[77r]
Ockham
Sunday. $10^{\text {th }}$ Jan ${ }^{\text {y }}$
Dear M^{r} De Morgan. I send
you the ['Series' crossed out] Analysis of the
new Series I received in your
letter yesterday morning. I
believe I have made it out
quite correctly. In fact, the
Verification at the end proves
this. But, owing to a
carelessness in my ['first' inserted] inspection
of it, I have had the
trouble \& advantage of analysing
two Series. I glanced too
hastily at it, \& did not
observe that the factors of the
[77v] Denominators (of the Co-efficients), are not powers of 2 , but
simply multiples of 2 .
If you will open my Sheet, you will find on the inside
my analysis of the Series I at
first mistook your's $[s i c]$ for;
and I am not sorry this
has happened. I believe
both are correctly made out.
You kindly request me
if I do not understand the
erasure in the former ['small' inserted] paper,
again to return it \&c. Now
I do not agree to it; \& ['T' inserted] still
fancy that we are in fact
meaning exactly the same
thing, only that you are
[78r] speaking of the $\underline{n}^{\text {th }}$ Term, \& \underline{I}
of the $n+1^{\text {th }}$. _ For
convenience of reference I again
return the former large paper
(\& at any rate H. M's
Post-Office will benefit). \qquad
I quite understand that
$\frac{1}{4}+\frac{1}{2} \sqrt{10^{6}+\frac{1}{4}+a}$ is less than
501. Therefore as \underline{n} is
the next whole number above
this fractional expression, $x=$
$=501$. But \underline{n} is not the
Term sought; the unknown term to be determined being by the conditions of the Hypothesis \& Demonstrations, $\underline{n+1}, \&$ therefore $=502$.
And if you will examine
[78v] your own ['former' inserted] Verification, you
will see that you there
determine the Term at which
Convergence begins, to be
A_{502}, or the $502^{\text {nd }}$ Term,
which agrees with my
result $n+1=502$.
I think it is quite clear
that we are both agreed, but that you were not aware at the moment you made the erasure that I was not speaking of the next
whole number above $\frac{1}{4}+\frac{1}{2} \sqrt{10^{6}+\frac{1}{4}+a}$
but of the next but one above
it.
So much for the three Series:
Now I must go to other
[79r] matters. I am indeed sending
you a Budget.
I have been working hard at the Differential Calculus, \& am putting together some remarks upon Differential Co-efficients (which in due time will travel up to Town for your approbation), but in the progress of which I am interrupted by a
slight objection to an old
matter of Demonstration, which did not occur to me at the time I was studying it before, \& sent you a paper upon it ['from Ashley' inserted]. In the course of the observations I [79v] am now writing, I have ['had' inserted] occasion to refer to the old ['general' inserted] Demonstration, (pages $46 \& 47$
of your Differential Calculus),
as to the finite existence of
a Differential Co-efficient
for all Functions of x; \&
a slight flaw, or rather what
appears to me a flaw, in the
conclusions drawn, has occurred
to me. It is most clearly proved that, θ being supposed to diminish without limit, the Fractions $Q_{1}, Q_{2} \& c$ must have finite limit, for some value or other at all events of $n \theta$ or h. But the fractions in question do not [80r] appear to me to be strictly speaking analogous to $\frac{\Delta u}{\Delta x}$,
except the first of them $\frac{\varphi(a+\theta)-\varphi a}{\theta}$
and the last of them $\frac{\varphi(a+n \theta)-\varphi(a+\overline{n-1} \theta)}{\theta}$,
and for this reason.
In the expansion $\frac{\Delta u}{\Delta x}$ or
$\frac{\varphi(x+\theta)-\varphi x}{\theta}$, as θ alters
\underline{x} does not alter, but remains
the same. In these fractions
on the contrary, which all
have the form $\frac{\varphi(a+k \theta)-\varphi(a+k-1 \theta)}{\theta}$
and in which $a+\overline{k-1} \theta$ [bar over $k-1$ should have little downward-pointing hooks at the ends]
stands for the x of the
expression $\frac{\Delta u}{\Delta x}$ or $\frac{\varphi(x+\theta)-\varphi x}{\theta}$,
not only does θ alter, but
from the conditions of the

Hypothesis \& Demonstrations, $\overline{k-1} \theta$ [80v] \& consequently $a+\overline{k-1} \theta$ must likewise alter along with θ. There is therefore a double alteration in value going on simultaneously, which appears to me to make the Case quite a different one from that of $\frac{\Delta u}{\Delta x}, \&$ consequently to invalidate all conclusions deduced from the former with respect to the latter.
The validity of the Conclusions with respect to the fractions $Q_{1}, Q_{2} \& \mathrm{c}$, you understand I do not question. What I question is the analogy between these Fractions \& the Fraction $\frac{\Delta u}{\Delta x}$ or $\frac{\varphi(x+\theta)-\varphi x}{\theta}$ ['of' inserted] which [81r] latter it is required to investigate the Limits. I also have another slight objection to make, not to the extent of Conclusions established respecting the Fractions Q_{1}, Q_{2} \&c having finite limits, but to the Conclusions on that point not going far enough, _ not going as far as they
might : \qquad "either these are
"finite limits, or some increase "without limit and the rest
"diminish without limit ; if the "latter, we shall have two "contiguous fractions, one of which "is as small as we please, and "the other as great as we please, "\&c, \&c, , a phenomenon which "which $[s i c]$ can only be true when [81v] " Q_{k} is the fraction which is "near to some singular value "of the Fraction, \& cannot be
"true of ordinary \& calculable
"values of it \&c." _ Now it appears to me that in no possible case could such a phenomenon as this be true, when we consider how the fractions are successively formed one out of the others by the substitution of $a+\theta$ for a, θ too being as small as we please. I therefore think it might have been concluded at once that there must always be finite limits to the Fractions $Q_{1}, Q_{2} \& c$, [82 r$]$ and this whatever k or $n \theta$ may be. I suppose it is not so, but I cannot conceive the Case in which it could be otherwise.
I do not know if in writing upon my two difficulties in these pages 46, 47, 48, I have expressed my objections (especially in the former case of the fractions Q_{1}, Q_{2} not being similar to $\frac{\Delta u}{\Delta x}$) with the clearness necessary to enable you to answer them, or indeed to apprehend the precise points which I dispute. It is not always easy to write upon these things, \& at best one must be lengthy. _ I shall be [82v] exceedingly obliged if you will also tell ['me' inserted] whether a little Demonstration I enclose as to the Differential Co-efficient of x^{n}, is valid. It appears to me perfectly so; $\&$ if it is, I think I prefer it to your's [sic] in page 55 . It strikes me
as having the advantage in simplicity, \& in referring to fewer ['requisite' inserted] previous Propositions.

I have another
enquiry to make, respecting
something that has lately
occurred to me as to the
Demonstration of the Logarithmic
\& Exponential Series in your Algebra, but the real truth is I am quite ashamed [83r] to send any more; so will at least defer this.
I am afraid you will indeed say that the office of my mathematical Counsellor or Prime-Minister, is no joke.

I am much pleased to find how very well I stand work, \& how my powers of attention \& continued effort increase. I am never so happy as when I am really engaged in good earnest; \& it makes me most wonderfully cheerful \& merry at other times, which is curious \& very satisfactory. \qquad
What will you say when
[83v] you open this packet? \qquad
Pray do not be very angry,
\& exclaim that it really is too bad.

Yours most truly
A. A. Lovelace

