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Our plan

Ergodic theory without an invariant probability measure

Dynamical entropy in a topological setting and MMEs

Classification of surface diffeomorphisms by MMEs

Newhouse conjecture : MMEs of smooth surface diffeomorphisms

Behind the curtain : hyperbolicity



Ergodic theory

without an invariant probability measure



Topological dynamical systems

Definition
Topological dynamics (X , f ) : homeo f of a compact metric space X

with orbits O(x) := {f nx : n ≥ 0}

Examples :

▷ TA : T2 → T2
, x 7→ A.x with A =

(
2 1

1 1

)
(hyperbolic toral autom.)

▷ σd : (xn)n∈Z 7→ (xn+1)n∈Z on Σd := {1, . . . , d}Z (full shift)

▷ Rα : T1 → T1
, x 7→ x + α (rotation)

▷ Hénon map on its compact attractor

▷ ...



Asymptotic behavior of orbits

(X , f ) topological dynamical system

measure = probability on B Borel σ-field generated by the open sets

Definition

Empirical measure µ
f
x of x ∈ X : weak limit (if it exists) of

1

n

∑n−1

k=0
δf kx

Ergodic basin of measure m : B(m) := {x ∈ X : µ
f
x exists and is m}

Examples :

- Any x ∈ (Q/Z)2 is TA-periodic and µTAx = 1

p(δx + · · ·+ δT p−1

A x)

- For any x ∈ T1
, µRαx = LebT1

Note :

- every µ
f
x ∈ P(f ) := {m ∈ P(X) : f∗(m) := m ◦ f −1 = m} ≠ ∅

- µσd
x fails to exist for a Baire fat subset of x ∈ Σd

- not everym ∈ P(f ) is empiricalmeasure of some point (consider (T1, Id))



Asymptotic behavior of orbits

Definition (Irreducibility)
m ∈ P(f ) is ergodic if ∀B ∈ B f −1B = B =⇒ m(B) = 0 or 1

Examples of ergodic measures :

LebT1 ∈ Perg(Rα) when α /∈ Q ; δ0, LebT2 ∈ Perg(TA)

Ergodic decomposition :

∀µ ∈ P(f ) ∃P ∈ P(Perg(f )) µ =
∫
Perg(f )

ν dP(ν)

Theorem (Birkhoff pointwise ergodic theorem)
For all µ ∈ Perg(f ), µ(B(µ)) = 1

Examples : B(LebT2) contains Lebesgue-a.e. point of T2

Bernoulli scheme (p1, . . . , pd)Z ∈ Perg(σd)

Corollary
Any topological dynamics (X , f ) has an invariant Borel partition :

X =
⊔

µ∈Perg(f ) B(µ) ⊔ X0 (∀µ ∈ P(f ) µ(X0) = 0)



Dynamical entropy in the topological

setting



Topological entropy as counting orbit segments

(X , f ) topological dynamics

Counting orbit segments of length n ≥ 1 at scale ϵ > 0 from Y ⊂ X :

sf (ϵ, n,Y) := max{|S| :S ⊂ Y , x ̸= y ∈ Y=⇒∃0 ≤ k < nd(f kx, f ky) ≥ ϵ}

Definition (Adler-Konheim-MacAndrew 1968, Bowen-Dinaburg)
Topological entropy :

htop(f ) := limϵ→0 htop(f , ϵ) where
htop(f , ϵ) := lim supn→∞

1

n log sf (ϵ, n,X)

Lemma (Kushnirenko)
If X is a d-dimensional compact manifold then htop(f ) ≤ d · log Lip(f )

Examples :

- htop(Rα) = 0

- htop(σd) = log d

- htop(TA) = 3+
√
5

2



KS entropy as counting orbit segments

(X , f ) topological dynamics

Counting orbit segments of length n ≥ 1 at scale ϵ > 0 from Y ⊂ X :

sf (ϵ, n,Y) := max{|S| :S ⊂ Y , x ̸= y ∈ Y=⇒∃0 ≤ k < nd(f kx, f ky) ≥ ϵ}

Theorem (Katok)
Kolmogorov-Sinai entropy of µ ∈ Perg(f ) : for any 0 < λ < 1,

hµ(f ) := limϵ→0 hµ(f , ϵ) where
hµ(f , ϵ) := lim supn→∞

1

n log infµ(Y)>λ sf (ϵ, n,Y)

