivalent to

$$
E n t_{\mu}\left(P_{t} f\right) \leq e^{-2 t / C_{L S}} E n t_{\mu}(f) .
$$

2. LSI is equivalent to hypercontractivity.
3. LSI implies Talagrand Inequality : $\forall f, W_{2}^{2}(f \mu, \mu) \leq 2 C E n t \mu(f)$.
4. LSI implies Poincaré inequality (equivalent to L^{2} convergence to equilibrium).
5. LSI implies Gaussian concentration

$$
\mu(f-\mu(f)>r) \leq e^{-c r^{2}} .
$$

6. Perturbation : if μ satisfies LSI and $d \nu=e^{v} d \mu$ with V bounded then ν satisfies LSI.
7. Tensorization : if μ satisfies $L S I\left(C_{L S}\right)$ then so does $\mu^{\otimes N}$.

How to prove LSI?

There are some general well known sufficient conditions

- Bakry-Emery Γ_{2} condition : Hess $U \geq \kappa>0$ (refined multi-scale Bakry-Emery condition by Bauerschmidt-Bodineau)
- Capacity-measure condition : $\operatorname{Cap}_{\mu}(A) \geq c \mu(A) \log (1 / \mu(A))$ which can be transfered to Hardy's type condition in dimension 1.
- Lyapunov condition : $\exists V \geq 1, c>0, b>0$ such that

$$
L V(x) \leq-c U(x) V(x)+b
$$

Combined with tensorisation and perturbation, it leads to nice examples...
However for our mean field model where

$$
d \mu^{N}=e^{-\sum_{i=1}^{N} U\left(x_{i}\right)+\frac{1}{N} \sum_{i, j} W\left(x^{i}, x^{i}\right)}
$$

it is harder to get adimensional LSI.

Some litterature

- spin systems
- Stroock-Zegarlinski (92) on LSI, Dobrushin condition and conitnuous spin system,
- Zegarlinski $(92,96)$ on Dobrushin uniqueness theorem and LSI,
- Bodineau-Helffer (99) on LSI for unbounded spin systems,
- Yoshida $(00,01)$ on LSI and mixing condition,
- Ledoux (01) for nice review/results,
- Guionnet-Zegarlinski (04) for a survey,
- Bodineau-Bauerschmidt (19) for the introduction of the multi-scale Bakry Emery condition, via stochastic localization,
- mean field models
- Malrieu $(01,03)$ via Bakry-Emery
- Carrillo-McCann-Villani (03) for the non linear limit,
- Cattiaux-G-Malrieu (08), Eberle-G-Zimmer (19) via coupling
- Bolley-Gentil-G (13) via functional inequalities for the non linear limit

LSI for mean field model

Theorem (G-Liu-Wu-Zhang)

Recall $d \mu^{N}=e^{-\sum_{i=1}^{N} U\left(x_{i}\right)+\frac{1}{N} \sum_{i, j} W\left(x^{i}, x^{j}\right)}$. Assume

1. that the one-dimensional conditional distribution $\mu_{\hat{x}_{i}}$ satisfies a $\operatorname{LSi}\left(\hat{C}_{L S, m}\right)$ independently of \hat{x}_{i},
2. that $\gamma_{0}:=C_{\text {lip,m }} \sup _{x, y,|z|=1}\left|\nabla^{2} 1_{x, y} W(x, y) z\right|<1$ where

$$
\begin{gathered}
C_{\text {lip }, m}:=\frac{1}{4} \int_{0}^{\infty} \exp \left(\frac{1}{4} \int_{0}^{s} b_{0}(u) d u\right) s d s \\
b_{0}(r)=\sup _{|x-y|=r}-\frac{x-y}{|x-y|} \cdot\left((\nabla U(x)-\nabla U(y))+\left(\nabla_{x} W(x, z)-\nabla_{x}(W(y, z))\right)\right.
\end{gathered}
$$

then μ^{N} satisfies a $\operatorname{LSI}\left(\hat{C}_{L S, m}:\left(1-\gamma_{0}\right)^{2}\right)$.

Some elements of proof

We have to control Zegarlinski's interdependance coefficients $c_{i j}^{Z}$ defined as

$$
\left|\nabla_{i}\left(\mu_{\hat{\chi} j}\left(f^{2}\right)\right)^{1 / 2}\right| \leq\left(\mu_{\hat{x} j}\left(\left|\nabla_{i} f\right|^{2}\right)\right)^{1 / 2}+c_{i j}^{z}\left(\mu_{\hat{\chi}}\left(\left|\nabla_{j} f\right|^{2}\right)\right)^{1 / 2} .
$$

Step 1.

