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The model(s)

We will be interested here with particles system in mean field interactions

dX; = \/2ondB; — VU(X{)d =y Z K(X{ — X))dt,
J#i

where

on diffusion coefficient, oy = \/20/N or o,

((B})t>0): independent Brownian motions,

U confining potential, e.g. VU(x) = Ax with A > 0 or 0,

W is an interaction potential :

e K(x) = VW, regular, but not too large,
e in dimension 2, Biot Savart kernel

1 x* 1 Xo X
KOO = a2l = 2n (‘WW) |



Particles system and its long time behavior

Focus on

dX; = v2dB;, — VU(X{)di = va (X — X!)at,
J#i

whose invariant measure is

du = e~ it U= f Ty Woi—x) gy
How can we study the convergence to equilibrium, if possible uniform in N?

o Meyn-Tweedie’s techniques... very general but poorly quantitative and
never uniform in N.

e Coupling... story for another day

e functional inequalities !

Extensions to the kinetic case possible.
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Particles system and its limitin N

dX{ = /2ondB; — U'(X}) =y Z W' (X{ — X!)at.
#i
Formally, notice lNZ/."; W/ (X{ — XI) = V'« uN(X}), where
1 N
= N Z 5)([,.
i=1
Denote also p} = Law(X{, -, X).

Assuming on — o, we should get a nonlinear McKean-Vlasov equation

dXi = V20dB; — U'(X)dt — W' % y(X))dt,
/31 = |_8.W()(1)7

which is linked to

Otpt = Ox ((Ul + V' ﬁt) ﬁt) + 002t



In a system of N exchangeable interacting particles, as N increases, two
particles become more and more statistically independent.

Mark Kac introduced the terminology Propagation of chaos to describe this
phenomenon.

There is equivalence between

e Local estimate p)"* = £(X, ..., X}) — &k

o Global estimate ..} — 7
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Usual methods

Goal : Show p) — 5, or pi — pr quantitatively and uniformly in time.

Some methods :

e Tightness (Rogers-Shi, Méléard, Cépa-Lépingle,
Fournier-Hauray-Mischler, ...).
e Coupling methods (McKean, Sznitman, Malrieu, Durmus, Eberle,...) :

Wa (1, v)? = inf E<|X—Y\2)A

Xeop,Y~v

e Energy/Entropy estimates (Malrieu, Mischler, Mouhot, Rosenzweig,
Serfaty, Jabin, Wang, Lacker, Bresch, Soler, Poyato, Delgadino, Carrillo,
Pavliotis, Gvalani, Tugaut,...).

For example the rescaled relative entropy
1 dv dv R
Hu(vp) = { N (8108 5) iy <,
+00 otherwise.

¢ Weak norm and Lions derivatives calculus (Chassagneux, Szpruch,

Tse, Delarue, ...)



Logarithmic Sobolev inequality




Entropy and long time convergence of diffusions

Let us first focus on the simple case
dX; = V2dB; — VU(x:)dt
reversible wrt » = e~Y, semigroup denoted P; and generator L.
Definition
We say that p satisfies a logarithmic Sobolev inequality if for all nice function f

2
Ent,(f°) = /f2 log <[2ffd > dp < 2CLS/ |Vidp.
. [

We say that i satisfies a Poincaré inequality if for all nice function f

Var,,(f) :/‘(f—/fdu)zdug CP/.\VﬂZdu.

Pinsker inequality. Let f be a density wrt 1

i =l < v/2Ent, (7).



Some nice properties of LSI

Theorem
1. LSl is equivalent to
Ent,(Pif) < e ?/CsEnt,(f).
2. LSl is equivalent to hypercontractivity.

3. LSl implies Talagrand Inequality : Vf, W2 (fu, 1) < 2C Ent,(f).

4. LSl implies Poincaré inequality (equivalent to L*> convergence to
equilibrium).

5. LSl implies Gaussian concentration
u(f—u(f) > r) < e

6. Perturbation : if i satisfies LSl and dv = €"du with V bounded then v
satisfies LSI.

7. Tensorization : if . satisfies LSI(C.s) then so does V.

(see the excellent book of Bakry-Gentil-Ledoux)



How to prove LSI?