Ideology : hµ(f ) quantifies “how much dynamics” is described by µ

Remark : for µ ∈ P(f ), use the ergodic decomposition

Examples :

- hδ0(TA) = 0 for 0 ∈ Perg(TA)

- hLebT2 (TA) = htop(TA) = log 3+
√
5

2
for LebT2 ∈ Perg(TA)

- hP⊗Z(σd) = −
∑d

i=1
pi log pi for (p1, . . . , pd)⊗Z ∈ Perg(σd)



KS Entropy classifies Bernoulli schemes

Definition
µ ∈ P(f ) and ν ∈ P(g) are measure-preservingly conjugate if there is a
Borel bijection ψ : X ′ → Y ′

with :

µ(X ′) = ν(Y ′) = 1 and ψ∗(µ) = ν

ψ ◦ f = g ◦ ψ

Theorem (Ornstein 1971)

Two Bernoulli schemes (p1, . . . , pd)Z ∈ P(σd) and (q1, . . . , qe)Z ∈ P(σe)
are measure-preservingly conjugate if and only if they have equal KS
entropy :

−
d∑

i=1

pi log pi = −
e∑

j=1

qj log qj



Entropy as limit to embedding

(X , f ) topological dynamics

Recall σd : Σd → Σd left-shift on {1, . . . , d}Z

Definition
A measure-preserving embedding (µ, f ) 7→ (Σd , σd) is a Borel injective
map ψ : X ′ → Σd with µ(X ′) = 1 and ψ ◦ f = σ ◦ ψ

Theorem (Jewett-Krieger)
Topological dynamics (X , f ) and µ ∈ P(f ) with µ ergodic

If hµ(f ) < log d then ∃ measure-preserving embedding (µ, f ) 7→ (Σd , σd)

More precisely, a necessary and sufficient condition for the existence of
such an embedding is :

hµ(f ) < log d or (µ, f ) Bernoulli scheme with hµ(f ) = log d

⇝ Description of the types in Perg(σd)



Entropy as limit to embedding

µ ∈ Perg(f ) strongly mixing : ∀A,B ∈ B µ(A ∩ f −nB) → µ(A)µ(B)

hmix(f ) := sup{hµ(f ) : µ ∈ Perg(f ) is strongly mixing}

Combining Jewett-Krieger theorem with Katok’s horseshoe theorem :

Theorem
g : M → M C2-diffeomorphism of a compact surface
(X , f ) topological dynamics and µ ∈ Perg(f )

If hµ(f ) < hmix(g) then ∃ probabilistic embedding (µ, f ) into (M, g)



Variational principle for the entropy

Theorem (Goodman, Dinaburg)
For any topological dynamics (X , f )

htop(f ) = sup{hµ(f ) : µ ∈ P(f )} = sup{hµ(f ) : µ ∈ Perg(f )}

Definition
measure maximizing entropy : µ ∈ Perg(f ) st hµ(f ) = supν∈P(f ) hν(f )
MME(f ) denotes the set of such ergodic measures

Examples of unique MME :

LebT2 for TA and (1/d, . . . , 1/d)⊗Z
for σd

Theorem (Newhouse 1989)
If f is C∞ smooth, thenMME(f ) ̸= ∅

Note : finite smoothness is not enough



Classifying smooth surface dynamics



Borel conjugacy

Definition
Two topological dynamics (X , f ) and (Y , g) are Borel conjugate if
∃ψ : X → Y a Borel isomorphism such that ψ ◦ f = g ◦ ψ

Note :

- weakens topological conjugacy (ψ not necessarily continuous)

- # measure-preserving conjugacy between conservative dynamics

- implies :

– µ 7→ ψ∗(µ) is a bijection between Perg(f ) and Perg(g) with paired

measures being measure-preservingly conjugate by ψ

– equal topological entropy

– equality of the cardinals κ(f , n), κ(g, n) of the n-periodic points for
f and g