First remark that for C_{b}^{1} function, if

$$
\left|\nabla_{i} \mu_{\hat{x} j}(g)\right| \leq c_{i j} \mu_{\hat{j} j}(|\nabla g|), \forall \hat{x}^{j}
$$

then $c_{i j}^{Z} \leq c_{i j}$.

Some elements of proof

Step 2.

$$
\begin{aligned}
\nabla_{j} \mu_{\hat{x}^{i}}(g) & =\nabla_{j}\left(\int g\left(x_{i}\right) e^{-H\left(x_{1}, \cdots, x_{N}\right)} d x_{i} / \int e^{-H\left(x_{1}, \cdots, x_{N}\right)} d x_{i}\right) \\
& =\frac{\int g\left(x_{i}\right)\left(-\nabla_{j} H\right) e^{-H} d x_{i}}{\int e^{-H} d x_{i}}+\frac{\int g\left(x_{i}\right) e^{-H} d x_{i} \int \nabla_{j} H \cdot e^{-H} d x_{i}}{\left(\int e^{-H} d x_{x_{i}}\right)^{2}} \\
& =-\int g\left(x_{i}\right) \nabla_{j} H d \mu_{\hat{x}^{i}}+\int g\left(x_{i}\right) d \mu_{\hat{x}^{i}} \int \nabla_{j} H d \mu_{\hat{x}^{i}} \\
& =\operatorname{Cov}_{\mu_{\hat{x}^{i}}}\left(g,-\frac{1}{N-1}\left(\nabla_{y} W\right)\left(x_{i}, x_{j}\right)\right)
\end{aligned}
$$

and then

$$
\begin{aligned}
z \cdot \nabla_{x_{j}} \mu_{x^{i}}(g) & =\operatorname{Cov}_{\mu_{x^{i}}}\left(g,-\frac{1}{N-1}\left(\nabla_{y} W\right)\left(x_{i}, x_{j}\right) \cdot z\right) \\
& =-\frac{1}{N-1}<g,\left(\nabla_{y} W\right)\left(x_{i}, x_{j}\right) \cdot z-\mu_{\hat{x}^{i}}\left(\left(\nabla_{y} W\right)\left(\cdot, x_{j}\right) \cdot z\right)>_{\mu_{x^{i}}} \\
& =-\frac{1}{N-1}<\left(-L_{i}\right) g,\left(-L_{i}\right)^{-1}[\text { same }]>_{\mu_{x^{i}}} \\
& =-\frac{1}{N-1} \int \nabla_{i} g \cdot \nabla_{i}\left(-L_{i}\right)^{-1}[\text { same }] d \mu_{x^{i}} .
\end{aligned}
$$

Some elements of proof

Step 3.

Now we have that

$$
\left\|\left(-L_{i}\right)^{-1}\right\| L_{\text {Lip }} \leq c_{\text {Lip }, m}
$$

and thus

$$
\begin{aligned}
& \left\|\nabla_{i}\left(-L_{i}\right)^{-1}\left(\left(\nabla_{y} W\right)\left(\cdot, x_{j}\right) \cdot z-\mu_{\hat{x}^{i}}\left(\left(\nabla_{y} W\right)\left(\cdot, x_{j}\right) \cdot z\right)\right)\right\|_{L^{\infty}\left(\mu_{\hat{x}^{i}}\right)} \\
& \quad \leq c_{L i p, m} \sup _{x_{i}, x_{j}}\left|\nabla_{x_{i}}\left(\left(\nabla_{y} W\right)\left(x_{i}, x_{j}\right) \cdot z\right)\right| \\
& \quad=c_{L i p, m} \sup _{x, y}\left|\nabla_{x, y}^{2} W(x, y) z\right| \\
& \quad \leq c_{L i p, m}\left\|\nabla_{x, y}^{2} W\right\|_{\infty} .
\end{aligned}
$$

Example and application

- 1d Curie-Weiss model. $U(x)=\beta\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right), W(x, y)=-\beta K x y$ then

$$
C_{l i p, m} \leq \sqrt{\frac{\pi}{\beta}} e^{\beta / 4} \quad \gamma_{0} \leq \sqrt{\pi \beta} e^{\beta / 4}|K| .
$$

- Application. for $d \nu=f d x$

$$
\begin{gathered}
E(\nu)=\int f \log f+\frac{1}{2} \iint W(x, y) d \nu(x) d \nu(y), \quad H_{w}(\nu=E(\nu)-\inf E \\
I_{w}:=\frac{1}{4} \int\left|\frac{\nabla f}{f}+\nabla V+\nabla_{x} \int W(x, y) d \nu(y)\right|^{2} d \nu
\end{gathered}
$$

Theorem

Under the previous assumptions,

1. H_{w} has a unique minimizer ν_{∞}
2. the non-linear $L S I$ holds : $H_{W}(\nu) \leq 2 C_{L S} I_{W}(\nu)$.
3. $H_{w}\left(\nu_{t}\right) \leq e^{-t /\left(2 C_{L S}\right)} H_{w}\left(\nu_{0}\right)$.

