[84r]
Ockham
Sunday. $17^{\text {th }}$ Jan ${ }^{\text {y }}$
Dear M^{r} De Morgan. Many
thanks for your reply to my enquiries. I believe I now understand about the limit of $\frac{\varphi(x+n \theta+\theta)-\varphi(x+n \theta)}{\theta}$ not being affected by $n \theta$ being a gradually varying quantity. I think your explanation of it amounts to this: that provided [something crossed out] $(x+n \theta)$ varies only
towards a fixed limit, either of increase or diminution ; then [84v] the result of the Subtraction
of $\varphi(x+n \theta)$ from $\varphi(x+n \theta+\theta)$
remains just the same as if,
(calling $(x+n \theta)=Z), Z$ were
a fixed quantity. \qquad Now
by the conditions of the Demonstration
in question, (in your pages
46 \& 47), when a decrease takes place in θ, a certain
simultaneous increase takes
place in n. That is to
say, suppose θ has at any
one moment a certain value corresponding to which \underline{n} has
the value \underline{k}. If I alter
θ to a lesser value χ, then
say that the corresponding
[85r] value of n, necessary to fulfil
the constant condition $n \theta=h$,
is not k, but $k+m=p$.
What happens now? _ Why
as follows, I believe : there
were, before θ became χ,
k fractions ; there are now
$k+m$, or p fractions.
In ['each of' inserted] the k former fractions,
[something crossed out] Z will
have diminished, towards a
fixed limit ['of diminution' inserted] x; in ['each of' inserted] the m
new fractions introduced, Z
will be greater than in the
old k fractions ; but there
is a fixed limit of increase,
h, which it can never pass, [85v] up to the very last Term of the Series of Fractions. Therefore tho' the quantity $x+n \theta$ or Z varies necessarily with a variation in the value of θ, yet it varies within fixed limits either of diminution or increase, \& thus the result of the subtraction
$\varphi(Z+\theta)-\varphi(Z)$ is not
affected.
I hope I have made
myself clear. I think it is
now distinct \& consistent in my head.
I see that my proof of
the limit for the function x^{n}
is a piece of circular arguments,
[86r] containing the enquiry which
I was in fact aiming at
in the former paper, but
which required to be
separated from the confusion
attendant on my erroneous
statements on other points.
I merely return the old
paper with the present one,
because it might perhaps be
convenient to compare them.
On the other side
of the sheet containing the
remarks on $\frac{a^{\theta}-1}{\theta}$, you
will find an enquiry
which struck me lately
quite by accident in
[86v] referring to some old matters.
I ought to make many
apologies I am sure for
this most abundant
budget. _I am very
anxious about the matter of the successive Differential Co-efficients, \& their finiteness \& continuity. I think it troubles my mind more than any
obstacles generally do. I
have a sort of feeling
that I ought to have
understood it before, \&
[87r] that it is not a legitimate
difficulty.
With many thanks,
Yours most truly
A. A. Lovelace

