Large deviations for hard spheres in the low density limit

Isabelle Gallagher
École Normale Supérieure de Paris and Université Paris-Cité
About Entropy in Large Classical Particle Systems,
Clay Research Conference
September 2023

Joint work with Thierry Bodineau, Laure Saint-Raymond, and Sergio Simonella

Microscopic description of fluids (Newton)

Gas: $N \gg 1$ particles evolving and interacting in a d-dimensional domain.

- The particles are all identical spheres of mass 1 and diameter $\varepsilon>0$.
- The particles evolve in a periodic box of size 1 denoted $\mathbb{T}^{d}:=[0,1]^{d}$.
- The particles interact elastically at each binary collision and there is no other type of interaction nor forcing.

Microscopic description of fluids (Newton)

For a gas made of N particles, they are undistinguishable and labeled by integers $i \in\{1, \ldots, N\}$.

Denote by $\left(x_{i}, v_{i}\right) \in \mathbb{T}^{d} \times \mathbb{R}^{d}$ the position and velocity of particle i for $1 \leq i \leq N$.

Denote by $X_{N}:=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{T}^{d N}$ the set of positions and by $V_{N}:=\left(v_{1}, \ldots, v_{N}\right) \in \mathbb{R}^{d N}$ the set of velocities of the particles.

Denote by $Z_{N}:=\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{T}^{d N} \times \mathbb{R}^{d N}$ the set of configurations of the particles, with for each particle $z_{i}:=\left(x_{i}, v_{i}\right)$.

Microscopic description of fluids (Newton)

For a gas made of N particles, they are undistinguishable and labeled by integers $i \in\{1, \ldots, N\}$.

Denote by $\left(x_{i}, v_{i}\right) \in \mathbb{T}^{d} \times \mathbb{R}^{d}$ the position and velocity of particle i for $1 \leq i \leq N$.

Denote by $X_{N}:=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{T}^{d N}$ the set of positions and by $V_{N}:=\left(v_{1}, \ldots, v_{N}\right) \in \mathbb{R}^{d N}$ the set of velocities of the particles.

Denote by $Z_{N}:=\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{T}^{d N} \times \mathbb{R}^{d N}$ the set of configurations of the particles, with for each particle $z_{i}:=\left(x_{i}, v_{i}\right)$.
The positions and velocities of the system of N particles obey Newton's laws

$$
\forall i \in[1, \ldots, N], \quad \frac{d x_{i}(t)}{d t}=v_{i}(t), \quad \frac{d v_{i}(t)}{d t}=0
$$

provided that the exclusion condition $\left|x_{i}(t)-x_{j}(t)\right|>\varepsilon$ is satisfied for all $j \neq i$.

Microscopic description of fluids (Newton)

If $\left|x_{i}-x_{j}\right|=\varepsilon$ then

$$
\begin{aligned}
& v_{i}^{\prime}=v_{i}-\omega^{i, j} \cdot\left(v_{i}-v_{j}\right) \omega^{i, j} \\
& v_{j}^{\prime}=v_{j}+\omega^{i, j} \cdot\left(v_{i}-v_{j}\right) \omega^{i, j},
\end{aligned}
$$

where

$$
\omega^{i, j}:=\frac{x_{i}-x_{j}}{\left|x_{i}-x_{j}\right|} .
$$

The phase space is

$$
\mathcal{D}_{N}^{\varepsilon}:=\left\{Z_{N} \in \mathbb{T}^{d N} \times \mathbb{R}^{d N} / \forall i \neq j,\left|x_{i}-x_{j}\right|>\varepsilon\right\}
$$

Mesoscopic description of fluids (Boltzmann)

The distribution function $f=f(t, x, v)$ of a particle satisfies

$$
\partial_{t} f+v \cdot \nabla_{\chi} f=Q(f, f)
$$

with

$$
Q(f, f)(v):=\int_{\mathbb{S}^{d-1} \times \mathbb{R}^{d}}\left(f\left(v^{\prime}\right) f\left(v_{1}^{\prime}\right)-f(v) f\left(v_{1}\right)\right)\left(\left(v-v_{1}\right) \cdot \omega\right)_{+} d \omega d v_{1}
$$

and

$$
\begin{aligned}
v^{\prime} & :=v-\omega \cdot\left(v-v_{1}\right) \omega \\
v_{1}^{\prime} & :=v_{1}+\omega \cdot\left(v-v_{1}\right) \omega .
\end{aligned}
$$

Questions

How to derive this equation from the system of particles ?
Can one describe fluctuations and large deviations from that limit ?

The grand canonical setting

We denote by $W_{N}^{\varepsilon}\left(t, Z_{N}\right)$ the probability density of finding $N \geq 0$ hard spheres of diameter ε at configuration Z_{N} at time t. It solves

$$
\partial_{t} W_{N}^{\varepsilon}+V_{N} \cdot \nabla_{x_{N}} W_{N}^{\varepsilon}=0 \quad \text { on } \quad \mathcal{D}_{N}^{\varepsilon},
$$

with specular reflection on the boundary.

The grand canonical setting

The initial probability density is defined on the configurations $\left(N, Z_{N}\right)$ as

$$
\frac{1}{N!} W_{N}^{\varepsilon 0}\left(Z_{N}\right):=\frac{1}{\mathcal{Z}^{\varepsilon}} \frac{\mu_{\varepsilon}^{N}}{N!} \prod_{i=1}^{N} f^{0}\left(z_{i}\right) \mathbf{1}_{\mathcal{D}_{N}^{\varepsilon}}\left(Z_{N}\right)
$$

with $\mu_{\varepsilon}>0$, and where the normalization constant $\mathcal{Z}^{\varepsilon}$ is given by

$$
\mathcal{Z}^{\varepsilon}:=1+\sum_{N \geq 1} \frac{\mu_{\varepsilon}^{N}}{N!} \int_{\mathcal{D}_{N}^{\varepsilon}} d Z_{N} \prod_{i=1}^{N} f^{0}\left(z_{i}\right)
$$

We denote by \mathbb{P}_{ε} the probability and \mathbb{E}_{ε} the expectation with respect to this initial measure.

