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Microscopic description of fluids (Newton)

Gas: N � 1 particles evolving and interacting in a d-dimensional domain.

• The particles are all identical spheres of mass 1 and diameter ε > 0.

• The particles evolve in a periodic box of size 1 denoted Td := [0, 1]d .

• The particles interact elastically at each binary collision and there is
no other type of interaction nor forcing.



Microscopic description of fluids (Newton)

For a gas made of N particles, they are undistinguishable and labeled by
integers i ∈ {1, . . . ,N}.

Denote by (xi , vi ) ∈ Td × Rd the position and velocity of particle i for
1 ≤ i ≤ N.

Denote by XN := (x1, . . . , xN) ∈ TdN the set of positions and
by VN := (v1, . . . , vN) ∈ RdN the set of velocities of the particles.

Denote by ZN := (z1, . . . , zN) ∈ TdN × RdN the set of configurations of
the particles, with for each particle zi := (xi , vi ).

The positions and velocities of the system of N particles obey Newton’s
laws

∀i ∈ [1, . . . ,N] ,
dxi (t)

dt
= vi (t) ,

dvi (t)

dt
= 0 ,

provided that the exclusion condition |xi (t)− xj(t)| > ε is satisfied for
all j 6= i .
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Microscopic description of fluids (Newton)

A fluid is made of molecules, obeying Newton’s laws:

The microscopic model
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the asymptotic behavior of a tagged particle in a gas has been studied in detail (see for
example [46]). In this paper, we will focus on the case d � 2.
On the one hand, the problem seems more di�cult insofar as the background has its own
dynamics, which is coupled with the tagged particle. But, on the other hand, pathological
situations as described in [25, 10, 11] are not stable: because of the dynamics of the scat-
terers, we expect the situation to be better since some ergodicity could be retrieved from
the additional degrees of freedom. In particular, there are invariant measures for the whole
system, i.e. the system consisting in both the background and the tagged particle.
Here we shall take advantage of the latter property to establish global uniform a priori
bounds for the distribution of particles, and more generally for all marginals of the N -particle
distribution (see Proposition 3.3). This will be the key to control the collision process, and
to prove (like in Kac’s model [27] for instance) that dynamics for which a very large number
of collisions occur over a short time interval, are of vanishing probability.
Note that a similar strategy, based on the existence of the invariant measure, was already
used by van Beijeren, Lanford, Lebowitz and Spohn [4, 33] to derive the linear Boltzmann
equation for long times.

Let us now give the precise framework of our study. As explained above, the idea is to improve
Lanford’s result by by considering fluctuations around some global equilibrium. Locally
the N -particle distribution fN should therefore look like a conditioned tensorized Maxwellian.

In the sequel, we shall focus on the case of hard-sphere dynamics (with mass m = 1) to avoid
technicalities due to artificial boundaries and cluster estimates. We shall further restrict our
attention to the case when the domain is periodic D = Td = [0, 1]d (d � 2) in order to avoid
pathologies related to boundary e↵ects, and complicated free dynamics.
The microscopic model is therefore given by the following system of ODEs:

(2.1)
dxi

dt
= vi ,

dvi

dt
= 0 as long as |xi(t) � xj(t)| > " for 1  i 6= j  N ,

with specular reflection after a collision

(2.2)
vi(t

+) = vi(t
�) +

1

"2
(vi � vj) · (xi � xj)(xi � xj)(t

�)

vj(t
+) = vj(t

�) � 1

"2
(vi � vj) · (xi � xj)(xi � xj)(t

�)

9
>=
>;

if |xi(t) � xj(t)| = " .

In the following we denote, for 1  i  N , zi := (xi, vi) and ZN := (z1, . . . , zN ). With a
slight abuse we say that ZN belongs to TdN ⇥ RdN if XN := (x1, . . . , xN ) belongs to TdN

and VN := (v1, . . . , vN ) to RdN . Recall that the phase space is denoted by

DN
" :=

�
ZN 2 TdN ⇥ RdN / 8i 6= j , |xi � xj | > "

 
.