There are some general well known sufficient conditions

e Bakry-Emery I'; condition : HessU > k > 0
(refined multi-scale Bakry-Emery condition by Bauerschmidt-Bodineau)

e Capacity-measure condition : Cap,.(A) > c u(A)log(1/u(A)) which can
be transfered to Hardy’s type condition in dimension 1.

e Lyapunov condition : 3V > 1,¢ > 0, b > 0 such that
LV(x) < —cU(x) V(x) + b.

Combined with tensorisation and perturbation, it leads to nice examples...
However for our mean field model where

dulV = e~ THi Ui+ Ty Wx' )

it is harder to get adimensional LSI.



Some litterature

e spin systems

Stroock-Zegarlinski (92) on LSI, Dobrushin condition and
conitnuous spin system,

Zegarlinski (92, 96) on Dobrushin uniqueness theorem and LS|,
Bodineau-Helffer (99) on LSI for unbounded spin systems,
Yoshida (00,01) on LSI and mixing condition,

Ledoux (01) for nice review/results,

Guionnet-Zegarlinski (04) for a survey,

Bodineau-Bauerschmidt (19) for the introduction of the multi-scale
Bakry Emery condition, via stochastic localization,

e mean field models

Malrieu (01,03) via Bakry-Emery

Carrillo-McCann-Villani (03) for the non linear limit,
Cattiaux-G-Malrieu (08), Eberle-G-Zimmer (19) via coupling
Bolley-Gentil-G (13) via functional inequalities for the non linear
limit



LSI for mean field model

Theorem (G-Liu-Wu-Zhang)

Recall dpN = e~ Xt U0+ X W) Agsume

1. that the one-dimensional conditional distribution j.;, satisfies a
LSi(Cy.s,m) independently of X;,

2. that o := Cip,msupy . z1=1 |V 1xy W(X, y)z| < 1 where

1 [ 1 [
Cip,m = Z/o exp (Z/o bo(u)du) sds

bo(r) = ‘XS_Uyr‘J:r—H-((VU(X)—VUU’)H(WW(X7 2)-V(W(y, 2)))

then uN satisfies a LSI(Crs.m : (1 — 70)?)-



Some elements of proof

We have to control Zegarlinski’s interdependance coefficients c,jZ defined as
Vi (%)) 2] < (s (Vi 2))/2 + cf (s (1V£1%)) /2.

Step 1.

First remark that for C}, function, if

IVirsi(9)] < Ciugi(IVgl), v&!

then ¢f < ¢j.



Some elements of proof

Step 2.

Viuzi(g) =V, (/ Q(Xi)e_H(X""“’XN)de//e_H(X"“"XN)dXi>

o) (=V;H)e " dx N [9(x)e Hdx; [ V;H - e "dx;
B IG*HO'X,' (f e*HdX,')2

—/g(X;)V,-Hd,u;;—|—/g(X,')du;(i/V,'Hdu;(1

1
= COVN}[ (g,—ﬁ(VyW)(Xth)>

and then

1

Z V(@) = Covi, (g, — 1 — (VyW)(x, %) - 2)

= <O (T WI ) 2= (T W) - 2) S

- —N‘ < (~Li)g, (~L) "[same] >,

= _1 /Vg Vi( ~'[same]dyugi.



Some elements of proof

Step 3.