The grand canonical setting

Let \mathcal{N} be the total number of particles, we want that

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{E}_{\varepsilon}(\mathcal{N}) \varepsilon^{d-1}=1
$$

which ensures that the low density limit holds, i.e. that the inverse mean free path is of order 1 . Thus from now on we set

$$
\mu_{\varepsilon}:=\varepsilon^{-(d-1)}
$$

The grand canonical setting

The (rescaled) n-particle correlation function is

$$
F_{n}^{\varepsilon}\left(t, Z_{n}\right):=\mu_{\varepsilon}^{-n} \sum_{p=0}^{\infty} \frac{1}{p!} \int d z_{n+1} \ldots d z_{n+p} W_{n+p}^{\varepsilon}\left(t, Z_{n+p}\right)
$$

The grand canonical setting

The (rescaled) n-particle correlation function is

$$
F_{n}^{\varepsilon}\left(t, Z_{n}\right):=\mu_{\varepsilon}^{-n} \sum_{p=0}^{\infty} \frac{1}{p!} \int d z_{n+1} \ldots d z_{n+p} W_{n+p}^{\varepsilon}\left(t, Z_{n+p}\right)
$$

For any test function h_{n}, the following holds :

$$
\begin{aligned}
\mathbb{E}_{\varepsilon}\left(\sum_{\substack{i_{1}, \ldots, i_{n}, i_{n} \\
i_{j} \neq i_{k}, j \neq k}} h_{n}\left(z_{i_{1}}^{\varepsilon}(t), \ldots, z_{i_{n}}^{\varepsilon}(t)\right)\right) & =\mathbb{E}_{\varepsilon}\left(\delta_{\mathcal{N} \geq n} \frac{\mathcal{N}!}{(\mathcal{N}-n)!} h_{n}\left(z_{1}^{\varepsilon}(t), \ldots, z_{n}^{\varepsilon}(t)\right)\right) \\
& =\sum_{p=n}^{\infty} \int d Z_{p} \frac{W_{p}^{\varepsilon}\left(t, Z_{p}\right)}{p!} \frac{p!}{(p-n)!} h_{n}\left(Z_{n}\right) \\
& =\mu_{\varepsilon}^{n} \int d Z_{n} F_{n}^{\varepsilon}\left(t, Z_{n}\right) h_{n}\left(Z_{n}\right) .
\end{aligned}
$$

The grand canonical setting

For any φ, ψ defined on $\mathbb{T}^{d} \times \mathbb{R}^{d}$ set

$$
\langle\varphi, \psi\rangle:=\int d z \varphi(z) \psi(z) .
$$

Then in particular

$$
\frac{1}{\mu_{\varepsilon}} \mathbb{E}_{\varepsilon}\left(\sum_{i=1}^{\mathcal{N}} h\left(z_{i}^{\varepsilon}(t)\right)\right)=\left\langle F_{1}^{\varepsilon}(t), h\right\rangle .
$$

We note in the following the empirical distribution at time t

$$
\pi_{t}^{\varepsilon}(h):=\frac{1}{\mu_{\varepsilon}} \sum_{i=1}^{\mathcal{N}} h\left(z_{i}^{\varepsilon}(t)\right) .
$$

Convergence result: Lanford's theorem

Theorem [Lanford, 1974]
Recall

$$
\frac{1}{N!} W_{N}^{\varepsilon 0}\left(Z_{N}\right):=\frac{1}{\mathcal{Z}^{\varepsilon}} \frac{\mu_{\varepsilon}^{N}}{N!} \prod_{i=1}^{N} f^{0}\left(z_{i}\right) \mathbf{1}_{\mathcal{D}_{N}^{\varepsilon}}\left(Z_{N}\right)
$$

and assume that f_{0} is a continuous probability such that

$$
\left\|f_{0} \exp \left(\mu_{0}+\frac{\beta_{0}}{2}|v|^{2}\right)\right\|_{L^{\infty}\left(\mathbb{T}^{d} \times \mathbb{R}^{d}\right)} \leq 1
$$

for some $\beta_{0}>0, \mu_{0} \in \mathbb{R}$.

Convergence result: Lanford's theorem

Theorem [Lanford, 1974]
Recall

$$
\frac{1}{N!} W_{N}^{\varepsilon 0}\left(Z_{N}\right):=\frac{1}{\mathcal{Z}^{\varepsilon}} \frac{\mu_{\varepsilon}^{N}}{N!} \prod_{i=1}^{N} f^{0}\left(z_{i}\right) \mathbf{1}_{\mathcal{D}_{N}^{\varepsilon}}\left(Z_{N}\right)
$$

and assume that f_{0} is a continuous probability such that

$$
\left\|f_{0} \exp \left(\mu_{0}+\frac{\beta_{0}}{2}|v|^{2}\right)\right\|_{L^{\infty}\left(\mathbb{T}^{d} \times \mathbb{R}^{d}\right)} \leq 1
$$

for some $\beta_{0}>0, \mu_{0} \in \mathbb{R}$. In the limit $\mu_{\varepsilon} \rightarrow \infty$, the one-particle density $F_{1}^{\varepsilon}(t)$ converges uniformly to the solution $f(t)$ of the Boltzmann equation with initial data f_{0}, on a time interval $\left[0, T_{0}\right]$ where T_{0} depends only on the parameters β_{0}, μ_{0}.

