ENTROPY AND CLASSIFICATION IN DYNAMICAL SYSTEMS

Jérôme Buzzi

Institut Mathématique d'Orsay, CNRS & Université Paris-Saclay

About Entropy in Large Classical Particle Systems CLAY MATHEMATICS INSTITUTE, September 29th, 2023

- Ergodic theory without an invariant probability measure
- Dynamical entropy in a topological setting and MMEs
- Classification of surface diffeomorphisms by MMEs
- Newhouse conjecture : MMEs of smooth surface diffeomorphisms
- Behind the curtain : hyperbolicity

ERGODIC THEORY

WITHOUT AN INVARIANT PROBABILITY MEASURE

TOPOLOGICAL DYNAMICAL SYSTEMS

Definition

Topological dynamics (X, f): homeo f of a compact metric space Xwith orbits $\mathcal{O}(x) := \{f^n x : n \ge 0\}$

Examples :

$$\triangleright T_A : \mathbb{T}^2 \to \mathbb{T}^2, x \mapsto A.x \text{ with } A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \text{ (hyperbolic toral autom.)}$$

$$\triangleright \sigma_d : (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}} \text{ on } \Sigma_d := \{1, \dots, d\}^{\mathbb{Z}} \text{ (full shift)}$$

$$\triangleright R_\alpha : \mathbb{T}^1 \to \mathbb{T}^1, x \mapsto x + \alpha \text{ (rotation)}$$

$$\triangleright \text{ Hénon map on its compact attractor}$$

$$\triangleright \dots$$

Asymptotic behavior of orbits

(X, f) topological dynamical system

measure = probability on $\mathcal B$ Borel σ -field generated by the open sets

Definition

Empirical measure μ_x^f of $x \in X$: weak limit (if it exists) of $\frac{1}{n} \sum_{k=0}^{n-1} \delta_{f^k x}$ Ergodic basin of measure $m : B(m) := \{x \in X : \mu_x^f \text{ exists and is } m\}$

Examples :

- Any
$$x \in (\mathbb{Q}/\mathbb{Z})^2$$
 is T_A -periodic and $\mu_x^{T_A} = \frac{1}{p} (\delta_x + \dots + \delta_{T_A^{p-1}x})$
- For any $x \in \mathbb{T}^1$, $\mu_x^{\mathcal{R}_\alpha} = \mathsf{Leb}_{\mathbb{T}^1}$

Note :

- every $\mu_x^f \in \mathbb{P}(f) := \{m \in \mathbb{P}(X) : f_*(m) := m \circ f^{-1} = m\} \neq \emptyset$ - $\mu_x^{\sigma_d}$ fails to exist for a Baire fat subset of $x \in \Sigma_d$
- not every $m \in \mathbb{P}(f)$ is empirical measure of some point (consider (\mathbb{T}^1, Id))

Asymptotic behavior of orbits

DEFINITION (IRREDUCIBILITY)

 $m \in \mathbb{P}(f)$ is ergodic if $\forall B \in \mathcal{B} f^{-1}B = B \implies m(B) = 0$ or 1

Examples of ergodic measures :

 $\mathsf{Leb}_{\mathbb{T}^1} \in \mathbb{P}_{\mathrm{erg}}(\mathcal{R}_{\alpha}) \text{ when } \alpha \notin \mathbb{Q}; \delta_0, \mathsf{Leb}_{\mathbb{T}^2} \in \mathbb{P}_{\mathrm{erg}}(\mathcal{T}_A)$

Ergodic decomposition :

$$\forall \mu \in \mathbb{P}(f) \exists P \in \mathbb{P}(\mathbb{P}_{\mathrm{erg}}(f)) \ \mu = \int_{\mathbb{P}_{\mathrm{erg}}(f)} \nu \ dP(\nu)$$

Theorem (Birkhoff pointwise ergodic theorem) For all $\mu \in \mathbb{P}_{\mathrm{erg}}(f)$, $\mu(B(\mu)) = 1$

Examples : $B(\text{Leb}_{\mathbb{T}^2})$ contains Lebesgue-a.e. point of \mathbb{T}^2 Bernoulli scheme $(p_1, \ldots, p_d)^{\mathbb{Z}} \in \mathbb{P}_{\text{erg}}(\sigma_d)$