We now distinguish pre-collisional configurations from post-collisional ones by defining for
indexes 1  i 6= j  N

@DN±
" (i, j) :=

n
ZN 2 TdN ⇥ RdN / |xi � xj | = " , ±(vi � vj) · (xi � xj) > 0

and 8(k, `) 2 [1, N ] \ {i, j} , |xk � x`| > "
o

.

Given ZN on @DN+
" (i, j), we define Z

(i,j)
N 2 @DN�

" (i, j) as the configuration having the
same positions (xk)1kN , the same velocities (vk)k 6=i,j for non interacting particles, and the
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on a time interval [0, C(�, µ)/↵].

By independent we mean that the correlations, which are due to the non overlapping
condition, vanish asymptotically as "! 0.

The main reason why the convergence is not known to hold for longer time intervals is
that the nonlinearity in the Boltzmann equation (1.1) is treated as if the equation was of
the type @tf = ↵f2: the cancellations between gain and loss terms in Q(f, f) are yet to
be understood. The only information, we are able to get, about these compensations is
the existence of invariant measures; in this work we improve the time of convergence by
considering very small fluctuations around such equilibria.

1.1. Setting of the problem.

1.1.1. The model. In the following, we consider only the case of dimension d = 2. We are
interested in describing the macroscopic behavior of a gas consisting in N hard spheres of
diameter " in a periodic domain T2 = [0, 1]2 of R2, with positions and velocities (xi, vi)1iN

in (T2 ⇥ R2)N , the dynamics of which is given by

(1.2)
dxi

dt
= vi ,

dvi

dt
= 0 as long as |xi(t) � xj(t)| > " for 1  i 6= j  N ,

with specular reflection at a collision

(1.3)
v0i := vi �

1

"2
(vi � vj) · (xi � xj) (xi � xj)

v0j := vj +
1

"2
(vi � vj) · (xi � xj) (xi � xj)

9
>=
>;

if |xi(t) � xj(t)| = " .

By macroscopic behavior, we mean that we look for a statistical description averaging both
on the number of particles N ! 1, and on the initial configurations.

Denote XN := (x1, . . . , xN ) 2 T2N , VN := (v1, . . . , vN ) 2 R2N and ZN := (XN , VN ) 2 DN

where DN := T2N ⇥ R2N . Defining the Hamiltonian

HN (VN ) :=
1

2

NX

i=1

|vi|2 ,

we consider the Liouville equation in the 4N -dimensional phase space

(1.4) DN
" :=

�
ZN 2 DN / 8i 6= j , |xi � xj | > "

 
.

The Liouville equation is the following

@tfN + {HN , fN} = 0 ,

or in other words

(1.5) @tfN + VN · rXN
fN = 0 ,

with specular reflection on the boundary, meaning that if ZN belongs to @DN+
" (i, j) then we

impose that

(1.6) fN (t, ZN ) = fN (t, Z 0
N ) ,

where X 0
N = XN and v0k = vk if k 6= i, j while (v0i, v

0
j) are given by (1.3). We have also defined

@DN±
" (i, j) :=

n
ZN 2 DN / |xi � xj | = " , ±(vi � vj) · (xi � xj) > 0(1.7)

and 8(k, `) 2 [1, N ]2 \ {(i, j)} , k 6= ` , |xk � x`| > "
o

.
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on a time interval [0, C(�, µ)/↵].

By independent we mean that the correlations, which are due to the non overlapping
condition, vanish asymptotically as "! 0.

The main reason why the convergence is not known to hold for longer time intervals is
that the nonlinearity in the Boltzmann equation (1.1) is treated as if the equation was of
the type @tf = ↵f2: the cancellations between gain and loss terms in Q(f, f) are yet to
be understood. The only information, we are able to get, about these compensations is
the existence of invariant measures; in this work we improve the time of convergence by
considering very small fluctuations around such equilibria.