Convergence result: Lanford's theorem

Theorem [Lanford, 1974]
Recall

$$
\frac{1}{N!} W_{N}^{\varepsilon 0}\left(Z_{N}\right):=\frac{1}{\mathcal{Z}^{\varepsilon}} \frac{\mu_{\varepsilon}^{N}}{N!} \prod_{i=1}^{N} f^{0}\left(z_{i}\right) \mathbf{1}_{\mathcal{D}_{N}^{\varepsilon}}\left(Z_{N}\right)
$$

and assume that f_{0} is a continuous probability such that

$$
\left\|f_{0} \exp \left(\mu_{0}+\frac{\beta_{0}}{2}|v|^{2}\right)\right\|_{L^{\infty}\left(\mathbb{T}^{d} \times \mathbb{R}^{d}\right)} \leq 1
$$

for some $\beta_{0}>0, \mu_{0} \in \mathbb{R}$. In the limit $\mu_{\varepsilon} \rightarrow \infty$, the one-particle density $F_{1}^{\varepsilon}(t)$ converges uniformly to the solution $f(t)$ of the Boltzmann equation with initial data f_{0}, on a time interval $\left[0, T_{0}\right]$ where T_{0} depends only on the parameters β_{0}, μ_{0}.

Furthermore for each n, the n-particle correlation function $F_{n}^{\varepsilon}(t)$ converges almost everywhere to $f^{\otimes n}(t)$ on the same time interval.

Lanford's theorem is a law of large numbers

Proposition

For all test functions h,

$$
\forall \delta>0, \quad \mathbb{P}_{\varepsilon}\left(\left|\pi_{t}^{\varepsilon}(h)-\langle f(t), h\rangle\right|>\delta\right) \xrightarrow[\mu_{\varepsilon} \rightarrow \infty]{ } 0
$$

Computing the variance for any test function h, we get that

$$
\begin{aligned}
& \mathbb{E}_{\varepsilon}\left(\left(\pi_{t}^{\varepsilon}(h)-\left\langle F_{1}^{\varepsilon}(t), h\right\rangle\right)^{2}\right) \\
& =\mathbb{E}_{\varepsilon}\left(\frac{1}{\mu_{\varepsilon}^{2}} \sum_{i=1}^{\mathcal{N}} h^{2}\left(z_{i}^{\varepsilon}(t)\right)+\frac{1}{\mu_{\varepsilon}^{2}} \sum_{i \neq j} h\left(z_{i}^{\varepsilon}(t)\right) h\left(z_{j}^{\varepsilon}(t)\right)\right)-\left\langle F_{1}^{\varepsilon}(t, z), h\right\rangle^{2}
\end{aligned}
$$

Lanford's theorem is a law of large numbers

Proposition

For all test functions h,

$$
\forall \delta>0, \quad \mathbb{P}_{\varepsilon}\left(\left|\pi_{t}^{\varepsilon}(h)-\langle f(t), h\rangle\right|>\delta\right) \xrightarrow[\mu_{\varepsilon} \rightarrow \infty]{ } 0
$$

Computing the variance for any test function h, we get that

$$
\begin{aligned}
& \mathbb{E}_{\varepsilon}\left(\left(\pi_{t}^{\varepsilon}(h)-\left\langle F_{1}^{\varepsilon}(t), h\right\rangle\right)^{2}\right) \\
& =\mathbb{E}_{\varepsilon}\left(\frac{1}{\mu_{\varepsilon}^{2}} \sum_{i=1}^{\mathcal{N}} h^{2}\left(z_{i}^{\varepsilon}(t)\right)+\frac{1}{\mu_{\varepsilon}^{2}} \sum_{i \neq j} h\left(z_{i}^{\varepsilon}(t)\right) h\left(z_{j}^{\varepsilon}(t)\right)\right)-\left\langle F_{1}^{\varepsilon}(t, z), h\right\rangle^{2} \\
= & \frac{1}{\mu_{\varepsilon}}\left\langle F_{1}^{\varepsilon}(t), h^{2}\right\rangle+\int F_{2}^{\varepsilon}\left(t, Z_{2}\right) h\left(z_{1}\right) h\left(z_{2}\right) d Z_{2}-\left\langle F_{1}^{\varepsilon}(t, z), h\right\rangle^{2},
\end{aligned}
$$

Lanford's theorem is a law of large numbers

Proposition

For all test functions h,

$$
\forall \delta>0, \quad \mathbb{P}_{\varepsilon}\left(\left|\pi_{t}^{\varepsilon}(h)-\langle f(t), h\rangle\right|>\delta\right) \xrightarrow[\mu_{\varepsilon} \rightarrow \infty]{ } 0
$$

Computing the variance for any test function h, we get that

$$
\begin{aligned}
& \mathbb{E}_{\varepsilon}\left(\left(\pi_{t}^{\varepsilon}(h)-\left\langle F_{1}^{\varepsilon}(t), h\right\rangle\right)^{2}\right) \\
& =\mathbb{E}_{\varepsilon}\left(\frac{1}{\mu_{\varepsilon}^{2}} \sum_{i=1}^{\mathcal{N}} h^{2}\left(z_{i}^{\varepsilon}(t)\right)+\frac{1}{\mu_{\varepsilon}^{2}} \sum_{i \neq j} h\left(z_{i}^{\varepsilon}(t)\right) h\left(z_{j}^{\varepsilon}(t)\right)\right)-\left\langle F_{1}^{\varepsilon}(t, z), h\right\rangle^{2} \\
= & \frac{1}{\mu_{\varepsilon}}\left\langle F_{1}^{\varepsilon}(t), h^{2}\right\rangle+\int F_{2}^{\varepsilon}\left(t, Z_{2}\right) h\left(z_{1}\right) h\left(z_{2}\right) d Z_{2}-\left\langle F_{1}^{\varepsilon}(t, z), h\right\rangle^{2},
\end{aligned}
$$

and the convergence to 0 follows from the fact that F_{2}^{ε} converges to $f^{\otimes 2}$ and F_{1}^{ε} to f almost everywhere.

