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Microscopic description of fluids (Newton)

Gas: N > 1 particles evolving and interacting in a d-dimensional domain.
® The particles are all identical spheres of mass 1 and diameter ¢ > 0.
® The particles evolve in a periodic box of size 1 denoted T := [0, 1].

® The particles interact elastically at each binary collision and there is
no other type of interaction nor forcing.



Microscopic description of fluids (Newton)

For a gas made of N particles, they are undistinguishable and labeled by
integers i € {1,..., N}.

Denote by (x;, v;) € T? x RY the position and velocity of particle i for

1<i<N.

Denote by Xy := (x1,...,xy) € TN the set of positions and

by Vv := (vi1,...,vy) € RN the set of velocities of the particles.
Denote by Zy = (z1,...,2zy) € TV x R the set of configurations of

the particles, with for each particle z; := (x;, v;).



Microscopic description of fluids (Newton)

For a gas made of N particles, they are undistinguishable and labeled by
integers i € {1,..., N}.

Denote by (x;, v;) € T? x RY the position and velocity of particle i for

1<i<N.

Denote by Xy := (x1,...,xy) € TN the set of positions and

by Vv := (vi1,...,vy) € RN the set of velocities of the particles.
Denote by Zy = (z1,...,2zy) € TV x R the set of configurations of

the particles, with for each particle z; := (x;, v;).

The positions and velocities of the system of N particles obey Newton's
laws

dX,'(t) _ dV,'(t) .
dt = vi(t), dt =0,

Viell,...,N],

provided that the exclusion condition |x;(t) — xj(t)| > € is satisfied for
all j # i,



Microscopic description of fluids (Newton)

’
‘ ' K ‘

before collision on collision after collision

If |x;i — xj| = € then

where
Xj — XJ

xi =l
The phase space is

Dy = {2y e TN xRN /Vi # j, |x — x| > ¢}



Mesoscopic description of fluids (Boltzmann)

The distribution function f = f(t, x, v) of a particle satisfies
Of + v -V, f =Q(f,f)

with
Q(f, f)(v) := /Sd*IX]Rd (F(V)F(vy) — F(v)F(w)) ((v — v) ~w)+ dwdv;

and
vVi=v—w-(v—v)w

vi=vtw(v—v)w.



Questions

How to derive this equation from the system of particles ?

Can one describe fluctuations and large deviations from that limit ?



The grand canonical setting

We denote by Wg(t, Zy) the probability density of finding N > 0 hard
spheres of diameter ¢ at configuration Zy at time t. It solves

6tW,‘\€,+VN-VXNW,f,:O on D‘,EV,

with specular reflection on the boundary.



The grand canonical setting

The initial probability density is defined on the configurations (N, Zy) as

1 0 0
Wi (Zn) = Zs N' Hf (z1) 1o (Zw)

with e > 0, and where the normalization constant Z¢ is given by
—1+Z / dZy Hf z).
N>1

We denote by P. the probability and E. the expectation with respect to
this initial measure.



The grand canonical setting

Let V' be the total number of particles, we want that

limE. (M)t =1,

e—0

which ensures that the low density limit holds, i.e.that the inverse mean
free path is of order 1. Thus from now on we set

Ue = g (d=1),



The grand canonical setting

The (rescaled) n-particle correlation function is

) = e Z /dZnH -dzpyp n+p(t Znip)



The grand canonical setting

The (rescaled) n-particle correlation function is

) = e Z /dZnH -dzpyp n+p(t Znip)

For any test function hj,, the following holds :

NI

( S ha(Z(t) ,n(t))):Eg(éj\/z”mhn(zf(t),...

150 yin

ijF ik jF#k

_OO Wg(tvzp) p!
_pz_;/dz" pt (p—n)

— it [ d2,Fi( 2 ho(2).



The grand canonical setting

For any ¢, 1) defined on T9 x RY set

(o, 9) = / dz p(2)i(2).

Then in particular
1 N
ZE (Y h( () = (Fi (), h)

He =1

We note in the following the empirical distribution at time t



Convergence result: Lanford's theorem

Theorem [Lanford, 1974]

Recall
1l N
W(2n) = 22 T [17°(z) 105 (2n)
i=1
and assume that fy is a continuous probability such that

HfoeXp(M0+ e v| )HLOO(deR") 1

for some By > 0, ug € R.




Convergence result: Lanford's theorem

Theorem [Lanford, 1974]

Recall

N
L wio(zn) = 2 2 T ) 1og (20)
i=1

N! Z: NI

and assume that fy is a continuous probability such that

Hfoexp(uo + *M )HLoc('deRd) =1,

for some By > 0, g € R. In the limit u. — oo, the one-particle
density F£(t) converges uniformly to the solution f(t) of the
Boltzmann equation with initial data fy, on a time interval [0, To]
where Ty depends only on the parameters Sy, po.