1.1. Setting of the problem.

1.1.1. The model. In the following, we consider only the case of dimension d = 2. We are
interested in describing the macroscopic behavior of a gas consisting in N hard spheres of
diameter " in a periodic domain T2 = [0, 1]2 of R2, with positions and velocities (xi, vi)1iN

in (T2 ⇥ R2)N , the dynamics of which is given by

(1.2)
dxi

dt
= vi ,

dvi

dt
= 0 as long as |xi(t) � xj(t)| > " for 1  i 6= j  N ,

with specular reflection at a collision

(1.3)
v0i := vi �

1

"2
(vi � vj) · (xi � xj) (xi � xj)

v0j := vj +
1

"2
(vi � vj) · (xi � xj) (xi � xj)

9
>=
>;

if |xi(t) � xj(t)| = " .

By macroscopic behavior, we mean that we look for a statistical description averaging both
on the number of particles N ! 1, and on the initial configurations.

Denote XN := (x1, . . . , xN ) 2 T2N , VN := (v1, . . . , vN ) 2 R2N and ZN := (XN , VN ) 2 DN

where DN := T2N ⇥ R2N . Defining the Hamiltonian

HN (VN ) :=
1

2

NX

i=1

|vi|2 ,

we consider the Liouville equation in the 4N -dimensional phase space

(1.4) DN
" :=

�
ZN 2 DN / 8i 6= j , |xi � xj | > "

 
.

The Liouville equation is the following

@tfN + {HN , fN} = 0 ,

or in other words

(1.5) @tfN + VN · rXN
fN = 0 ,

with specular reflection on the boundary, meaning that if ZN belongs to @DN+
" (i, j) then we

impose that

(1.6) fN (t, ZN ) = fN (t, Z 0
N ) ,

where X 0
N = XN and v0k = vk if k 6= i, j while (v0i, v

0
j) are given by (1.3). We have also defined

@DN±
" (i, j) :=

n
ZN 2 DN / |xi � xj | = " , ±(vi � vj) · (xi � xj) > 0(1.7)

and 8(k, `) 2 [1, N ]2 \ {(i, j)} , k 6= ` , |xk � x`| > "
o

.
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DERIVATION OF THE ORNSTEIN-UHLENBECK PROCESS FOR A

MASSIVE PARTICLE IN A RARIFIED GAS OF PARTICLES

THIERRY BODINEAU, ISABELLE GALLAGHER AND LAURE SAINT-RAYMOND

Abstract.

1. Introduction

The first observation of the erratic motion of fragments of pollen particles in a liquid is
attributed to the botanist Brown. Following this observation, a lot of attention was devoted
to understanding the physical mechanisms behind these fluctuations leading ultimately to the
mathematical theory of Brownian motion. We refer to the review paper [11] for a historical
overview. The macroscopic motion of the large particle is due to the fact that it undergoes
many collisions with the atoms of the fluid and even though the microscopic dynamics is
deterministic the motion observed on a macroscopic scale appears to be stochastic. In a
seminal paper, Holley [13] studied a one-dimensional deterministic dynamics of a large particle
interacting with a bath of atoms represented by independent particles with a small mass. Each
collision with an atom leads to a small deflection of the large particle and as the atoms are
initially randomly distributed the successive collisions lead ultimately to a Brownian motion
for the large particle displacement. This result was generalized to higher dimensions by Dürr,
Goldstein, Lebowitz in [7] and to a particle which has a convex body in [8]. The latter model
follows asymptotically a generalized Ornstein-Uhlenbeck di↵usion jointly on the velocity and
on the angular momentum. Even though the atoms are not interacting one with the other,
recollisions may occur between the large particle and some atoms leading to a memory e↵ect.
Asymptotically when the mass of the atoms vanishes, this e↵ect was shown to be irrelevant
in [13, 7, 8] and the limiting dynamics is a Markov process.

In this paper, we extend the framework studied in [8] to the case of a (relatively) large
particle with convex shape in contact with a gas of interacting atoms modeled by hard spheres
in the Boltzmann-Grad scaling.