Let us refer also to the work of Delgadino-Pavliotis-Rabshani-Smith who relates the (uniform in N) LSI to uniform in time propagation of chaos.

LSI and uniform in time propagation of chaos for vortex 2D case

Motivation : the 2D vortex model

The Biot-Savart kernel, defined in \mathbb{T}^{2} by

$$
K(x)=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}=\frac{1}{2 \pi}\left(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}}\right) .
$$

Motivation : the 2D vortex model

The Biot-Savart kernel, defined in \mathbb{T}^{2} by

$$
K(x)=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}=\frac{1}{2 \pi}\left(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}}\right) .
$$

Consider the 2D incompressible Navier-Stokes system on $u \in \mathbb{T}^{2}$

$$
\begin{aligned}
\partial_{t} u & =-u \cdot \nabla u-\nabla p+\Delta u \\
\nabla \cdot u & =0,
\end{aligned}
$$

where p is the local pressure. Curl of the equation leads to $\omega(t, x)=\nabla \times u(t, x)$ satisfies

$$
\partial_{t} \omega=-\nabla \cdot((K * \omega) \omega)+\Delta \omega .
$$

Motivation : the 2D vortex model

The Biot-Savart kernel, defined in \mathbb{T}^{2} by

$$
K(x)=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}=\frac{1}{2 \pi}\left(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}}\right) .
$$

Consider the 2D incompressible Navier-Stokes system on $u \in \mathbb{T}^{2}$

$$
\begin{aligned}
\partial_{\mathrm{t}} u & =-u \cdot \nabla u-\nabla p+\Delta u \\
\nabla \cdot u & =0,
\end{aligned}
$$

where p is the local pressure. Curl of the equation leads to $\omega(t, x)=\nabla \times u(t, x)$ satisfies

$$
\partial_{t} \omega=-\nabla \cdot((K * \omega) \omega)+\Delta \omega .
$$

Goal : Use a particle system to approximate the solution of the 2D vortex model!

the 2D vortex model

The Biot-Savart kernel, defined in \mathbb{T}^{2} by

$$
K(x)=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}=\frac{1}{2 \pi}\left(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}}\right) .
$$

and the 2D vortex equation

$$
\partial_{t} \bar{\rho}=-\nabla \cdot((K * \bar{\rho}) \bar{\rho})+\Delta \bar{\rho} .
$$

and the particles system

$$
d X_{t}^{i}=\sqrt{2} d B_{t}^{i}+\frac{1}{N} \sum_{j \neq i} K\left(X_{t}^{i}-X_{t}^{j}\right) d t
$$

with law ρ^{N}.

Results

Theorem (adapted from Jabin-Wang ('18))

Under some assumptions (satisfied by the Biot-Savart kernel) there are positive C_{1} and C_{2} such that for all $N \in \mathbb{N}$, all exchangeable probability density ρ_{0}^{N} and all $t \geq 0$

$$
\mathcal{H}_{N}\left(\rho_{t}^{N}, \bar{\rho}_{t}^{N}\right) \leq e^{C_{1} t}\left(\mathcal{H}_{N}\left(\rho_{0}^{N}, \bar{\rho}_{0}^{N}\right)+\frac{C_{2}(t)}{N}\right)
$$

where $\bar{\rho}^{N}$ stands for the law of N independent copies of non linear particles.

Results

Theorem (adapted from Jabin-Wang ('18))

Under some assumptions (satisfied by the Biot-Savart kernel) there are positive C_{1} and C_{2} such that for all $N \in \mathbb{N}$, all exchangeable probability density ρ_{0}^{N} and all $t \geq 0$

$$
\mathcal{H}_{N}\left(\rho_{t}^{N}, \bar{\rho}_{t}^{N}\right) \leq e^{C_{1} t}\left(\mathcal{H}_{N}\left(\rho_{0}^{N}, \bar{\rho}_{0}^{N}\right)+\frac{C_{2}(t)}{N}\right)
$$

where $\bar{\rho}^{N}$ stands for the law of N independent copies of non linear particles.