Now we have that

(=L)luip < Cuipm
and thus
IVi(—=L) T (Vy W)(-, X)) - 2 — s (Vy W)(-, %) - 2o )
< Cip,msup [V ((Vy W)(Xi, X;) - 2)|

XX

= ClLjp,m Sup ‘vi,y W(x,y)z|
X,y

<Cuipml| Viy Wleo-



Example and application

4

« 1d Curie-Weiss model. U(x) = B(% — %), W(x,y) = —BKxy then
G \/ge‘?“ 20 < V/rBe’IK|.

e Application. for dv = fdx
E(v) = / flogf+ %// W(x,y)dv(x)dv(y), Hw(v = E(v) —infE

2

IW :%/‘va+VV+Vx/W(X7Y)dV(Y) dv

Theorem
Under the previous assumptions,

1. Hw has a unique minimizer v
2. the non-linear LSI holds : Hy(v) < 2Cslw(v).
£ Hw(I/[) < e_r/(chS)Hw(llo).

Let us refer also to the work of Delgadino-Pavliotis-Rabshani-Smith who
relates the (uniform in N) LSI to uniform in time propagation of chaos. 17



LSI and uniform in time propagation of
chaos for vortex 2D case




Motivation : the 2D vortex model

The Biot-Savart kernel, defined in T? by

1 oxt 1 Xo  Xi
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Motivation : the 2D vortex model

The Biot-Savart kernel, defined in T? by

1 x* 1 Xo X
KxX)= — - = — (22 71 )
=521 = 2 ( X2 \x|2)
Consider the 2D incompressible Navier-Stokes system on u € T?

ou=—u-Vu—Vp+ Au
V.-u=0,

where p is the local pressure. Curl of the equation leads to
w(t, x) =V x u(t, x) satisfies

Ow = -V - (K *xw)w) + Aw.

Goal : Use a particle system to approximate the solution of the 2D vortex
model !



the 2D vortex model

The Biot-Savart kernel, defined in T? by
1 x* 1 X0 X
K09 = e = 27 (e )
and the 2D vortex equation
op ==V - ((K*p)p) + Ap.
and the particles system

i i1 i j
dX; = V2dB, + i %: K(X{ — X))at

with law p".

20



Theorem (adapted from Jabin-Wang (’18))

Under some assumptions (satisfied by the Biot-Savart kernel) there are

positive Cy; and C, such that for all N € N, all exchangeable probability
density py and all t > 0

_ N Gt
Hu(or, pr) < €' (’HN(péV,péV) + 7\(, ))

where p" stands for the law of N independent copies of non linear particles.

21



Theorem (adapted from Jabin-Wang (’18))

Under some assumptions (satisfied by the Biot-Savart kernel) there are
positive Cy; and C, such that for all N € N, all exchangeable probability
density py and all t > 0

_ N Gt
Hu(or, pr) < €' (’HN(péV,péV) + 7\(, ))

where p" stands for the law of N independent copies of non linear particles.
Theorem (G-Le Bris-Monmarché)

Under some assumptions (satisfied by the Biot-Savart kernel) there are
positive constants Cy, C, and Cs such that for all N € N, all exchangeable
probability density pY and all t > 0

_ _ _ C
Ha(pr, 5t') < Cre” 2" Hn (o, o) + WS

21



Various distances

Corollary

Under some assumptions (satisfied by the Biot-Savart kernel), assuming
moreover that p} = py, there is a constant C such that for all k < N € N and

all't >0,
- - N
Ik = s+ e () < ¢ (| 7))

1
2

22



Step one : Time evolution of the relative entropy

We write

N

2
. 1
H(t) = Hu(ol, 3, Tu(t) = NZ/ o [V log 2| axM.
TN Pt

i

23



Step one : Time evolution of the relative entropy

We write
N N 1 N A
H(t) = Hu(ol, 3, Tu(t) = NZ/ o [V log 2| axM.
T JmaN Pt
By derivating
d

EHN(U < —In(1)

1 _
=5 0 :/dN ot (K(X; — %)) — K p(xi)) - Vi, log pf dX"
— J
1]

- % 2 /WN Pt (div K(xi — x) — div K « 5i(xi)) dX".
isf

23



. _ 1 o X X-
Goﬂ.iﬂx)_é;gﬁ__E;(_H%’W%)

Justifying the calculations

e pECT(RT x T9)