Convergence result: Lanford's theorem

Theorem [Lanford, 1974]

Recall
1

NI

. 1l T
Wi(Zn) = 2= 37 [1°(2) 10;(2w)
Ci=l

and assume that fy is a continuous probability such that

Hfoexp(uo I %'V‘Z)HLx(TdXRd) <1,

for some By > 0, g € R. In the limit u. — oo, the one-particle
density F£(t) converges uniformly to the solution f(t) of the
Boltzmann equation with initial data fy, on a time interval [0, To]
where Ty depends only on the parameters Sy, po.

Furthermore for each n, the n-particle correlation function FZ(t)

converges almost everywhere to f®"(t) on the same time interval.




Lanford’'s theorem is a law of large numbers

Proposition

For all test functions h,

V6 >0, PE(

7e(h) — (f(t),h)‘ > 5) 0.

He—>00

Computing the variance for any test function h, we get that
2
m((wi(h) — (FE (1), 1) )
~E( Z (21 (1)) + 5 3 e () h(5(0) = (Fi (e.2). B

€ i#j



Lanford’'s theorem is a law of large numbers

Proposition

For all test functions h,

V8 >0, IP’E(

7 (h) — (f(t),h)‘ > 5) 0.

He—>00

Computing the variance for any test function h, we get that
2
E. ((r(h) - (FE(2).0)?)

1 Y 2( e 1 € € € 2
— EE(ug;h (EF(0) + 25 ;h(z,- (6)h(z (1)) = (Fi (£.2), h)

_ L

() + / F5(t, 22) h(z0)h(z2) dZs — (FE(t, 2), )2



Lanford’'s theorem is a law of large numbers

Proposition

For all test functions h,

V8 >0, IP’E(

7 (h) — (f(t),h)‘ > 5) 0.

He—>00

Computing the variance for any test function h, we get that
2
. ((mi(h) = (£ (), h)°)

1 Y 2( e 1 € € € 2
— IEE<Mg;h (EF(0) + 25 ;h(zi (6)h(z (1)) = (Fi (£.2), h)

_ L

() + / F5(t, 22) h(z0)h(z2) dZs — (FE(t, 2), )2

and the convergence to 0 follows from the fact that F§ converges to f®2
and F{ to f almost everywhere.



Large deviations

Goal: quantify the probability of an untypical event. A large deviations
principle holds if

P (75 ~ 1, t €0, T]) < exp(—pie F(T, ). |
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Define the cumulant generating function
1
AS(eh) = " log E. ( exp (pe Wf(h))) :
€

One expects F to be obtained by taking the Legendre transform of

lim /\f(eXp (g(t) - /Ot(f)sg +v-V.g) dS))~



Large deviations

Goal: quantify the probability of an untypical event. A large deviations
principle holds if

P (75 ~ 1, t €0, T]) < exp(—pie F(T, ). |

Define the cumulant generating function
1
AS(eh) = " log E. ( exp (pe Wf(h))) :
€

One expects F to be obtained by taking the Legendre transform of

t
lim /\f(exp (g(t) - / (0sg + v -Vxg) ds)).
e—0 0
In the following we shall
® study the limit of AS ;
® prove the LDP;
® identify F.



Large deviations

One can prove that

E. (exp w5 (h ) —1+y ke 1e /dZn FE(t, Z,) (eh/#s - 1)®" (Z,).

n>1



Large deviations

One can prove that
n &n
E.(exp (ri(h)) =1+ Y %/dz,, Folt.Zo) (e = 1) (Z0).
n>1

It turns out that

As(eh) = L IogIE€<eXp (pe i (h)))

He

) i—O:1 % / dz, £ (t,Z,) (" = 1) (Zy),

where the f¢ are (rescaled) cumulants. To identify the limit of AS we
are going to describe the cumulants 7 and their limits.



Large deviations

One can prove that
n &n
E.(exp (ri(h)) =1+ Y %/dz,, Folt.Zo) (e = 1) (Z0).
n>1

It turns out that
1
Ai(e") = = logE. (‘exp (- 7 (1))

He

) i—O:1 % / dz, £ (t,Z,) (" = 1) (Zy),

where the f¢ are (rescaled) cumulants. To identify the limit of AS we
are going to describe the cumulants 7 and their limits.

For instance £ = F{ and fy = pu.(F5 — Ff @ Ff).



Cumulants

Definition

Let (G,)n>1 be a family of distributions of n variables invariant by
permutation of the labels of the variables. The (rescaled) cumulants
associated with (G,)n>1 form the family (g,)»>1 defined, for all n > 1, by

=pi ! Z > (1) (s -1)6G,.

s=10€P;

The map from (G,),>1 to (gn)n>1 is bijective and

Vn>1, G—ZZ /f(”s

s=1o0cP;

Cumulants measure departure from factorization.