Theorem (G-Le Bris-Monmarché)

Under some assumptions (satisfied by the Biot-Savart kernel) there are positive constants C_{1}, C_{2} and C_{3} such that for all $N \in \mathbb{N}$, all exchangeable probability density ρ_{0}^{N} and all $t \geq 0$

$$
\mathcal{H}_{N}\left(\rho_{t}^{N}, \bar{\rho}_{t}^{N}\right) \leq C_{1} e^{-C_{2} t} \mathcal{H}_{N}\left(\rho_{0}^{N}, \bar{\rho}_{0}^{N}\right)+\frac{C_{3}}{N}
$$

Various distances

Corollary

Under some assumptions (satisfied by the Biot-Savart kernel), assuming moreover that $\rho_{0}^{N}=\bar{\rho}_{0}^{N}$, there is a constant C such that for all $k \leq N \in \mathbb{N}$ and all $t \geq 0$,

$$
\left\|\rho_{t}^{k, N}-\bar{\rho}_{t}^{k}\right\|_{L^{1}}+\mathcal{W}_{2}\left(\rho_{t}^{k, N}, \bar{\rho}_{t}^{k}\right) \leq C\left(\left\lfloor\frac{N}{k}\right\rfloor\right)^{-\frac{1}{2}}
$$

Step one : Time evolution of the relative entropy

We write

$$
\mathcal{H}_{N}(t)=\mathcal{H}_{N}\left(\rho_{t}^{N}, \bar{\rho}_{t}^{N}\right), \quad \mathcal{I}_{N}(t)=\frac{1}{N} \sum_{i} \int_{\mathbb{T}^{d N}} \rho_{t}^{N}\left|\nabla_{x_{i}} \log \frac{\rho_{t}^{N}}{\bar{\rho}_{t}^{N}}\right|^{2} d \mathbf{X}^{N} .
$$

Step one : Time evolution of the relative entropy

We write

$$
\mathcal{H}_{N}(t)=\mathcal{H}_{N}\left(\rho_{t}^{N}, \bar{\rho}_{t}^{N}\right), \quad \mathcal{I}_{N}(t)=\frac{1}{N} \sum_{i} \int_{\mathbb{T}^{d N}} \rho_{t}^{N}\left|\nabla_{x_{i}} \log \frac{\rho_{t}^{N}}{\bar{\rho}_{t}^{N}}\right|^{2} d \mathbf{X}^{N} .
$$

By derivating

$$
\begin{aligned}
\frac{d}{d t} \mathcal{H}_{N}(t) \leq & -\mathcal{I}_{N}(t) \\
& -\frac{1}{N^{2}} \sum_{i, j} \int_{\mathbb{T}^{d N}} \rho_{t}^{N}\left(K\left(x_{i}-x_{j}\right)-K * \rho\left(x_{i}\right)\right) \cdot \nabla_{x_{i}} \log \bar{\rho}_{t}^{N} d \mathbf{X}^{N} \\
& -\frac{1}{N^{2}} \sum_{i, j} \int_{\mathbb{T}^{d N}} \rho_{t}^{N}\left(\operatorname{div} K\left(x_{i}-x_{j}\right)-\operatorname{div} K * \bar{\rho}_{t}\left(x_{i}\right)\right) d \mathbf{X}^{N} .
\end{aligned}
$$

Assumptions?

$$
\text { Goal : } K(x)=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}=\frac{1}{2 \pi}\left(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}}\right)
$$

Justifying the calculations

- $\bar{\rho} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+} \times \mathbb{T}^{d}\right)$

Assumptions?

$$
\text { Goal : } K(x)=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}=\frac{1}{2 \pi}\left(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}}\right)
$$

Justifying the calculations

- $\bar{\rho} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+} \times \mathbb{T}^{d}\right)$ and there is $\lambda>1$, s.t $\frac{1}{\lambda} \leq \bar{\rho} \leq \lambda$

Assumptions?

$$
\text { Goal : } K(x)=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}=\frac{1}{2 \pi}\left(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}}\right)
$$

Justifying the calculations

- $\bar{\rho} \in \mathcal{C}_{\lambda}^{\infty}\left(\mathbb{R}^{+} \times \mathbb{T}^{d}\right)$

Assumptions?

$$
\text { Goal : } K(x)=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}=\frac{1}{2 \pi}\left(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}}\right)
$$

