[89r]
[Signature written sideways at the top of this page - belongs at end of letter so transcribed there]

Ockham
Wed ${ }^{\text {dy }} 3^{\text {d }}$ Feb $^{\text {y }}$

Dear M^{r} De Morgan. I
have a question to put respecting a condition in the establishment of the conclusion
$\frac{\varphi(a+h)}{\psi(a+h)}=\frac{\varphi^{(n+1)}(a+\theta h)}{\psi^{(n+1)}(a+\theta h)}$ in page 69 of the Differential Calculus. _ I have written down, \& enclose, my notions on the steps of the reasoning used to establish that [89v] conclusion. So that you may judge if I take in the objects \& methods of it.
The point I do not understand, is why the
distinction is made, (\&
evidently considered so important a one), of " ψx
"being a function which has
"the property of always "increasing or always decreasing,
"from $x=a$ to $x=a+h$,
"in other respects fulfilling the
"conditions of continuity in
"the same manner as φx ".
[90r] For this, see page 68, lines
$9,10,11,12$ from the top ;
page 68 , line 12 from the
bottom ;
page 69, lines 7, 8 from the
bottom ; \&c
I see perfectly that this
condition must exist, \& that
without it we could not
secure the denominators
(alluded to in page 68, line 13 from the bottom), being all of one sign.
But what I do not understand, is [something crossed out] why the condition is not made [90v] for φx also. It appears to me to be equally requisite for this latter ; because if we do not suppose it, how can we secure the numerators $\varphi(x+k \Delta x)-$ $-\varphi(x+\overline{k-1} \Delta x)$ being all of one sign ; \& unless they are all of one sign, we cannot be sure that they will [something crossed out] when added, so destroy one another as to give us $\varphi(a+h)-\varphi a$; an expression essential to
obtain. \qquad I think I have
explained my difficulty, \&
[something missing here?]
[the following written vertically on 89 r]
believe me
Yours most truly
A. A. Lovelace