Cumulants

Cumulants are supported on “clusters”, or “connected graphs”.
For instance consider the exclusion condition

(Dn(Xl,...,Xn) = H 1\x,-—><j|>5-

1<i%j<n
For n =1, we set ®1(x) = 1.

Proposition [Penrose ‘67]

The cumulants of ($,) are equal to

(pn(xly-'-a _,ua -t Z H l\x,-ij-|§5)7

GeC, {i,j}EE(G)

where C, is the set of connected graphs with n vertices. Moreover

|<,On(X]_,..., | < Z H 1|x,-7xj-\§sa

TeT,{ij}EE(T)

where T, is the set of minimally connected graphs with n vertices.




Dynamical cumulants

Recall that 1
Ni(e") = — log E- (exp (- 5 (h)) ).

He

Then
£ - 1 € ®n
Ae(eh) = ZT — / dZ, f5(t, Z,) (e" = 1)77(Z,),

if the series is absolutely convergent, where (f£),>1 is the family of

rescaled dynamical cumulants associated with (F5),~;.



Graphical construction of dynamical cumulants

n particles at time t




Graphical construction of dynamical cumulants

Backward collision tree of particle 1




Graphical construction of dynamical cumulants

External recollision (between two collision trees) — forest




Graphical construction of dynamical cumulants




Graphical construction of dynamical cumulants

Non-intersecting forests are correlated




Graphical construction of cumulants

Overlapping forests — jungle

P1 P2

overlap ®




Dynamical cumulants

fr0.g(h®") = / dZpl > >

=1 XeP¢ i=1
XH(WE) ) o) Dy ).

We have written

i) =3 Y dT,d0 deH(sk vak(tk)).wk)+>.

m2n ac A,

Dynamical correlations are encoded in the collision trees, and in the
external recollisions and overlaps (= clusterings) between trees.



Dynamical cumulants and the cumulant generating
function

Recall that
s 1 &n
e( . h € h
AS(e ):Zln!/dz" fe(t, Z,) (e" —1) 77 (Z,).
n=

One can show thanks to the tree inequality that cumulants are bounded
for short times:
® -1
|fn6’[07t](h n)| S Cntn nl.



Limit dynamical cumulants and the cumulant generating
function

Limit cumulants are supported on minimally connected graphs.

Summing over n, one can treat all connections in a symmetric way.

=1
Noa(e") +1=3" = > /dusTing(“’K,O)(eh)®K("’K,o)f°®K(‘U?<,o),
K=1'"" TeT®

where

dusTing = dxpdVk H se ((vg(Te) — v (7e)) -we)+d7'edwe.
e={q,q'}€E(T)



The Hamilton-Jacobi equation

We write
Dg(s)

T(t.g) = Mo (o0 (&() = | B+ v-Via)(s.2(s)as) )

One can prove that the series defining Z(t, g) is well defined for a short
time and for g satisfying appropriate bounds.

Note that

K
OB =Y 8 T % [ dhg 2ol ()




The Hamilton-Jacobi equation

It solves formally

8tI(t> g) =H (agé_t(’tf) ) g(t))

. 1
with  H(p, p) = 5 /(p(zl)go(zz)(eAp - 1) du(zy, 2z, w),
with ) ,
Ap(z1,22,w) == p(z1) + p(z2) — pP(21) = P(22)
du(z1, 22, w) == sy, ((vl - ) -w)+dw dvy dvodxy

and with initial condition

7(0,g) = (0, e5®) — 1),



The Hamilton-Jacobi equation

It solves formally

0¢I(t,g) = ( Lt g) g(t ))

Og(t) '
1
with  H(p, p =5 o(z1)p(22) (eAp — 1) du(z, z,w),
independent until clustering time jummﬁme
with

Ap(z1,z2,w) = p(21) + p(z) — p(z1) — p(22)
du(z1, 22, w) = 0x—x, ((v1 — v2) -w)+dw dvy dvadxy

and with initial condition

7(0,g) = (f°,e5® —1).



The Hamilton-Jacobi equation

Notice that

and thanks to the HJ equation one finds that f; satisfies the Boltzmann
equation.

One can actually also compute the equation for the limit covariance
by differentiating Z twice (thanks to the bounds on the cumulants we
find the limit fluctuation field is Gaussian).



The large deviation functional

Recall (p(t),¥(t)) := /ga(t, z)Y(t, z)dz and define

(¢0) = / (o(s), (s)) .

Set
F(t,¢) = sup{ = (. Dg) + {e(t). 8(1)) ~ I(t.8)}

where the sup is taken on functions satisfying appropriate bounds.



A large deviation theorem: upper bound

Define D([0, T], M) the space of trajectories with values in the space of
measures.