Justifying the calculations

- There is $\lambda>1$ such that $\bar{\rho}_{0} \in \mathcal{C}_{\lambda}^{\infty}\left(\mathbb{T}^{d}\right)$

$$
\Longrightarrow \bar{\rho} \in \mathcal{C}_{\lambda}^{\infty}\left(\mathbb{R}^{+} \times \mathbb{T}^{d}\right)(\text { Ben-Artzi ('94)) }
$$

Assumptions?

$$
\text { Goal : } K(x)=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}=\frac{1}{2 \pi}\left(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}}\right)
$$

Justifying the calculations

- There is $\lambda>1$ such that $\bar{\rho}_{0} \in \mathcal{C}_{\lambda}^{\infty}\left(\mathbb{T}^{d}\right)$

$$
\Longrightarrow \bar{\rho} \in \mathcal{C}_{\lambda}^{\infty}\left(\mathbb{R}^{+} \times \mathbb{T}^{d}\right)(\text { Ben-Artzi ('94)) }
$$

- $\rho^{N} \in \mathcal{C}_{\lambda}^{\infty}\left(\mathbb{R}^{+} \times \mathbb{T}^{N d}\right)$ (???)

Assumptions?

$$
\text { Goal : } K(x)=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}=\frac{1}{2 \pi}\left(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}}\right)
$$

Justifying the calculations

- There is $\lambda>1$ such that $\bar{\rho}_{0} \in \mathcal{C}_{\lambda}^{\infty}\left(\mathbb{T}^{d}\right)$
$\Longrightarrow \bar{\rho} \in \mathcal{C}_{\lambda}^{\infty}\left(\mathbb{R}^{+} \times \mathbb{T}^{d}\right)($ Ben-Artzi ('94))
- $\rho^{N} \in \mathcal{C}_{\lambda}^{\infty}\left(\mathbb{R}^{+} \times \mathbb{T}^{N d}\right)(? ? ?)$

Dealing with the terms

- In the sense of distributions, $\nabla \cdot K=0$.

Step one : Time evolution of the relative entropy

We write

$$
\mathcal{H}_{N}(t)=\mathcal{H}_{N}\left(\rho_{t}^{N}, \bar{\rho}_{t}^{N}\right), \quad \mathcal{I}_{N}(t)=\frac{1}{N} \sum_{i} \int_{\mathbb{T}^{d N}} \rho_{t}^{N}\left|\nabla_{x_{i}} \log \frac{\rho_{t}^{N}}{\bar{\rho}_{t}^{N}}\right|^{2} d \mathbf{X}^{N}
$$

By properly derivating

$$
\begin{aligned}
\frac{d}{d t} \mathcal{H}_{N}(t) \leq & -\mathcal{I}_{N}(t) \\
& -\frac{1}{N^{2}} \sum_{i, j} \int_{\mathbb{T}^{d N}} \rho_{t}^{N}\left(K\left(x_{i}-x_{j}\right)-K * \rho\left(x_{i}\right)\right) \cdot \nabla_{x_{i}} \log \bar{\rho}_{t}^{N} d \mathbf{X}^{N} \\
& -\frac{1}{N^{2}} \sum_{i, j} \int_{\mathbb{T}^{d N}} \rho_{t}^{N}\left(\operatorname{div} K\left(x_{i}-x_{j}\right)-\operatorname{div} K * \bar{\rho}_{t}\left(x_{i}\right)\right) d \mathbf{X}^{N}
\end{aligned}
$$

Step one : Time evolution of the relative entropy

We write

$$
\mathcal{H}_{N}(t)=\mathcal{H}_{N}\left(\rho_{t}^{N}, \bar{\rho}_{t}^{N}\right), \quad \mathcal{I}_{N}(t)=\frac{1}{N} \sum_{i} \int_{\mathbb{T}^{d N}} \rho_{t}^{N}\left|\nabla_{x_{i}} \log \frac{\rho_{t}^{N}}{\bar{\rho}_{t}^{N}}\right|^{2} d \mathbf{X}^{N}
$$

By properly derivating

$$
\begin{aligned}
\frac{d}{d t} \mathcal{H}_{N}(t) \leq & -\mathcal{I}_{N}(t) \\
& -\frac{1}{N^{2}} \sum_{i, j} \int_{\mathbb{T}^{d N}} \rho_{t}^{N}\left(K\left(x_{i}-x_{j}\right)-K * \rho\left(x_{i}\right)\right) \cdot \nabla_{x_{i}} \log \bar{\rho}_{t}^{N} d \mathbf{X}^{N} \\
& -\frac{1}{N^{2}} \sum_{i, j} \int_{\mathbb{T}^{d N}} \rho_{t}^{N}\left(\operatorname{div} K\left(x_{i}-x_{j}\right)-\underline{\operatorname{div}} K * \bar{\rho}_{t}\left(x_{i}\right)\right) d \mathbf{X}^{N} .
\end{aligned}
$$