Large deviations

Goal: quantify the probability of an untypical event. A large deviations principle holds if

$$
\mathbb{P}_{\varepsilon}\left(\pi_{t}^{\varepsilon} \approx \varphi_{t}, t \in[0, T]\right) \asymp \exp \left(-\mu_{\varepsilon} \mathcal{F}(T, \varphi)\right) .
$$

Large deviations

Goal: quantify the probability of an untypical event. A large deviations principle holds if

$$
\mathbb{P}_{\varepsilon}\left(\pi_{t}^{\varepsilon} \approx \varphi_{t}, t \in[0, T]\right) \asymp \exp \left(-\mu_{\varepsilon} \mathcal{F}(T, \varphi)\right)
$$

Define the cumulant generating function

$$
\Lambda_{t}^{\varepsilon}\left(e^{h}\right):=\frac{1}{\mu_{\varepsilon}} \log \mathbb{E}_{\varepsilon}\left(\exp \left(\mu_{\varepsilon} \pi_{t}^{\varepsilon}(h)\right)\right) .
$$

One expects \mathcal{F} to be obtained by taking the Legendre transform of

$$
\lim _{\varepsilon \rightarrow 0} \Lambda_{t}^{\varepsilon}\left(\exp \left(g(t)-\int_{0}^{t}\left(\partial_{s} g+v \cdot \nabla_{x} g\right) d s\right)\right)
$$

Large deviations

Goal: quantify the probability of an untypical event. A large deviations principle holds if

$$
\mathbb{P}_{\varepsilon}\left(\pi_{t}^{\varepsilon} \approx \varphi_{t}, t \in[0, T]\right) \asymp \exp \left(-\mu_{\varepsilon} \mathcal{F}(T, \varphi)\right)
$$

Define the cumulant generating function

$$
\Lambda_{t}^{\varepsilon}\left(e^{h}\right):=\frac{1}{\mu_{\varepsilon}} \log \mathbb{E}_{\varepsilon}\left(\exp \left(\mu_{\varepsilon} \pi_{t}^{\varepsilon}(h)\right)\right) .
$$

One expects \mathcal{F} to be obtained by taking the Legendre transform of

$$
\lim _{\varepsilon \rightarrow 0} \Lambda_{t}^{\varepsilon}\left(\exp \left(g(t)-\int_{0}^{t}\left(\partial_{s} g+v \cdot \nabla_{\times} g\right) d s\right)\right)
$$

In the following we shall

- study the limit of $\Lambda_{t}^{\varepsilon}$;
- prove the LDP;
- identify \mathcal{F}.

Large deviations

One can prove that

$$
\mathbb{E}_{\varepsilon}\left(\exp \left(\pi_{t}^{\varepsilon}(h)\right)\right)=1+\sum_{n \geq 1} \frac{\mu_{\varepsilon}^{n}}{n!} \int d Z_{n} F_{n}^{\varepsilon}\left(t, Z_{n}\right)\left(e^{h / \mu_{\varepsilon}}-1\right)^{\otimes n}\left(Z_{n}\right) .
$$

Large deviations

One can prove that

$$
\mathbb{E}_{\varepsilon}\left(\exp \left(\pi_{t}^{\varepsilon}(h)\right)\right)=1+\sum_{n \geq 1} \frac{\mu_{\varepsilon}^{n}}{n!} \int d Z_{n} F_{n}^{\varepsilon}\left(t, Z_{n}\right)\left(e^{h / \mu_{\varepsilon}}-1\right)^{\otimes n}\left(Z_{n}\right)
$$

It turns out that

$$
\begin{aligned}
\Lambda_{t}^{\varepsilon}\left(e^{h}\right) & :=\frac{1}{\mu_{\varepsilon}} \log \mathbb{E}_{\varepsilon}\left(\exp \left(\mu_{\varepsilon} \pi_{t}^{\varepsilon}(h)\right)\right) \\
& =\sum_{n=1}^{\infty} \frac{1}{n!} \int d Z_{n} f_{n}^{\varepsilon}\left(t, Z_{n}\right)\left(e^{h}-1\right)^{\otimes n}\left(Z_{n}\right),
\end{aligned}
$$

where the f_{n}^{ε} are (rescaled) cumulants. To identify the limit of $\Lambda_{t}^{\varepsilon}$ we are going to describe the cumulants f_{n}^{ε} and their limits.

Large deviations

One can prove that

$$
\mathbb{E}_{\varepsilon}\left(\exp \left(\pi_{t}^{\varepsilon}(h)\right)\right)=1+\sum_{n \geq 1} \frac{\mu_{\varepsilon}^{n}}{n!} \int d Z_{n} F_{n}^{\varepsilon}\left(t, Z_{n}\right)\left(e^{h / \mu_{\varepsilon}}-1\right)^{\otimes n}\left(Z_{n}\right)
$$

It turns out that

$$
\begin{aligned}
\Lambda_{t}^{\varepsilon}\left(e^{h}\right) & :=\frac{1}{\mu_{\varepsilon}} \log \mathbb{E}_{\varepsilon}\left(\exp \left(\mu_{\varepsilon} \pi_{t}^{\varepsilon}(h)\right)\right) \\
& =\sum_{n=1}^{\infty} \frac{1}{n!} \int d Z_{n} f_{n}^{\varepsilon}\left(t, Z_{n}\right)\left(e^{h}-1\right)^{\otimes n}\left(Z_{n}\right),
\end{aligned}
$$

where the f_{n}^{ε} are (rescaled) cumulants. To identify the limit of $\Lambda_{t}^{\varepsilon}$ we are going to describe the cumulants f_{n}^{ε} and their limits.

For instance $f_{1}^{\varepsilon}=F_{1}^{\varepsilon}$ and $f_{2}^{\varepsilon}=\mu_{\varepsilon}\left(F_{2}^{\varepsilon}-F_{1}^{\varepsilon} \otimes F_{1}^{\varepsilon}\right)$.