24
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Goal:K(x):i%:,;—ﬂ( X A)

T X2 x|
Justifying the calculations

e Thereis A > 1 such that gy € C3°(T)
— 5 € C¥(RT x TY (Ben-Artzi ('94))
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Goal:K(x):i%:,;—ﬂ( X A)

T X2 x|
Justifying the calculations

e Thereis A > 1 such that gy € C3°(T)
— 5 € C¥(RT x TY (Ben-Artzi ('94))

o PN e CP(RT x TN) (227)

24



GoaI:K(x):i%:%ﬂ( X 4)

T X2 x|
Justifying the calculations

e Thereis A > 1 such that gy € C3°(T)
— 5 € C¥(RT x TY (Ben-Artzi ('94))

o PN e CP(RT x TN) (227)
Dealing with the terms

e In the sense of distributions, V- K = 0.

24



Step one : Time evolution of the relative entropy

We write
1 P
H(t) = Hu(ol, 3, Tu(t) = NZ/ o [V log 2| axM.
T JmaN Pt
By properly derivating
d

EHN(U < —In(1)

1 _
=5 0 :/dN ot (K(x — %)) — K p(xi)) - Vi, log pf dX"
— J
1]

- % 2 /WN Pt (div K(xi — x) — div K « 5i(xi)) dX".
isf

25



Step one : Time evolution of the relative entropy

We write

2
1 N
Vy log 26| ax™.
Pt

Hn(t) = Hn(pl Br), In(t) = N 2 /Td"’ o

i

By properly derivating

25



Step two : Integration by part

We are left with

d

g < = In(1)

1 _
N2 Z /lev in (K(xi — X)) — K= p(Xi)) - Vx log P?IdXN-
)

Idea : Use the regularity of p to deal with the singularity of K

26



Step two : Integration by part

We are left with

d

g < = In(1)

1 —
N2 Z /lev in (K(xi — X)) — K= p(Xi)) - Vx log p{VdXN-
)

Idea : Use the regularity of p to deal with the singularity of K
Remark : Notice that, for the Biot-Savart kernel on the whole space R?

- 1 x*
K(x) = 27 xP’

we have K = V - V with ¥ bounded :
_ 4,
\7(X) _ L arctan (Xz) 0 .
2r 0 arctan (%)

26



Step two : Integration by part

Forall t > 0,
d 1 1
gt () < An(t) + 5 Bn(t) = 5Zn(1),
with
1 N _ Vx,Pz N
An(?) ;:Nz;/w o (V=) = V0 ) - = oK
| Vaat 2
vx, N
Bn(t) : NZ/WN Pl NZV(X, — Vp(x)| axM.

Note that we would prefer to deal with the non linear particles which are i.i.d.
We want also to get rid of the derivatives |V pt'| or | V%41 |.

27



Step three : Change of reference measure and large deviation

estimates

Lemma

For two probability densities 1 and v on a setQ2, and any ® € L>°(Q2),n >0
and N € N,
EX® < nHn(p,v) + % log B eN®/.

Theorem (Jabin-Wang ’18)

Forap.m. nonT? and ¢ € L=(T? x T9) with

- Z 2
_ <16002+3664> (Sup l| sup [9(-s )|HU’(u))> 1.
p>1 p

If ¢ satisfies [1.q ¢(x,Zz)u(dx) =0 = [L4 ¢(Z,x)u(dx). Then, forall N € N,

/ exp( Zsbx,,x,)) ®NdXN§%<oo.

ij=1

28



Conclusion

Forall t > 0,
d 1 1

with
C = Cil|Vhtlles |Vl X + Col| VI[F X2 2|V e[

where @1, C. are universal constants.

We have to compensate Hn(t) by Zn(t)!