Step two : Integration by part

We are left with

$$
\begin{aligned}
\frac{d}{d t} \mathcal{H}_{N}(t) \leq & -\mathcal{I}_{N}(t) \\
& -\frac{1}{N^{2}} \sum_{i, j} \int_{\mathrm{T}^{d N}} \rho_{t}^{N}\left(K\left(x_{i}-x_{j}\right)-K * \rho\left(x_{i}\right)\right) \cdot \nabla_{x_{i}} \log \bar{\rho}_{t}^{N} d \mathbf{X}^{N} .
\end{aligned}
$$

Idea: Use the regularity of $\bar{\rho}$ to deal with the singularity of K

Step two : Integration by part

We are left with

$$
\begin{aligned}
\frac{d}{d t} \mathcal{H}_{N}(t) \leq & -\mathcal{I}_{N}(t) \\
& -\frac{1}{N^{2}} \sum_{i, j} \int_{\mathrm{T}^{d N}} \rho_{t}^{N}\left(K\left(x_{i}-x_{j}\right)-K * \rho\left(x_{i}\right)\right) \cdot \nabla_{x_{i}} \log \bar{\rho}_{t}^{N} d \mathbf{X}^{N} .
\end{aligned}
$$

Idea: Use the regularity of $\bar{\rho}$ to deal with the singularity of K
Remark : Notice that, for the Biot-Savart kernel on the whole space \mathbb{R}^{2}

$$
\tilde{K}(x)=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}
$$

we have $\tilde{K}=\nabla \cdot \tilde{V}$ with \tilde{V} bounded :

$$
\tilde{V}(x)=\frac{1}{2 \pi}\left(\begin{array}{cc}
-\arctan \left(\frac{x_{1}}{x_{2}}\right) & 0 \\
0 & \arctan \left(\frac{x_{2}}{x_{1}}\right)
\end{array}\right) .
$$

Step two : Integration by part

For all $t \geqslant 0$,

$$
\frac{d}{d t} \mathcal{H}_{N}(t) \leq A_{N}(t)+\frac{1}{2} B_{N}(t)-\frac{1}{2} \mathcal{I}_{N}(t)
$$

with

$$
\begin{aligned}
& A_{N}(t):=\frac{1}{N^{2}} \sum_{i, j} \int_{T^{d N}} \rho_{t}^{N}\left(V\left(x_{i}-x_{j}\right)-V * \bar{\rho}\left(x_{i}\right)\right): \frac{\nabla_{x_{i}}^{2} \bar{\rho}_{t}^{N}}{\bar{\rho}_{t}^{N}} d \mathbf{X}^{N} \\
& B_{N}(t):=\frac{1}{N} \sum_{i} \int_{\mathrm{T}^{d N}} \rho_{t}^{N} \frac{\left|\nabla_{x_{i}} \bar{\rho}_{t}^{N}\right|^{2}}{\left|\bar{\rho}_{t}^{N}\right|^{2}}\left|\frac{1}{N} \sum_{j} V\left(x_{i}-x_{j}\right)-V * \bar{\rho}\left(x_{i}\right)\right|^{2} d \mathbf{X}^{N} .
\end{aligned}
$$

Note that we would prefer to deal with the non linear particles which are i.i.d. We want also to get rid of the derivatives $\left|\nabla_{x_{i}} \bar{\rho}_{t}^{N}\right|$ or $\left|\nabla_{x_{i}}^{2} \bar{\rho}_{t}^{N}\right|$.

Step three : Change of reference measure and large deviation estimates

Lemma

For two probability densities μ and ν on a set Ω, and any $\Phi \in L^{\infty}(\Omega), \eta>0$ and $N \in \mathbb{N}$,

$$
\mathbb{E}^{\mu} \Phi \leq \eta \mathcal{H}_{N}(\mu, \nu)+\frac{\eta}{N} \log \mathbb{E}^{\nu} e^{N \Phi / \eta}
$$

Theorem (Jabin-Wang '18)

For a p.m. μ on \mathbb{T}^{d} and $\phi \in L^{\infty}\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right)$ with

$$
\gamma:=\left(1600^{2}+36 e^{4}\right)\left(\sup _{p \geq 1} \frac{\left\|\sup _{z}|\phi(\cdot, z)|\right\|_{\left.L^{p}(\mu)\right)}}{p}\right)^{2}<1 .
$$