1.1. The microscopic model. We consider, in d = 2 space dimensions, N spherical parti-
cles of mass m ⌧ 1 and diameter " (from now on called atoms), and one large and massive
particle (the molecule) of mass M = 1 and size "/↵ with " ⌧ ↵ ⌧ 1. More precisely the
molecule is a strictly convex body ⌃, which is rescaled by a factor "/↵, and which is allowed
to translate and rotate. The dynamics take place in the periodic domain T2 = [0, 1]2.

We denote by V̂N := (v̂1, . . . , v̂N ) 2 R2N the collection of velocities of all the atoms,
andby XN := (x1, . . . , xN ) 2 T2N the positions of their centers. Without loss of generality,
we assume that the atoms have no angular momentum, as spherical particles do not exchange
any angular momentum.

The molecule is described by the position and velocity (X, V ) 2 T2 ⇥ R2 of its center of

mass G, and by its orientation and its angular velocity (⇥, ⌦̂) 2 S ⇥ R. We locate a point P

on the boundary of the molecule by a vector r̂ :=
"

↵
GP 2 R2, meaning that the position of P
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If |xi − xj | = ε then

v ′i = vi − ωi,j · (vi − vj)ω
i,j

v ′j = vj + ωi,j · (vi − vj)ω
i,j ,

where

ωi,j :=
xi − xj
|xi − xj |

·

The phase space is

DεN :=
{
ZN ∈ TdN × RdN / ∀i 6= j , |xi − xj | > ε

}
.



Mesoscopic description of fluids (Boltzmann)

The distribution function f = f (t, x , v) of a particle satisfies

∂t f + v · ∇x f = Q(f , f )

with

Q(f , f )(v) :=

∫

Sd−1×Rd

(
f (v ′)f (v ′1)− f (v)f (v1)

)(
(v − v1) · ω

)
+
dωdv1

and
v ′ := v − ω · (v − v1)ω

v ′1 := v1 + ω · (v − v1)ω .



Questions

How to derive this equation from the system of particles ?

Can one describe fluctuations and large deviations from that limit ?



The grand canonical setting

We denote by W ε
N(t,ZN) the probability density of finding N ≥ 0 hard

spheres of diameter ε at configuration ZN at time t. It solves

∂tW
ε
N + VN · ∇XN

W ε
N = 0 on DεN ,

with specular reflection on the boundary.



The grand canonical setting

The initial probability density is defined on the configurations (N,ZN) as

1

N!
W ε0

N (ZN) :=
1

Zε
µN
ε

N!

N∏

i=1

f 0(zi ) 1Dε
N

(ZN)

with µε > 0, and where the normalization constant Zε is given by

Zε := 1 +
∑

N≥1

µN
ε

N!

∫

Dε
N

dZN

N∏

i=1

f 0(zi ) .

We denote by Pε the probability and Eε the expectation with respect to
this initial measure.



The grand canonical setting

Let N be the total number of particles, we want that

lim
ε→0

Eε (N ) εd−1 = 1 ,

which ensures that the low density limit holds, i.e. that the inverse mean
free path is of order 1. Thus from now on we set

µε := ε−(d−1).



The grand canonical setting

The (rescaled) n-particle correlation function is

F εn (t,Zn) := µ−nε

∞∑

p=0

1

p!

∫
dzn+1 . . . dzn+p W

ε
n+p(t,Zn+p)

For any test function hn, the following holds :

Eε
( ∑

i1,...,in
ij 6=ik ,j 6=k

hn
(
zεi1 (t), . . . , zεin(t)

))
= Eε

(
δN≥n

N !

(N − n)!
hn
(
zε1 (t), . . . , zεn (t)

))

=
∞∑

p=n

∫
dZp

W ε
p (t,Zp)

p!

p!