COROLLARY

Any topological dynamics (X, f) has an invariant Borel partition : $X = \bigsqcup_{\mu \in \mathbb{P}_{erg}(f)} B(\mu) \sqcup X_0 \quad (\forall \mu \in \mathbb{P}(f) \ \mu(X_0) = 0)$

Dynamical entropy in the topological setting

Topological entropy as counting orbit segments

(X, f) topological dynamics

Counting orbit segments of length $n \ge 1$ at scale $\epsilon > 0$ from $Y \subset X$: $s_f(\epsilon, n, Y) := \max\{|S| : S \subset Y, x \ne y \in Y \Longrightarrow \exists 0 \le k < nd(f^kx, f^ky) \ge \epsilon\}$

DEFINITION (ADLER-KONHEIM-MACANDREW 1968, BOWEN-DINABURG)

Topological entropy : $h_{top}(f) := \lim_{\epsilon \to 0} h_{top}(f, \epsilon)$ where $h_{top}(f, \epsilon) := \limsup_{n \to \infty} \frac{1}{n} \log s_f(\epsilon, n, X)$

Lemma (Kushnirenko)

If X is a d-dimensional compact manifold then $h_{top}(f) \leq d \cdot \log \operatorname{Lip}(f)$

Examples :

 $-h_{\rm top}(R_\alpha)=0$

$$-h_{\mathrm{top}}(\sigma_d) = \log d$$

$$-h_{\rm top}(T_A) = \frac{3+\sqrt{5}}{2}$$

KS ENTROPY AS COUNTING ORBIT SEGMENTS

(X, f) topological dynamics

Counting orbit segments of length $n \ge 1$ at scale $\epsilon > 0$ from $Y \subset X$: $s_f(\epsilon, n, Y) := \max\{|S| : S \subset Y, x \ne y \in Y \Longrightarrow \exists 0 \le k < nd(f^kx, f^ky) \ge \epsilon\}$

Theorem (Katok)

Kolmogorov-Sinai entropy of
$$\mu \in \mathbb{P}_{\text{erg}}(f)$$
: for any $0 < \lambda < 1$,
 $h_{\mu}(f) := \lim_{\epsilon \to 0} h_{\mu}(f, \epsilon)$ where
 $h_{\mu}(f, \epsilon) := \limsup_{n \to \infty} \frac{1}{n} \log \inf_{\mu(Y) > \lambda} s_{f}(\epsilon, n, Y)$

Ideology : $h_{\mu}(f)$ quantifies "how much dynamics" is described by μ Remark : for $\mu \in \mathbb{P}(f)$, use the ergodic decomposition

Examples :

$$\begin{array}{l} -h_{\delta_0}(T_A) = 0 \text{ for } 0 \in \mathbb{P}_{\mathrm{erg}}(T_A) \\ -h_{\mathrm{Leb}_{\mathbb{T}^2}}(T_A) = h_{\mathrm{top}}(T_A) = \log \frac{3+\sqrt{5}}{2} \text{ for } \mathrm{Leb}_{\mathbb{T}^2} \in \mathbb{P}_{\mathrm{erg}}(T_A) \\ -h_{p\otimes\mathbb{Z}}(\sigma_d) = -\sum_{i=1}^d p_i \log p_i \text{ for } (p_1,\ldots,p_d)^{\otimes\mathbb{Z}} \in \mathbb{P}_{\mathrm{erg}}(\sigma_d) \end{array}$$

KS Entropy classifies Bernoulli schemes

Definition

 $\mu \in \mathbb{P}(f)$ and $\nu \in \mathbb{P}(g)$ are *measure-preservingly conjugate* if there is a Borel bijection $\psi : X' \to Y'$ with :

•
$$\mu(X') = \nu(Y') = 1$$
 and $\psi_*(\mu) = \nu$

•
$$\psi \circ f = g \circ \psi$$

THEOREM (ORNSTEIN 1971)