Theorem: Upper bound [BGSRS 2023]

In the limit pu. — oo, the empirical measure satisfies the following large
deviation upper bound: for any closed set F c D([0, T], M),

1
limsup — logP. (7 € F) < — in‘;:]:(T:SD)-
pe

pe—o0 He




Proof of the upper bound

It follows rather classical methods. Thanks to a tightness argument, it
suffices to prove the result for compact sets in the weak topology
defined by the open sets

054(v) := {v € D(0, T]. M) :
(/. Dg) ~ r.gm) — (v De) — (vr.gm) | < 3/2}.
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(¢ Dg) — r.er)) = ((v.Dg) — (wr.gm))| < 672}
Set § > 0. For any g there holds
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Proof of the upper bound
It follows rather classical methods. Thanks to a tightness argument, it
suffices to prove the result for compact sets in the weak topology
defined by the open sets

O54(v) := {I/ € D([0, T], M) :

(/. Dg) ~ r.gm) — (v De) — (vr.gm) | < 3/2}.
Set § > 0. For any g there holds

. (° € 055(¢)) < exp (- + 1o D) — e (o(T),&(T))

< . (exp ( — o, D) + pio(s.(T))))

< exp (o3 + e, D) — el T). &(T) + - T(T. )

with

1 T
I5(T,g) == A[so,r](eg_f"T be) .= e IogEE(exp (e 7T[Eo,T](g—/o Dg))) :



Proof of the upper bound

Passing to the limit produces

imsup - log P. (n° € 0s5(¢)) < 5/2+(p, Dg)—(p(T), 8(TH+I(T ) .

pe—oo He



Proof of the upper bound

Passing to the limit produces

imsup - log P. (7 € 05,4(2)) < 6/2+ (2, Dg)— (¢(T), &(T)+Z(T. ).

pe—oo He

But

F(t,0) i=sup{ — (¢, D) + (e(e). 8(1)) ~ I(t. )} .
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so if ¢ € F then there exists g such that

F(T.9) < ~{.D8) + (2(T). 8(T) ~Z(T.8) + -



Proof of the upper bound

Passing to the limit produces

imsup - log P. (7 € 05,4(2)) < 6/2+ (2, Dg)— (¢(T), &(T)+Z(T. ).

pe—oo He

But

F(t,0) i=sup{ — (¢, D) + (e(e). 8(1)) ~ I(t. )} .

g

so if ¢ € F then there exists g such that

F(T.9) < ~{.D8) + (2(T). 8(T) ~Z(T.8) + -

This completes the proof: we recover

1
limsup — log P, (we € Oé,g(SO)) <-F(T,p)+9,

He—>00 :u’€

and it suffices to apply this to a finite covering of F C Uj<xOsg, (i) and
to let 6 go to 0.



A large deviation theorem: lower bound

One needs to restrict the class of observables to the set R defined by
functions ¢ such that for some p,

Dep(2) = [ (#(')(28) xpl—) — l2)olz2) o)) s (2:)
with  (0) = f0eP®

The restriction to R implies that the supremum defining F is reached for
some g.

Theorem: Lower bound [BGSRS 2023]

In the limit u. — oo, the empirical measure satisfies the following large
deviation lower bound: for any open set O C D([0, T], M),

1
o e & > .
liminf — logP. (7° € O) > goelgff;R]:(T’ ©)

Be—00 [e




|dentification of the Large Deviation Functional

For a 1D stochastic system, F. Rezakhanlou proved in 1998 (and F.
Bouchet conjectured in 2020 for Boltzmann) that the Large Deviation
Functional is

F(t,p) = f(O,wo)+5t;p{<<p, D@))—/O H(sO(S),p(S))dS},

with
F(0,%0) i= /dz (wotog (53) = wo+£°)

and where the Hamiltonian is given by

H(p, p) == %/du(zl,ZQ,w)go(zl)go(zz)(exp (Ap) —1).



|dentification of the Large Deviation Functional

It turns out that F = F in R. The proof follows from the fact that the
action

I(t,g) = (f°, (e — 1)) + (Dy(p: — &), 1) +/0 H(pe(s), pe(s))ds

associated with the Hamiltonian system

0
Dspr = %(@t» pt), with :(0) = fOer®

Ds(pt—g>:—2—’;(sot,pt)7 with  pe(t) = g(t).

satisfies the same Hamilton-Jacobi equation as Z. This allows to prove
the result on R.



Some open questions

® Improve the existence time of those results (Lanford and fluctuations
OK at equilibrium).

® Improve the understanding of the Hamilton-Jacobi equation. Better
functional setting 7 Equation at fixed ¢ 7

® What information does the Hamilton-Jacobi equation (not) retain —
in terms of the original cumulants for instance. Is there conservation
of entropy at the level of cumulants ?

® Clarify the restriction on the lower bound (cf G. Basile, D.
Heydecker)