(p − n)!
hn
(
Zn

)

= µn
ε

∫
dZn F

ε
n (t,Zn) hn(Zn) .
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The grand canonical setting

For any ϕ,ψ defined on Td × Rd set

〈ϕ,ψ〉 :=

∫
dz ϕ(z)ψ(z) .

Then in particular

1

µε
Eε
( N∑

i=1

h
(
zεi (t)

))
= 〈F ε1 (t), h〉 .

We note in the following the empirical distribution at time t

πεt (h) :=
1

µε

N∑

i=1

h
(
zεi (t)

)
.



Convergence result: Lanford’s theorem

Theorem [Lanford, 1974]

Recall
1

N!
W ε0

N (ZN) :=
1

Zε
µN
ε

N!

N∏

i=1

f 0(zi ) 1Dε
N

(ZN)

and assume that f0 is a continuous probability such that

∥∥f0 exp(µ0 +
β0

2
|v |2)

∥∥
L∞(Td×Rd )

≤ 1 ,

for some β0 > 0, µ0 ∈ R.

In the limit µε →∞, the one-particle
density F ε1 (t) converges uniformly to the solution f (t) of the
Boltzmann equation with initial data f0, on a time interval [0,T0]
where T0 depends only on the parameters β0, µ0.

Furthermore for each n, the n-particle correlation function F εn (t)
converges almost everywhere to f ⊗n(t) on the same time interval.
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Lanford’s theorem is a law of large numbers

Proposition

For all test functions h,

∀δ > 0 , Pε
(∣∣∣πεt (h)− 〈f (t), h〉

∣∣∣ > δ
)
−−−−→
µε→∞

0 .

Computing the variance for any test function h, we get that

Eε
((
πεt (h)− 〈F ε1 (t), h〉

)2
)

= Eε
( 1

µ2
ε

N∑

i=1

h2
(
zεi (t)

)
+

1

µ2
ε

∑

i 6=j

h
(
zεi (t)

)
h
(
zεj (t)

))
− 〈F ε1 (t, z), h〉2

=
1

µε
〈F ε1 (t), h2〉+

∫
F ε2 (t,Z2) h(z1)h(z2) dZ2 − 〈F ε1 (t, z), h〉2 ,

and the convergence to 0 follows from the fact that F ε2 converges to f ⊗2

and F ε1 to f almost everywhere.
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Large deviations
Goal: quantify the probability of an untypical event. A large deviations
principle holds if

Pε (πεt ≈ ϕt , t ∈ [0,T ]) � exp (−µε F(T , ϕ)) .

Define the cumulant generating function

Λεt (eh) :=
1

µε
logEε

(
exp

(
µε π

ε
t (h)

))
.

One expects F to be obtained by taking the Legendre transform of

lim
ε→0

Λεt

(
exp

(
g(t)−

∫ t

0

(∂sg + v · ∇xg) ds
))
.

In the following we shall

• study the limit of Λεt ;

• prove the LDP;

• identify F .
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Large deviations

One can prove that

Eε
(

exp
(
πεt (h)

))
= 1 +

∑

n≥1

µn
ε

n!

∫
dZn F

ε
n (t,Zn)

(
eh/µε − 1

)⊗n
(Zn) .

It turns out that

Λεt (eh) :=
1

µε
logEε

(
exp

(
µε π

ε
t (h)

))

=
∞∑

n=1

1

n!

∫
dZn f

ε
n (t,Zn)

(
eh − 1

)⊗n
(Zn) ,

where the f εn are (rescaled) cumulants. To identify the limit of Λεt we
are going to describe the cumulants f εn and their limits.

For instance f ε1 = F ε1 and f ε2 = µε
(
F ε2 − F ε1 ⊗ F ε1

)
.
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Cumulants

Definition

Let (Gn)n≥1 be a family of distributions of n variables invariant by
permutation of the labels of the variables. The (rescaled) cumulants
associated with (Gn)n≥1 form the family (gn)n≥1 defined, for all n ≥ 1, by

gn = µn−1
ε

n∑

s=1

∑

σ∈Ps
n

(−1)s−1(s − 1)!Gσ .