– measure-preserving conjugacy between paired MMEs



Borel conjugacy

Ideology :

- For general topological f , conjugacy types in Perg(f ) are quite arbitrary
- But smooth surface diffeos with positive entropy are quite rigid

Need :

- µ ∈ P(f ) strongly mixing : ∀A,B ∈ B µ(A ∩ f −nB) → µ(A)µ(B)
- free part Xfree := X \ {x ∈ X : ∃n ≥ 1 f nx = x}

Lemma
Two dynamics are Borel conjugate if and only if :
- their free parts are Borel conjugate
- for all n ≥ 1, they have the same number κ(f , n) = κ(g, n) of n-periodic
points



Borel conjugacy of surface diffeomorphisms

Using horseshoe’s Katok theorem, generator theorems of Hochman, and

joint work with Boyle :

Theorem
f , g : C2 diffeos of compact surfaces with htop(f ) > 0, htop(g) > 0

Each has strongly mixing measures with entropy arbitrarily close to their
respective topological entropy.
Then the aperiodic parts of f and g are Borel conjugate if and only if both
following conditions are satisfied :

1 htop(f ) = htop(g)
2 there is a bijection Φ : MME(f ) → MME(g) such that (µ, f ) and

(Φ(µ), g) are measure-preservingly conjugate

Condition 1 follows from 2 unlessMME(f ) = MME(g) = ∅

Question : What are the number and types of the MMEs?



MMEs of smooth surface diffeomorphisms

The following are standard notions of irreducibility and aperiodicity

Definition

Topologically transitive : ∃x ∈ X {f nx : n ≥ 0} = X

Topologically mixing : ∀U,V ⊂ X non-empty open ∀n ≫ 1 U ∩ f −nV ̸= ∅

Solving a problem of Newhouse (1990) :

Theorem (B-Crovisier-Sarig)
Let f be a C∞ diffeomorphism of a compact surface
Assume htop(f ) > 0 :
- There are finitely many ergodic measures maximizing the entropy
- There is exactly one MME if f is topologically transitive
- The unique MME is Bernoulli if f is topologically mixing



Borel classification of surface diffeomorphisms

Putting the two theorems together with Ornstein’s theorem :

Theorem (B-Crovisier-Sarig)
Two topological mixing C∞ diffeomorphisms f , g of compact surfaces with
positive topological entropy are Borel conjugate if and only if the two
conditions are satisfied :

1 htop(f ) = htop(g)
2 for all n ≥ 1 κ(f , n) = κ(g, n)

Remarks :

- topological conjugacy does not always hold under above assumptions

- cannot drop "C∞
" or "positive topological entropy"

- dropping "topological mixing" requires other invariants and almost-Borel



Behind the curtain



Ingredients of the proof

Hidden player : Lyapunov exponents for µ-ae x ∈ M

λ(x, v) := limn→∞
1

n log ∥Dx f n.v∥ (x ∈ M, v ∈ TxM \ 0)

Ruelle-Margulis inequality :

∀µ ∈ Perg(f ) hµ(f ) > 0 =⇒ µ has no zero Lyapunov exponent

That is Pesin hyperbolicity

Adding plane topology and smoothness we are able to generalize classical

results of uniformly hyperbolic dynamics, including the above theorem

More precisely,

use homoclinic classes of hyperbolic periodic orbits as irreducible

pieces of the dynamics

prove local uniqueness using Sarig’s symbolic dynamics

control pieces with large entropy by using plane topology,

dynamical foliations, Sard lemma and Yomdin theory



Conclusion



Conclusion

What we have seen :

For smooth surface diffeos, positive entropy allows generalizing

many result from uniform hyperbolic theory

This solves Newhouse’s problem about MMEs

Topological entropy classifies in the mixing case

Perspectives :

quantitative results (exponential mixing, central limit theorem,...)

classes in higher dimensions

(work in progress with Croviser and Sarig involving a stability property of

the Lyapunov exponents)



Thank you !