If ϕ satisfies $\int_{\mathbb{T}^{d}} \phi(x, z) \mu(d x)=0=\int_{\mathbb{T}^{d}} \phi(z, x) \mu(d x)$. Then, for all $N \in \mathbb{N}$,

$$
\int_{T^{d N}} \exp \left(\frac{1}{N} \sum_{i, j=1}^{N} \phi\left(x_{i}, x_{j}\right)\right) \mu^{\otimes N} d X^{N} \leq \frac{2}{1-\gamma}<\infty
$$

Conclusion

For all $t \geqslant 0$,

$$
\frac{d}{d t} \mathcal{H}_{N}(t) \leq C\left(\mathcal{H}_{N}(t)+\frac{1}{N}\right)-\frac{1}{2} \mathcal{I}_{N}(t)
$$

with

$$
C=\hat{C}_{1}\left\|\nabla^{2} \bar{\rho}_{t}\right\|_{L \infty}\|V\|_{L \infty} \lambda+\hat{C}_{2}\|V\|_{L \infty}^{2} \lambda^{2} d^{2}\left\|\nabla \bar{\rho}_{t}\right\|_{L \infty}^{2}
$$

where \hat{C}_{1}, \hat{C}_{2} are universal constants.
We have to compensate $\mathcal{H}_{N}(t)$ by $\mathcal{I}_{N}(t)$!

Step four : Uniform bounds and logarithmic Sobolev inequality

Two goals :

- A logarithmic Sobolev inequality for $\bar{\rho}^{N}: \mathcal{H}_{N}(t) \leq C_{L S} \mathcal{I}_{N}(t)$

Step four : Uniform bounds and logarithmic Sobolev inequality

Two goals :

- A logarithmic Sobolev inequality for $\bar{\rho}^{N}: \mathcal{H}_{N}(t) \leq C_{L S} \mathcal{I}_{N}(t)$
- Uniform in time bounds on $\left\|\nabla \bar{\rho}_{t}\right\|_{L_{\infty}}$ and $\left\|\nabla^{2} \bar{\rho}_{t}\right\|_{L \infty}$

A logarithmic Sobolev inequality

Lemma (Tensorization)

If ν is a probability measure on \mathbb{T}^{d} satisfying a $L S I$ with constant $C_{\nu}^{L S}$, then for all $N \geq 0, \nu^{\otimes N}$ satisfies a $L S I$ with constant $C_{\nu}^{L S}$

A logarithmic Sobolev inequality

Lemma (Tensorization)

If ν is a probability measure on \mathbb{T}^{d} satisfying a $L S I$ with constant $C_{\nu}^{L S}$, then for all $N \geq 0, \nu^{\otimes N}$ satisfies a LSI with constant $C_{\nu}^{L S}$

Lemma (Perturbation)

If ν is a probability measure on \mathbb{T}^{d} satisfying a LSI with constant $C_{\nu}^{L S}$, and μ is a probability measure with density h with respect to ν such that, for some constant $\lambda>0, \frac{1}{\lambda} \leq h \leq \lambda$, then μ satisfies a LSI with constant $C_{\mu}^{L S}=\lambda^{2} C_{\nu}^{L S}$.

A logarithmic Sobolev inequality

Lemma (Tensorization)

If ν is a probability measure on \mathbb{T}^{d} satisfying a $L S I$ with constant $C_{\nu}^{L S}$, then for all $N \geq 0, \nu^{\otimes N}$ satisfies a $L S I$ with constant $C_{\nu}^{L S}$

Lemma (Perturbation)

If ν is a probability measure on \mathbb{T}^{d} satisfying a LSI with constant $C_{\nu}^{L S}$, and μ is a probability measure with density h with respect to ν such that, for some constant $\lambda>0, \frac{1}{\lambda} \leq h \leq \lambda$, then μ satisfies a $L S I$ with constant $C_{\mu}^{L S}=\lambda^{2} C_{\nu}^{L S}$.

Lemma (LSI for the uniform distribution)
The uniform distribution u on \mathbb{T}^{d} satisfies a $L S I$ with constant $\frac{1}{8 \pi^{2}}$.