The map from (Gn)n≥1 to (gn)n≥1 is bijective and

∀n ≥ 1 , Gn =
n∑

s=1

∑

σ∈Ps
n

µ−(n−s)
ε gσ .

Cumulants measure departure from factorization.



Cumulants
Cumulants are supported on “clusters”, or “connected graphs”.
For instance consider the exclusion condition

Φn

(
x1, . . . , xn

)
:=

∏

1≤i 6=j≤n

1|xi−xj |>ε .

For n = 1, we set Φ1

(
x1) ≡ 1.

Proposition [Penrose ‘67]

The cumulants of (Φn) are equal to

ϕn

(
x1, . . . , xn

)
= µn−1

ε

∑

G∈Cn

∏

{i,j}∈E(G)

(−1|xi−xj |≤ε) ,

where Cn is the set of connected graphs with n vertices. Moreover

|ϕn

(
x1, . . . , xn

)
| ≤

∑

T∈Tn

∏

{i,j}∈E(T )

1|xi−xj |≤ε ,

where Tn is the set of minimally connected graphs with n vertices.



Dynamical cumulants

Recall that

Λεt (eh) :=
1

µε
logEε

(
exp

(
µε π

ε
t (h)

))
.

Then

Λεt (eh) =
∞∑

n=1

1

n!

∫
dZn f

ε
n (t,Zn)

(
eh − 1

)⊗n
(Zn) ,

if the series is absolutely convergent, where (f εn )n≥1 is the family of
rescaled dynamical cumulants associated with (F εn )n≥1.



Graphical construction of dynamical cumulants

n particles at time t



Graphical construction of dynamical cumulants

Backward collision tree of particle 1

t

0



Graphical construction of dynamical cumulants

External recollision (between two collision trees) → forest

t

0



Graphical construction of dynamical cumulants

t

0



Graphical construction of dynamical cumulants

Non-intersecting forests are correlated

t

0

≁ ≁



Graphical construction of cumulants

Overlapping forests → jungle

⊗overlap

λ1 λ3

ρ1 ρ2

λ2
t

0



Dynamical cumulants

f εn,[0,t](h
⊗n) =

∫
dZnµ

n−1
ε

n∑

`=1

∑

λ∈P`
n

∑̀

r=1

∑

ρ∈P r
`

∫ (∏̀

i=1

dµ
(
Ψε
λi

)

×H
(
Ψε
λi

)
∆∆λi

)
ϕρ f

ε0
{1,...,r}(Ψε0

ρ1
, . . . ,Ψε0

ρr ) .

We have written

dµ(Ψε
n) :=

∑

m≥n

∑

a∈A±n,m

dTmdΩmdVm

m∏

k=1

(
sk
((
vk − vak (tk)

)
· ωk

)
+

)
.

Dynamical correlations are encoded in the collision trees, and in the
external recollisions and overlaps (= clusterings) between trees.



Dynamical cumulants and the cumulant generating
function

Recall that

Λεt (eh) =
∞∑

n=1

1

n!

∫
dZn f

ε
n (t,Zn)

(
eh − 1

)⊗n
(Zn) .

One can show thanks to the tree inequality that cumulants are bounded
for short times:

|f εn,[0,t](h
⊗n)| ≤ C ntn−1n! .



Limit dynamical cumulants and the cumulant generating
function

Limit cumulants are supported on minimally connected graphs.

Summing over n, one can treat all connections in a symmetric way.

Λ[0,t](e
h) + 1 =

∞∑

K=1

1

K !

∑

T∈T ±K

∫
dµT

sing(ΨK ,0)(eh)⊗K (ΨK ,0)f 0⊗K (Ψ0
K ,0) ,

where

dµT
sing := dx∗KdVK

∏

e={q,q′}∈E(T )

se
(
(vq(τe)− vq′(τe)) · ωe

)
+
dτedωe .