29



Step four : Uniform bounds and logarithmic Sobolev inequa-

lity

Two goals :

e A logarithmic Sobolev inequality for 5" : Hn(t) < Cis In(t)

30



Step four : Uniform bounds and logarithmic Sobolev inequa-

lity

Two goals :

e A logarithmic Sobolev inequality for 5" : Hn(t) < Cis In(t)

e Uniform in time bounds on || V|| and || V25| 1o

30



A logarithmic Sobolev inequality

Lemma (Tensorization)

If v is a probability measure on T satisfying a LS| with constant C-°, then for
all N > 0, v®VN satisfies a LSI with constant C5°

31
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Lemma (Perturbation)

If v is a probability measure on T° satisfying a LSI with constant C°, and
is a probability measure with density h with respect to v such that, for some

constant X > 0, + < h < ), then y satisfies a LS| with constant C° = \2C.®.
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If v is a probability measure on T satisfying a LS| with constant C-°, then for
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Lemma (Perturbation)

If v is a probability measure on T° satisfying a LSI with constant C°, and
is a probability measure with density h with respect to v such that, for some
constant X > 0, + < h < ), then y satisfies a LS| with constant C° = \2C.®.
Lemma (LSI for the uniform distribution)

The uniform distribution u on T satisfies a LSI with constant 81?
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A logarithmic Sobolev inequality

Lemma (Tensorization)

If v is a probability measure on T satisfying a LS| with constant C-°, then for
all N > 0, v®VN satisfies a LSI with constant C5°

Lemma (Perturbation)

If v is a probability measure on T° satisfying a LSI with constant C°, and
is a probability measure with density h with respect to v such that, for some
constant X > 0, + < h < ), then y satisfies a LS| with constant C° = \2C.®.

Lemma (LSI for the uniform distribution)
The uniform distribution u on T satisfies a LSI with constant 81?

Forall N € N, t > 0 and all probability density uy € C3%5(T),

HN(NNaPt)_s)\gNZ/ BN

N

Vi Iog dXN

31



Uniform in time bounds on the derivatives

Lemma
Foralln>1 and a,...,an € [1,d], there exist C;,, C;° > 0 such that for all
t>0,

t
10ar....anpillie < CY  and /H(‘?m..‘.?anﬁs\lfoodsgcg’o
0

Thanks to Morrey’s inequality and Sobolev embeddings, it is sufficient to
prove such bounds in the Sobolev space H” for all m, i.e in 12

32



Step five : Conclusion

There are constants Cy, C3°, C3 > 0 and a function t — C(t) > 0 with
f(; C>(s)ds < C5° for all t > 0 such that for all t > 0

9 3un(D) < ~(Cr - Calt) () + 2.

Multiplying by exp(Cit — fo' C>(s)ds) and integrating in time we get

HN(t) < 6701 H~f0r Cg(S)dSHN(O) + % eC1 (Sff)JrfS[ Cg(u)duds

< % ~Cilgyy (t)+—e ,

which concludes.

33



Open problems

There are of course a lot of problems remaining

Adapted LSI and uniform in time propagation of chaos ? see
Rozensweig-Serfaty.

For vortex 2D case : up to now restricted to the torus... extend it
to whole space ?

Keller-Segel model ? (see Bresch-Jabin, Serfaty & al. for
modulated energy, Tomasevic &al. for parabolic-parabolic case)
Vlasov-Fokker-Planck equation with singular kernel as in
Bresch-Jabin-Soler very recent paper. Quantitative and uniform
in time ?

Optimal rate a la Lacker for singular models ?

34



Open problems

There are of course a lot of problems remaining

e Adapted LSI and uniform in time propagation of chaos ? see
Rozensweig-Serfaty.

e For vortex 2D case : up to now restricted to the torus... extend it
to whole space ?

e Keller-Segel model ? (see Bresch-Jabin, Serfaty & al. for
modulated energy, Tomasevic &al. for parabolic-parabolic case)

e Vlasov-Fokker-Planck equation with singular kernel as in
Bresch-Jabin-Soler very recent paper. Quantitative and uniform
in time ?

e Optimal rate a la Lacker for singular models ?

Thank you!
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