Cumulants

Definition

Let $\left(G_{n}\right)_{n \geq 1}$ be a family of distributions of n variables invariant by permutation of the labels of the variables. The (rescaled) cumulants associated with $\left(G_{n}\right)_{n \geq 1}$ form the family $\left(g_{n}\right)_{n \geq 1}$ defined, for all $n \geq 1$, by

$$
g_{n}=\mu_{\varepsilon}^{n-1} \sum_{s=1}^{n} \sum_{\sigma \in \mathcal{P}_{n}^{s}}(-1)^{s-1}(s-1)!G_{\sigma} .
$$

The map from $\left(G_{n}\right)_{n \geq 1}$ to $\left(g_{n}\right)_{n \geq 1}$ is bijective and

$$
\forall n \geq 1, \quad G_{n}=\sum_{s=1}^{n} \sum_{\sigma \in \mathcal{P}_{n}^{s}} \mu_{\varepsilon}^{-(n-s)} g_{\sigma}
$$

Cumulants measure departure from factorization.

Cumulants

Cumulants are supported on "clusters", or "connected graphs". For instance consider the exclusion condition

$$
\Phi_{n}\left(x_{1}, \ldots, x_{n}\right):=\prod_{1 \leq i \neq j \leq n} \mathbf{1}_{\left|x_{i}-x_{j}\right|>\varepsilon} .
$$

For $n=1$, we set $\Phi_{1}\left(x_{1}\right) \equiv 1$.

Proposition [Penrose '67]

The cumulants of $\left(\Phi_{n}\right)$ are equal to

$$
\varphi_{n}\left(x_{1}, \ldots, x_{n}\right)=\mu_{\varepsilon}^{n-1} \sum_{G \in \mathcal{C}_{n}} \prod_{\{i, j\} \in E(G)}\left(-\mathbf{1}_{\left|x_{i}-x_{j}\right| \leq \varepsilon}\right),
$$

where \mathcal{C}_{n} is the set of connected graphs with n vertices. Moreover

$$
\left|\varphi_{n}\left(x_{1}, \ldots, x_{n}\right)\right| \leq \sum_{T \in \mathcal{T}_{n}} \prod_{\{i, j\} \in E(T)} \mathbf{1}_{\left|x_{i}-x_{j}\right| \leq \varepsilon}
$$

where \mathcal{T}_{n} is the set of minimally connected graphs with n vertices.

Dynamical cumulants

Recall that

$$
\Lambda_{t}^{\varepsilon}\left(e^{h}\right):=\frac{1}{\mu_{\varepsilon}} \log \mathbb{E}_{\varepsilon}\left(\exp \left(\mu_{\varepsilon} \pi_{t}^{\varepsilon}(h)\right)\right)
$$

Then

$$
\Lambda_{t}^{\varepsilon}\left(e^{h}\right)=\sum_{n=1}^{\infty} \frac{1}{n!} \int d Z_{n} f_{n}^{\varepsilon}\left(t, Z_{n}\right)\left(e^{h}-1\right)^{\otimes n}\left(Z_{n}\right)
$$

if the series is absolutely convergent, where $\left(f_{n}^{\varepsilon}\right)_{n \geq 1}$ is the family of rescaled dynamical cumulants associated with $\left(F_{n}^{\varepsilon}\right)_{n \geq 1}$.

Graphical construction of dynamical cumulants

n particles at time t

Graphical construction of dynamical cumulants

Backward collision tree of particle 1

Graphical construction of dynamical cumulants

External recollision (between two collision trees) \rightarrow forest

Graphical construction of dynamical cumulants

Graphical construction of dynamical cumulants

Non-intersecting forests are correlated

Graphical construction of cumulants

Overlapping forests \rightarrow jungle

Dynamical cumulants

$$
\begin{aligned}
f_{n,[0, t]}^{\varepsilon}\left(h^{\otimes n}\right)=\int & d Z_{n} \mu_{\varepsilon}^{n-1} \sum_{\ell=1}^{n} \sum_{\lambda \in \mathcal{P}_{n}^{\ell}} \sum_{r=1}^{\ell} \sum_{\rho \in \mathcal{P}_{\ell}^{r}} \int\left(\prod_{i=1}^{\ell} d \mu\left(\Psi_{\lambda_{i}}^{\varepsilon}\right)\right. \\
& \left.\times \mathcal{H}\left(\Psi_{\lambda_{i}}^{\varepsilon}\right) \Delta_{\lambda_{i}}\right) \varphi_{\rho} f_{\{1, \ldots, r\}}^{\varepsilon 0}\left(\Psi_{\rho_{1}}^{\varepsilon 0}, \ldots, \Psi_{\rho_{r}}^{\varepsilon 0}\right) .
\end{aligned}
$$

We have written

$$
d \mu\left(\Psi_{n}^{\varepsilon}\right):=\sum_{m \geq n} \sum_{a \in \mathcal{A}_{n, m}^{ \pm}} d T_{m} d \Omega_{m} d V_{m} \prod_{k=1}^{m}\left(s_{k}\left(\left(v_{k}-v_{a_{k}}\left(t_{k}\right)\right) \cdot \omega_{k}\right)_{+}\right) .
$$

Dynamical correlations are encoded in the collision trees, and in the external recollisions and overlaps (= clusterings) between trees.

Dynamical cumulants and the cumulant generating function

Recall that

$$
\Lambda_{t}^{\varepsilon}\left(e^{h}\right)=\sum_{n=1}^{\infty} \frac{1}{n!} \int d Z_{n} f_{n}^{\varepsilon}\left(t, Z_{n}\right)\left(e^{h}-1\right)^{\otimes n}\left(Z_{n}\right)
$$

One can show thanks to the tree inequality that cumulants are bounded for short times:

$$
\left|f_{n,[0, t]}^{\varepsilon}\left(h^{\otimes n}\right)\right| \leq C^{n} t^{n-1} n!
$$

Limit dynamical cumulants and the cumulant generating function

Limit cumulants are supported on minimally connected graphs.
Summing over n, one can treat all connections in a symmetric way.