The Hamilton-Jacobi equation

We write

I(t, g) := Λ[0,t]

(
exp

(
g(t)−

∫ t

0

(

Dg(s)︷ ︸︸ ︷
∂sg + v · ∇xg)(s, z(s))ds

))
.

One can prove that the series defining I(t, g) is well defined for a short
time and for g satisfying appropriate bounds.

Note that

〈∂I(t, g)

∂g(t)
, Γ〉 =

∑

K

1

K !

∑

T∈T ±K

K∑

i=1

∫
dµsing,T̃ (ΨK ,0)Γ(zi (t))

×
(
eg(t)−

∫ t
0
Dsgds

)⊗K
(ΨK ,0)

(
f 0
)⊗K

(Ψ0
K ,0) .



The Hamilton-Jacobi equation

It solves formally

∂tI(t, g) = H
(∂I(t, g)

∂g(t)
, g(t)

)

with H(ϕ, p) =
1

2

∫
ϕ(z1)ϕ(z2)

(
e∆p − 1

)
dµ(z1, z2, ω) ,

with
∆p(z1, z2, ω) := p(z ′1) + p(z ′2)− p(z1)− p(z2) ,

dµ(z1, z2, ω) := δx1−x2

(
(v1 − v2) · ω

)
+
dω dv1 dv2dx1 ,

and with initial condition

I(0, g) = 〈f 0, eg(0) − 1〉 .
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(∂I(t, g)

∂g(t)
, g(t)
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with H(ϕ, p) =
1

2

∫
ϕ(z1)ϕ(z2)︸ ︷︷ ︸

independent until clustering time

(
e∆p − 1

)

︸ ︷︷ ︸
jumps of g at clustering time

dµ(z1, z2, ω) ,
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The Hamilton-Jacobi equation

Notice that

f1(t) := lim
µε→∞

F ε1 (t) =
∂I(t, 0)

∂g(t)

and thanks to the HJ equation one finds that f1 satisfies the Boltzmann
equation.

One can actually also compute the equation for the limit covariance
by differentiating I twice (thanks to the bounds on the cumulants we
find the limit fluctuation field is Gaussian).



The large deviation functional

Recall 〈ϕ(t), ψ(t)〉 :=

∫
ϕ(t, z)ψ(t, z)dz and define

〈〈
ϕ,ψ

〉〉
:=

∫ t

0

〈ϕ(s), ψ(s)〉ds .

Set
F(t, ϕ) := sup

g

{
−
〈〈
ϕ,Dg

〉〉
+ 〈ϕ(t), g(t)〉 − I(t, g)

}
,

where the sup is taken on functions satisfying appropriate bounds.



A large deviation theorem: upper bound

Define D([0,T ],M) the space of trajectories with values in the space of
measures.

Theorem: Upper bound [BGSRS 2023]

In the limit µε →∞, the empirical measure satisfies the following large
deviation upper bound: for any closed set F ⊂ D([0,T ],M),

lim sup
µε→∞

1

µε
logPε (πε ∈ F) ≤ − inf

ϕ∈F
F(T , ϕ) .



Proof of the upper bound
It follows rather classical methods. Thanks to a tightness argument, it
suffices to prove the result for compact sets in the weak topology
defined by the open sets

Oδ,g (ν) :=
{
ν′ ∈ D([0,T ],M) :
∣∣∣
(〈〈
ν′,Dg

〉〉
− 〈ν′T , gT 〉

)
−
(〈〈
ν,Dg

〉〉
− 〈νT , gT 〉

)∣∣∣ < δ/2
}
.

Set δ > 0. For any g there holds

Pε (πε ∈ Oδ,g (ϕ)) ≤ exp
(
µε
δ

2
+ µε

〈〈
ϕ,Dg

〉〉
− µε〈ϕ(T ), g(T )〉

)

× Eε
(

exp
(
− µε

〈〈
πε,Dg

〉〉
+ µε〈πεT , g(T )〉

))

≤ exp
(
µε
δ

2
+ µε

〈〈
ϕ,Dg

〉〉
− µε〈ϕ(T ), g(T )〉+ µε Iε(T , g)

)
,

with

Iε(T , g) := Λε[0,T ]

(
eg−

∫ T
0

Dg
)

:=
1

µε
logEε

(
exp

(
µε π

ε
[0,T ](g−

∫ T

0

Dg)
))
.
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.