Two Bernoulli schemes $(p_1, \ldots, p_d)^{\mathbb{Z}} \in \mathbb{P}(\sigma_d)$ and $(q_1, \ldots, q_e)^{\mathbb{Z}} \in \mathbb{P}(\sigma_e)$ are measure-preservingly conjugate if and only if they have equal KS entropy :

$$-\sum_{i=1}^d p_i \log p_i = -\sum_{j=1}^e q_j \log q_j$$

Entropy as limit to embedding

(X, f) topological dynamics

Recall $\sigma_d : \Sigma_d \to \Sigma_d$ left-shift on $\{1, \ldots, d\}^{\mathbb{Z}}$

Definition

A measure-preserving embedding $(\mu, f) \mapsto (\Sigma_d, \sigma_d)$ is a Borel injective map $\psi : X' \to \Sigma_d$ with $\mu(X') = 1$ and $\psi \circ f = \sigma \circ \psi$

THEOREM (JEWETT-KRIEGER)

Topological dynamics (X, f) and $\mu \in \mathbb{P}(f)$ with μ ergodic

If $h_{\mu}(f) < \log d$ then \exists measure-preserving embedding $(\mu, f) \mapsto (\Sigma_d, \sigma_d)$

More precisely, a necessary and sufficient condition for the existence of such an embedding is :

 $h_{\mu}(f) < \log d \text{ or } (\mu, f)$ Bernoulli scheme with $h_{\mu}(f) = \log d$

 \rightsquigarrow Description of the types in $\mathbb{P}_{\text{erg}}(\sigma_d)$

ENTROPY AS LIMIT TO EMBEDDING

 $\mu \in \mathbb{P}_{\text{erg}}(f)$ strongly mixing : $\forall A, B \in \mathcal{B} \ \mu(A \cap f^{-n}B) \to \mu(A)\mu(B)$ $h_{\text{mix}}(f) := \sup\{h_{\mu}(f) : \mu \in \mathbb{P}_{\text{erg}}(f) \text{ is strongly mixing}\}$

Combining Jewett-Krieger theorem with Katok's horseshoe theorem :

Theorem

 $g: M \to M C^2$ -diffeomorphism of a compact surface (X, f) topological dynamics and $\mu \in \mathbb{P}_{erg}(f)$ If $h_{\mu}(f) < h_{mix}(g)$ then \exists probabilistic embedding (μ, f) into (M, g)

VARIATIONAL PRINCIPLE FOR THE ENTROPY

Theorem (Goodman, Dinaburg)

For any topological dynamics (X, f) $h_{top}(f) = \sup\{h_{\mu}(f) : \mu \in \mathbb{P}(f)\} = \sup\{h_{\mu}(f) : \mu \in \mathbb{P}_{erg}(f)\}$

Definition

measure maximizing entropy : $\mu \in \mathbb{P}_{\text{erg}}(f)$ st $h_{\mu}(f) = \sup_{\nu \in \mathbb{P}(f)} h_{\nu}(f)$ MME(f) denotes the set of such ergodic measures

Examples of unique MME : Leb_{T²} for T_A and $(1/d, ..., 1/d)^{\otimes \mathbb{Z}}$ for σ_d

THEOREM (NEWHOUSE 1989)

If f is C^{∞} smooth, then $\mathsf{MME}(f) \neq \emptyset$

Note : finite smoothness is not enough

CLASSIFYING SMOOTH SURFACE DYNAMICS

BOREL CONJUGACY

Definition

Two topological dynamics (X, f) and (Y, g) are *Borel conjugate* if $\exists \psi : X \to Y$ a Borel isomorphism such that $\psi \circ f = g \circ \psi$

Note :

- weakens topological conjugacy (ψ not necessarily continuous)
- # measure-preserving conjugacy between conservative dynamics
 implies :
 - $\mu \mapsto \psi_*(\mu)$ is a bijection between $\mathbb{P}_{\text{erg}}(f)$ and $\mathbb{P}_{\text{erg}}(g)$ with paired measures being measure-preservingly conjugate by ψ
 - equal topological entropy
 - equality of the cardinals $\kappa(f, n)$, $\kappa(g, n)$ of the *n*-periodic points for f and g
 - measure-preserving conjugacy between paired MMEs

BOREL CONJUGACY

Ideology :