$$
\Lambda_{[0, t]}\left(e^{h}\right)+1=\sum_{K=1}^{\infty} \frac{1}{K!} \sum_{T \in \mathcal{T}_{K}^{ \pm}} \int d \mu_{\operatorname{sing}}^{T}\left(\Psi_{K, 0}\right)\left(e^{h}\right)^{\otimes K}\left(\Psi_{K, 0}\right) f^{0 \otimes K}\left(\Psi_{K, 0}^{0}\right)
$$

where

$$
d \mu_{\text {sing }}^{T}:=d x_{K}^{*} d V_{K} \prod_{e=\left\{q, q^{\prime}\right\} \in E(T)} s_{e}\left(\left(v_{q}\left(\tau_{e}\right)-v_{q^{\prime}}\left(\tau_{e}\right)\right) \cdot \omega_{e}\right)_{+} d \tau_{e} d \omega_{e}
$$

The Hamilton-Jacobi equation

We write

$$
\mathcal{I}(t, g):=\Lambda_{[0, t]}(\exp (g(t)-\int_{0}^{t}(\overbrace{\partial_{s} g+v \cdot \nabla_{x} g}^{D g(s)})(s, z(s)) d s)) .
$$

One can prove that the series defining $\mathcal{I}(t, g)$ is well defined for a short time and for g satisfying appropriate bounds.

Note that

$$
\begin{aligned}
& \left\langle\frac{\partial \mathcal{I}(t, g)}{\partial g(t)}, \Gamma\right\rangle=\sum_{K} \frac{1}{K!} \sum_{T \in \mathcal{T}_{K}^{ \pm}} \sum_{i=1}^{K} \int d \mu_{\text {sing }, \tilde{\tau}}\left(\Psi_{K, 0}\right) \Gamma\left(z_{i}(t)\right) \\
& \quad \times\left(e^{g(t)-\int_{0}^{t} D_{s} g d s}\right)^{\otimes K}\left(\Psi_{K, 0}\right)\left(f^{0}\right)^{\otimes K}\left(\Psi_{K, 0}^{0}\right) .
\end{aligned}
$$

The Hamilton-Jacobi equation

It solves formally

$$
\begin{aligned}
& \partial_{t} \mathcal{I}(t, g)=\mathcal{H}\left(\frac{\partial \mathcal{I}(t, g)}{\partial g(t)}, g(t)\right) \\
& \text { with } \quad \mathcal{H}(\varphi, p)=\frac{1}{2} \int \varphi\left(z_{1}\right) \varphi\left(z_{2}\right)\left(e^{\Delta p}-1\right) d \mu\left(z_{1}, z_{2}, \omega\right)
\end{aligned}
$$

with

$$
\begin{aligned}
\Delta p\left(z_{1}, z_{2}, \omega\right) & :=p\left(z_{1}^{\prime}\right)+p\left(z_{2}^{\prime}\right)-p\left(z_{1}\right)-p\left(z_{2}\right), \\
d \mu\left(z_{1}, z_{2}, \omega\right) & :=\delta_{x_{1}-x_{2}}\left(\left(v_{1}-v_{2}\right) \cdot \omega\right)_{+} d \omega d v_{1} d v_{2} d x_{1},
\end{aligned}
$$

and with initial condition

$$
\mathcal{I}(0, g)=\left\langle f^{0}, e^{g(0)}-1\right\rangle .
$$

The Hamilton-Jacobi equation

It solves formally

$$
\begin{aligned}
& \partial_{t} \mathcal{I}(t, g)=\mathcal{H}\left(\frac{\partial \mathcal{I}(t, g)}{\partial g(t)}, g(t)\right) \\
& \text { with } \mathcal{H}(\varphi, p)=\frac{1}{2} \int \underbrace{\text { jumps of } g \text { at clustering time }}_{\text {independent until clustering time }} \varphi \varphi\left(z_{1}\right) \varphi\left(z_{2}\right) \\
& \left(e^{\Delta p}-1\right)
\end{aligned} \mu\left(z_{1}, z_{2}, \omega\right), ~ 又 又 ~=, ~ l
$$

with

$$
\begin{aligned}
\Delta p\left(z_{1}, z_{2}, \omega\right) & :=p\left(z_{1}^{\prime}\right)+p\left(z_{2}^{\prime}\right)-p\left(z_{1}\right)-p\left(z_{2}\right) \\
d \mu\left(z_{1}, z_{2}, \omega\right) & :=\delta_{x_{1}-x_{2}}\left(\left(v_{1}-v_{2}\right) \cdot \omega\right)_{+} d \omega d v_{1} d v_{2} d x_{1}
\end{aligned}
$$

and with initial condition

$$
\mathcal{I}(0, g)=\left\langle f^{0}, e^{g(0)}-1\right\rangle .
$$

The Hamilton-Jacobi equation

Notice that

$$
f_{1}(t):=\lim _{\mu_{\varepsilon} \rightarrow \infty} F_{1}^{\varepsilon}(t)=\frac{\partial \mathcal{I}(t, 0)}{\partial g(t)}
$$

and thanks to the HJ equation one finds that f_{1} satisfies the Boltzmann equation.

One can actually also compute the equation for the limit covariance by differentiating \mathcal{I} twice (thanks to the bounds on the cumulants we find the limit fluctuation field is Gaussian).

The large deviation functional

Recall $\langle\varphi(t), \psi(t)\rangle:=\int \varphi(t, z) \psi(t, z) d z$ and define

$$
\langle\varphi, \psi\rangle\rangle:=\int_{0}^{t}\langle\varphi(s), \psi(s)\rangle d s .
$$

Set

$$
\mathcal{F}(t, \varphi):=\sup _{g}\{-\langle\langle\varphi, D g\rangle+\langle\varphi(t), g(t)\rangle-\mathcal{I}(t, g)\},
$$

where the sup is taken on functions satisfying appropriate bounds.

A large deviation theorem: upper bound

Define $D([0, T], \mathcal{M})$ the space of trajectories with values in the space of measures.