Proof of the upper bound
Passing to the limit produces

lim sup
µε→∞

1

µε
logPε

(
πε ∈ Oδ,g (ϕ)

)
≤ δ/2+

〈〈
ϕ,Dg

〉〉
−〈ϕ(T ), g(T )〉+I(T , g) .

But

F(t, ϕ) := sup
g

{
−
〈〈
ϕ,Dg

〉〉
+ 〈ϕ(t), g(t)〉 − I(t, g)

}
,

so if ϕ ∈ F then there exists g such that

F(T , ϕ) ≤ −
〈〈
ϕ,Dg

〉〉
+ 〈ϕ(T ), g(T )〉 − I(T , g) +

δ

2
·

This completes the proof: we recover

lim sup
µε→∞

1

µε
logPε

(
πε ∈ Oδ,g (ϕ)

)
≤ −F(T , ϕ) + δ ,

and it suffices to apply this to a finite covering of F ⊂ ∪i≤KOδ,gi (ϕi ) and
to let δ go to 0.
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A large deviation theorem: lower bound

One needs to restrict the class of observables to the set R defined by
functions ϕ such that for some p,

Dtϕ(z) =

∫ (
ϕ(z ′)ϕ(z ′2) exp(−∆p)− ϕ(z)ϕ(z2) exp(∆p)

)
dµz(z2, ω)

with ϕ(0) = f 0ep(0) .

The restriction to R implies that the supremum defining F is reached for
some g .

Theorem: Lower bound [BGSRS 2023]

In the limit µε →∞, the empirical measure satisfies the following large
deviation lower bound: for any open set O ⊂ D([0,T ],M),

lim inf
µε→∞

1

µε
logPε (πε ∈ O) ≥ − inf

ϕ∈O∩R
F(T , ϕ) .



Identification of the Large Deviation Functional

For a 1D stochastic system, F. Rezakhanlou proved in 1998 (and F.
Bouchet conjectured in 2020 for Boltzmann) that the Large Deviation
Functional is

F̂(t, ϕ) := F̂(0, ϕ0) + sup
p

{〈〈
p,Dϕ

〉〉
−
∫ t

0

H
(
ϕ(s), p(s)

)
ds

}
,

with

F̂(0, ϕ0) :=

∫
dz
(
ϕ0 log

(ϕ0

f 0

)
− ϕ0 + f 0

)

and where the Hamiltonian is given by

H(ϕ, p) :=
1

2

∫
dµ(z1, z2, ω)ϕ(z1)ϕ(z2)

(
exp

(
∆p
)
− 1
)
.



Identification of the Large Deviation Functional

It turns out that F̂ = F in R. The proof follows from the fact that the
action

Î(t, g) := 〈f 0, (ept(0) − 1)〉+
〈〈
Ds(pt − g), ϕt

〉〉
+

∫ t

0

H(ϕt(s), pt(s))ds

associated with the Hamiltonian system

Dsϕt =
∂H
∂p

(ϕt , pt) , with ϕt(0) = f 0ept(0) ,

Ds(pt − g) = −∂H
∂ϕ

(ϕt , pt) , with pt(t) = g(t) .

satisfies the same Hamilton-Jacobi equation as I. This allows to prove
the result on R.



Some open questions

• Improve the existence time of those results (Lanford and fluctuations
OK at equilibrium).

• Improve the understanding of the Hamilton-Jacobi equation. Better
functional setting ? Equation at fixed ε ?

• What information does the Hamilton-Jacobi equation (not) retain –
in terms of the original cumulants for instance. Is there conservation
of entropy at the level of cumulants ?

• Clarify the restriction on the lower bound (cf G. Basile, D.
Heydecker)