A logarithmic Sobolev inequality

Lemma (Tensorization)

If ν is a probability measure on \mathbb{T}^{d} satisfying a $L S I$ with constant $C_{\nu}^{L S}$, then for all $N \geq 0, \nu^{\otimes N}$ satisfies a $L S I$ with constant $C_{\nu}^{L S}$

Lemma (Perturbation)

If ν is a probability measure on \mathbb{T}^{d} satisfying a LSI with constant $C_{\nu}^{L S}$, and μ is a probability measure with density h with respect to ν such that, for some constant $\lambda>0, \frac{1}{\lambda} \leq h \leq \lambda$, then μ satisfies a LSI with constant $C_{\mu}^{L S}=\lambda^{2} C_{\nu}^{L S}$.

Lemma (LSI for the uniform distribution)

The uniform distribution u on \mathbb{T}^{d} satisfies a LSI with constant $\frac{1}{8 \pi^{2}}$.

For all $N \in \mathbb{N}, t \geq 0$ and all probability density $\mu_{N} \in \mathcal{C}_{>0}^{\infty}\left(\mathbb{T}^{d N}\right)$,

$$
\mathcal{H}_{N}\left(\mu_{N}, \bar{\rho}_{t}^{N}\right) \leq \frac{\lambda^{2}}{8 \pi^{2}} \frac{1}{N} \sum_{i=1}^{N} \int_{\mathbb{T}^{d}} \mu_{N}\left|\nabla_{x_{i}} \log \frac{\mu_{N}}{\bar{\rho}_{t}^{N}}\right|^{2} d \mathbf{X}^{N}
$$

Uniform in time bounds on the derivatives

Lemma

For all $n \geqslant 1$ and $\alpha_{1}, \ldots, \alpha_{n} \in \llbracket 1, d \rrbracket$, there exist $C_{n}^{u}, C_{n}^{\infty}>0$ such that for all $t \geqslant 0$,

$$
\left\|\partial_{\alpha_{1}, \ldots, \alpha_{n}} \bar{\rho}_{t}\right\|_{L \infty} \leq C_{n}^{U} \quad \text { and } \quad \int_{0}^{t}\left\|\partial_{\alpha_{1}, \ldots, \alpha_{n}} \bar{\rho}_{s}\right\|_{L \infty}^{2} d s \leq C_{n}^{\infty}
$$

Thanks to Morrey's inequality and Sobolev embeddings, it is sufficient to prove such bounds in the Sobolev space H^{m} for all m, i.e in L^{2}

Step five : Conclusion

There are constants $C_{1}, C_{2}^{\infty}, C_{3}>0$ and a function $t \mapsto C_{2}(t)>0$ with $\int_{0}^{t} C_{2}(s) d s \leq C_{2}^{\infty}$ for all $t \geq 0$ such that for all $t \geq 0$

$$
\frac{d}{d t} \mathcal{H}_{N}(t) \leq-\left(C_{1}-C_{2}(t)\right) \mathcal{H}_{N}(t)+\frac{C_{3}}{N} .
$$

Multiplying by $\exp \left(C_{1} t-\int_{0}^{t} C_{2}(s) d s\right)$ and integrating in time we get

$$
\begin{aligned}
\mathcal{H}_{N}(t) & \leq e^{-C_{1} t+\int_{0}^{t} c_{2}(s) d s} \mathcal{H}_{N}(0)+\frac{C_{3}}{N} \int_{0}^{t} e^{c_{1}(s-t)+\int_{s}^{t} c_{2}(u) d u} d s \\
& \leq e^{C_{2}^{\infty}-C_{1} t} \mathcal{H}_{N}(t)+\frac{C_{3}}{C_{1} N} e^{c_{2}^{\infty}}
\end{aligned}
$$

which concludes.

Open problems

There are of course a lot of problems remaining

- Adapted LSI and uniform in time propagation of chaos? see Rozensweig-Serfaty.
- For vortex 2D case : up to now restricted to the torus... extend it to whole space?
- Keller-Segel model? (see Bresch-Jabin, Serfaty \& al. for modulated energy, Tomasevic \&al. for parabolic-parabolic case)
- Vlasov-Fokker-Planck equation with singular kernel as in Bresch-Jabin-Soler very recent paper. Quantitative and uniform in time?
- Optimal rate à la Lacker for singular models?

Open problems

There are of course a lot of problems remaining

- Adapted LSI and uniform in time propagation of chaos? see Rozensweig-Serfaty.
- For vortex 2D case : up to now restricted to the torus... extend it to whole space?
- Keller-Segel model? (see Bresch-Jabin, Serfaty \& al. for modulated energy, Tomasevic \&al. for parabolic-parabolic case)
- Vlasov-Fokker-Planck equation with singular kernel as in Bresch-Jabin-Soler very recent paper. Quantitative and uniform in time?
- Optimal rate à la Lacker for singular models?

Thank you!