- For general topological f, conjugacy types in $\mathbb{P}_{erg}(f)$ are quite arbitrary
- But smooth surface diffeos with positive entropy are quite rigid

Need:

- $\mu \in \mathbb{P}(f)$ strongly mixing : $\forall A, B \in \mathcal{B} \ \mu(A \cap f^{-n}B) \rightarrow \mu(A)\mu(B)$
- free part $X_{\text{free}} := X \setminus \{x \in X : \exists n \ge 1 f^n x = x\}$

Lemma

Two dynamics are Borel conjugate if and only if :

- their free parts are Borel conjugate

- for all $n \ge 1$, they have the same number $\kappa(f, n) = \kappa(g, n)$ of n-periodic points

Borel conjugacy of surface diffeomorphisms

Using horseshoe's Katok theorem, generator theorems of Hochman, and joint work with Boyle :

Theorem

 $f, g: C^2$ diffeos of compact surfaces with $h_{top}(f) > 0$, $h_{top}(g) > 0$ Each has strongly mixing measures with entropy arbitrarily close to their respective topological entropy. Then the aperiodic parts of f and g are Borel conjugate if and only if both following conditions are satisfied :

$$1 h_{top}(f) = h_{top}(g)$$

2 there is a bijection Φ : MME(f) \rightarrow MME(g) such that (μ , f) and ($\Phi(\mu)$, g) are measure-preservingly conjugate

Condition 1 follows from 2 unless $MME(f) = MME(g) = \emptyset$

Question : What are the number and types of the MMEs?

MMEs of smooth surface diffeomorphisms

The following are standard notions of irreducibility and aperiodicity

DEFINITION

Topologically transitive : $\exists x \in X \ \overline{\{f^n x : n \ge 0\}} = X$

Topologically mixing : $\forall U, V \subset X$ non-empty open $\forall n \gg 1 \ U \cap f^{-n}V \neq \emptyset$

Solving a problem of Newhouse (1990) :

THEOREM (B-CROVISIER-SARIG)

Let f be a C^{∞} diffeomorphism of a compact surface Assume $h_{top}(f) > 0$:

- There are finitely many ergodic measures maximizing the entropy
- There is exactly one MME if f is topologically transitive
- The unique MME is Bernoulli if f is topologically mixing

Putting the two theorems together with Ornstein's theorem :

THEOREM (B-CROVISIER-SARIG)

Two topological mixing C^{∞} diffeomorphisms f, g of compact surfaces with positive topological entropy are Borel conjugate if and only if the two conditions are satisfied :

2 for all
$$n \ge 1 \kappa(f, n) = \kappa(g, n)$$

Remarks :

- topological conjugacy does not always hold under above assumptions
- cannot drop " C^{∞} " or "positive topological entropy"
- dropping "topological mixing" requires other invariants and almost-Borel

Behind the curtain

INGREDIENTS OF THE PROOF

Hidden player : Lyapunov exponents for μ -ae $x \in M$ $\lambda(x, v) := \lim_{n \to \infty} \frac{1}{n} \log \|D_x f^n \cdot v\| \quad (x \in M, v \in T_x M \setminus 0)$

Ruelle-Margulis inequality :

 $\forall \mu \in \mathbb{P}_{erg}(f) \quad h_{\mu}(f) > 0 \implies \mu$ has no zero Lyapunov exponent That is Pesin hyperbolicity

Adding plane topology and smoothness we are able to generalize classical results of **uniformly hyperbolic** dynamics, including the above theorem More precisely,

- use homoclinic classes of hyperbolic periodic orbits as irreducible pieces of the dynamics
- prove local uniqueness using Sarig's symbolic dynamics
- control pieces with large entropy by using plane topology, dynamical foliations, Sard lemma and Yomdin theory

CONCLUSION

Conclusion

What we have seen :

- For smooth surface diffeos, positive entropy allows generalizing many result from uniform hyperbolic theory
- This solves Newhouse's problem about MMEs
- Topological entropy classifies in the mixing case

Perspectives :

- quantitative results (exponential mixing, central limit theorem,...)
- classes in higher dimensions

(work in progress with Croviser and Sarig involving a stability property of the Lyapunov exponents)

Thank you!