Theorem: Upper bound [BGSRS 2023]
In the limit $\mu_{\varepsilon} \rightarrow \infty$, the empirical measure satisfies the following large deviation upper bound: for any closed set $\mathbf{F} \subset D([0, T], \mathcal{M})$,

$$
\limsup _{\mu_{\varepsilon} \rightarrow \infty} \frac{1}{\mu_{\varepsilon}} \log \mathbb{P}_{\varepsilon}\left(\pi^{\varepsilon} \in \mathbf{F}\right) \leq-\inf _{\varphi \in \mathbf{F}} \mathcal{F}(T, \varphi) .
$$

Proof of the upper bound

It follows rather classical methods. Thanks to a tightness argument, it suffices to prove the result for compact sets in the weak topology defined by the open sets

$$
\begin{aligned}
\mathbf{O}_{\delta, g}(\nu):=\{ & \nu^{\prime} \in D([0, T], \mathcal{M}): \\
& \mid\left(\left\langle\left\langle\nu^{\prime}, D g\right\rangle-\left\langle\nu_{T}^{\prime}, g_{T}\right\rangle\right)-\left(\left\langle\langle\nu, D g\rangle-\left\langle\nu_{T}, g_{T}\right\rangle\right) \mid<\delta / 2\right\} .\right.
\end{aligned}
$$

Proof of the upper bound

It follows rather classical methods. Thanks to a tightness argument, it suffices to prove the result for compact sets in the weak topology defined by the open sets

$$
\begin{aligned}
\mathbf{O}_{\delta, g}(\nu):=\{ & \left\{\nu^{\prime} \in D([0, T], \mathcal{M}):\right. \\
& \mid\left(\left\langle\nu^{\prime}, D g\right\rangle-\left\langle\nu_{T}^{\prime}, g_{T}\right\rangle\right)-\left(\left\langle\langle\nu, D g\rangle-\left\langle\nu_{T}, g_{T}\right\rangle\right) \mid<\delta / 2\right\} .
\end{aligned}
$$

Set $\delta>0$. For any g there holds

$$
\begin{gathered}
\mathbb{P}_{\varepsilon}\left(\pi^{\varepsilon} \in \mathbf{O}_{\delta, g}(\varphi)\right) \leq \exp \left(\mu_{\varepsilon} \frac{\delta}{2}+\mu_{\varepsilon}\langle\varphi, D g\rangle-\mu_{\varepsilon}\langle\varphi(T), g(T)\rangle\right) \\
\times \mathbb{E}_{\varepsilon}\left(\exp \left(-\mu_{\varepsilon}\left\langle\left\langle\pi^{\varepsilon}, D g\right\rangle+\mu_{\varepsilon}\left\langle\pi_{T}^{\varepsilon}, g(T)\right\rangle\right)\right)\right.
\end{gathered}
$$

Proof of the upper bound

It follows rather classical methods. Thanks to a tightness argument, it suffices to prove the result for compact sets in the weak topology defined by the open sets

$$
\begin{aligned}
\mathbf{O}_{\delta, g}(\nu):= & \left\{\nu^{\prime} \in D([0, T], \mathcal{M}):\right. \\
& \left.\left|\left(\left\langle\nu^{\prime}, D g\right\rangle-\left\langle\nu_{T}^{\prime}, g_{T}\right\rangle\right)-\left(\langle\nu, D g\rangle-\left\langle\nu_{T}, g_{T}\right\rangle\right)\right|<\delta / 2\right\} .
\end{aligned}
$$

Set $\delta>0$. For any g there holds

$$
\begin{gathered}
\mathbb{P}_{\varepsilon}\left(\pi^{\varepsilon} \in \mathbf{O}_{\delta, g}(\varphi)\right) \leq \exp \left(\mu_{\varepsilon} \frac{\delta}{2}+\mu_{\varepsilon}\langle\varphi, D g\rangle-\mu_{\varepsilon}\langle\varphi(T), g(T)\rangle\right) \\
\times \mathbb{E}_{\varepsilon}\left(\exp \left(-\mu_{\varepsilon}\left\langle\pi^{\varepsilon}, D g\right\rangle+\mu_{\varepsilon}\left\langle\pi_{T}^{\varepsilon}, g(T)\right\rangle\right)\right) \\
\leq \exp \left(\mu_{\varepsilon} \frac{\delta}{2}+\mu_{\varepsilon}\left\langle\langle\varphi, D g\rangle-\mu_{\varepsilon}\langle\varphi(T), g(T)\rangle+\mu_{\varepsilon} \mathcal{I}^{\varepsilon}(T, g)\right),\right.
\end{gathered}
$$

with

$$
\mathcal{I}^{\varepsilon}(T, g):=\Lambda_{[0, T]}^{\varepsilon}\left(e^{g-\int_{0}^{T} D g}\right):=\frac{1}{\mu_{\varepsilon}} \log \mathbb{E}_{\varepsilon}\left(\exp \left(\mu_{\varepsilon} \pi_{[0, T]}^{\varepsilon}\left(g-\int_{0}^{T} D g\right)\right)\right)
$$

Proof of the upper bound

Passing to the limit produces
$\limsup _{\mu_{\varepsilon} \rightarrow \infty} \frac{1}{\mu_{\varepsilon}} \log \mathbb{P}_{\varepsilon}\left(\pi^{\varepsilon} \in \mathbf{O}_{\delta, g}(\varphi)\right) \leq \delta / 2+\langle\langle\varphi, D g\rangle-\langle\varphi(T), g(T)\rangle+\mathcal{I}(T, g)$.

