[96r]
Ockham
Sat ${ }^{\text {dy }} 6^{\text {th }}$ Feb $^{\text {y }}$
['1841' added by later reader]

Dear M^{r} De Morgan. Had I waited a day or two longer, I need not have troubled you with my letter of Wed ${ }^{\text {dy }}$, \& I can only reproach myself now with having been a little too hasty in my examination of the Theorem in pages 68, 69, and having sent you an enquiry which certainly indicates some negligence. I fear this letter [96v] may not be in time to stop one from you. [something crossed out]
However I will try to send it by an opportunity this afternoon.
But, to show you that I now understand the matter completely :
In the first place the question of the Denominator, or the Numerator, being all of the same sign, in such [something crossed out] collection of expressions as
$\frac{a-b}{m-n}, \frac{c-a}{p-m}, \frac{d-c}{r-p}, \frac{e-d}{q-r} \& c$
has nothing whatever to do
with the letters effacing each
other when the above are
[97r] put into the form,
$\frac{(a-b)+(c-a)+(d-c)+(e-d)}{(m-n)+(p-m)+(r-p)+(q-r)} \& c$;
whether $(a-b)$, \&c be positive
or negative, or some one \&
some the other, still
$\frac{a-b+c-a+d-c+e-d}{m-n+p-m+r-p+q-r} \& c$
must $=\frac{e-b}{q-n}$
In the second place, the

Denominator must be all of the same sign, in order to fulfil the conditions of the Lemma in page 48 ; $\&$ this is the reason why the condition is made respectively ψx always increasing or [97v] always decreasing \&c. For φx, it matters not whether it alternately increases \& decreases (provided always that it be continuous).

I believe I now
have the whole quite clear;
\& I shall be more careful in future.
I enclose a paper upon pages 70, 71, 72, 73 .
It is merely the general argument, put into my own order \& from ; \& I send it in order to know if you think I understand as much about the matter as [98r] I am intended to do. You know I always have so many metaphysical enquiries \& speculations which intrude themselves, that I never am really satisfied that I understand anything ; because, understand it as well as I may, my comprehension can only be an infinitesimal fraction of all I want to understand about the many connexions \& relations which occur to me, how the matter in question was first thought of [98v] or arrived at, \&c, \&c. I am particularly curious
about this wonderful Theorem.
However I try to keep
my metaphysical head in order, \& to remember Locke's two axioms.
You should receive this about 6 o'clock this evening, if not before. I fear you will have written to me today however. Believe me Yours most truly
A. A. Lovelace