Proof of the upper bound

Passing to the limit produces
$\limsup _{\mu_{\varepsilon} \rightarrow \infty} \frac{1}{\mu_{\varepsilon}} \log \mathbb{P}_{\varepsilon}\left(\pi^{\varepsilon} \in \mathbf{O}_{\delta, g}(\varphi)\right) \leq \delta / 2+\langle\langle\varphi, D g\rangle-\langle\varphi(T), g(T)\rangle+\mathcal{I}(T, g)$.
But

$$
\mathcal{F}(t, \varphi):=\sup _{g}\{-\langle\langle\varphi, D g\rangle+\langle\varphi(t), g(t)\rangle-\mathcal{I}(t, g)\}
$$

so if $\varphi \in \mathbf{F}$ then there exists g such that

$$
\mathcal{F}(T, \varphi) \leq-\left\langle\langle\varphi, D g\rangle+\langle\varphi(T), g(T)\rangle-\mathcal{I}(T, g)+\frac{\delta}{2} .\right.
$$

Proof of the upper bound

Passing to the limit produces
$\limsup _{\mu_{\varepsilon} \rightarrow \infty} \frac{1}{\mu_{\varepsilon}} \log \mathbb{P}_{\varepsilon}\left(\pi^{\varepsilon} \in \mathbf{O}_{\delta, g}(\varphi)\right) \leq \delta / 2+\langle\langle\varphi, D g\rangle-\langle\varphi(T), g(T)\rangle+\mathcal{I}(T, g)$.
But

$$
\mathcal{F}(t, \varphi):=\sup _{g}\{-\langle\langle\varphi, D g\rangle+\langle\varphi(t), g(t)\rangle-\mathcal{I}(t, g)\}
$$

so if $\varphi \in \mathbf{F}$ then there exists g such that

$$
\mathcal{F}(T, \varphi) \leq-\left\langle\langle\varphi, D g\rangle+\langle\varphi(T), g(T)\rangle-\mathcal{I}(T, g)+\frac{\delta}{2} .\right.
$$

This completes the proof: we recover

$$
\limsup _{\mu_{\varepsilon} \rightarrow \infty} \frac{1}{\mu_{\varepsilon}} \log \mathbb{P}_{\varepsilon}\left(\pi^{\varepsilon} \in \mathbf{O}_{\delta, g}(\varphi)\right) \leq-\mathcal{F}(T, \varphi)+\delta,
$$

and it suffices to apply this to a finite covering of $\mathbf{F} \subset \cup_{i \leq K} \mathbf{O}_{\delta, g_{i}}\left(\varphi_{i}\right)$ and to let δ go to 0 .

A large deviation theorem: lower bound

One needs to restrict the class of observables to the set \mathcal{R} defined by functions φ such that for some p,

$$
\begin{aligned}
& D_{t} \varphi(z)=\int\left(\varphi\left(z^{\prime}\right) \varphi\left(z_{2}^{\prime}\right) \exp (-\Delta p)-\varphi(z) \varphi\left(z_{2}\right) \exp (\Delta p)\right) d \mu_{z}\left(z_{2}, \omega\right) \\
& \text { with } \varphi(0)=f^{0} e^{p(0)}
\end{aligned}
$$

The restriction to \mathcal{R} implies that the supremum defining \mathcal{F} is reached for some g.

Theorem: Lower bound [BGSRS 2023]
In the limit $\mu_{\varepsilon} \rightarrow \infty$, the empirical measure satisfies the following large deviation lower bound: for any open set $\mathbf{O} \subset D([0, T], \mathcal{M})$,

$$
\liminf _{\mu_{\varepsilon} \rightarrow \infty} \frac{1}{\mu_{\varepsilon}} \log \mathbb{P}_{\varepsilon}\left(\pi^{\varepsilon} \in \mathbf{O}\right) \geq-\inf _{\varphi \in \mathbf{O} \cap \mathcal{R}} \mathcal{F}(T, \varphi) .
$$

Identification of the Large Deviation Functional

For a 1D stochastic system, F. Rezakhanlou proved in 1998 (and F. Bouchet conjectured in 2020 for Boltzmann) that the Large Deviation Functional is

$$
\widehat{\mathcal{F}}(t, \varphi):=\widehat{\mathcal{F}}\left(0, \varphi_{0}\right)+\sup _{p}\left\{\left\langle\langle p, D \varphi\rangle-\int_{0}^{t} \mathcal{H}(\varphi(s), p(s)) d s\right\},\right.
$$

with

$$
\widehat{\mathcal{F}}\left(0, \varphi_{0}\right):=\int d z\left(\varphi_{0} \log \left(\frac{\varphi_{0}}{f^{0}}\right)-\varphi_{0}+f^{0}\right)
$$

and where the Hamiltonian is given by

$$
\mathcal{H}(\varphi, p):=\frac{1}{2} \int d \mu\left(z_{1}, z_{2}, \omega\right) \varphi\left(z_{1}\right) \varphi\left(z_{2}\right)(\exp (\Delta p)-1) .
$$

Identification of the Large Deviation Functional

It turns out that $\widehat{\mathcal{F}}=\mathcal{F}$ in \mathcal{R}. The proof follows from the fact that the action

$$
\widehat{\mathcal{I}}(t, g):=\left\langle f^{0},\left(e^{p_{t}(0)}-1\right)\right\rangle+\left\langle\left\langle D_{s}\left(p_{t}-g\right), \varphi_{t}\right\rangle\right\rangle+\int_{0}^{t} \mathcal{H}\left(\varphi_{t}(s), p_{t}(s)\right) d s
$$

associated with the Hamiltonian system

$$
\begin{aligned}
& D_{s} \varphi_{t}=\frac{\partial \mathcal{H}}{\partial p}\left(\varphi_{t}, p_{t}\right), \quad \text { with } \quad \varphi_{t}(0)=f^{0} e^{p_{t}(0)} \\
& D_{s}\left(p_{t}-g\right)=-\frac{\partial \mathcal{H}}{\partial \varphi}\left(\varphi_{t}, p_{t}\right), \quad \text { with } \quad p_{t}(t)=g(t)
\end{aligned}
$$

satisfies the same Hamilton-Jacobi equation as \mathcal{I}. This allows to prove the result on \mathcal{R}.

Some open questions

- Improve the existence time of those results (Lanford and fluctuations OK at equilibrium).
- Improve the understanding of the Hamilton-Jacobi equation. Better functional setting ? Equation at fixed ε ?
- What information does the Hamilton-Jacobi equation (not) retain in terms of the original cumulants for instance. Is there conservation of entropy at the level of cumulants ?
- Clarify the restriction on the lower bound (cf G. Basile, D. Heydecker)

