[74r]
Ockham
Monday. $4^{\text {th }}$ Jan $^{\text {y }}$ [' 1841 ' added by later reader]
Dear M^{r} De Morgan. We have
had company ever since I
last wrote to you, so I have
been at a Stand-still, \&
only yesterday was able to read over with attention your replies. I am reluctant to trouble you again with remarks on the Series $\overline{1+\frac{x^{2}}{2}}+\frac{x^{4}}{2.3 .4}+\& \mathrm{c}$, for it seems as if I was determined to plague you about it. However I feel I must do so. Your added [74v] remarks of last time, about $B \& \mathrm{c}$, are quite clear in themselves, but I felt at once that they did not meet my difficulty which was that as long as $\frac{5}{4}$ (which is greater than 1) is to
be added to $\frac{1}{2} \sqrt{1000,000+\frac{1}{4}}$,
it matters not whether for
$\sqrt{1000,000+\frac{1}{4}}$ we substitute
the whole number next above
it or "the intermediate fraction"
alluded to by you in the line
I have marked [mark a bit like her ' $\sqrt{ }$ '], but we never can bring out $n=$ to anything less than 502, whence $n+1$ the required term must [75 r] be 503. This, after reading over \& over, remains in my mind a most obstinate fact, and I believe I have found out the real source of the discrepancy between the result at the bottom of the first
page \& the top of the Second
one. I am presumptuous
enough to think there is certainly an error in your writing out, in the line I
have marked $\mathrm{X}, \&$ it is one
which is very likely to have occurred in writing ['it' crossed out] in
a hurry.
The $(n+1)^{\text {th }}$ term divided by
the $n^{\text {th }}$ is I believe not
$[75 \mathrm{v}] \frac{Z}{(2 n-2)(2 n-3)}$, but $\frac{Z}{2 n(2 n-1)}$,
and I have re-written \& now
enclose the rest of the demonstration
(exactly like yours) with this
correction. The result comes
out as I expected, owing to
$\frac{1}{4}$ taking the place of $\frac{5}{4}$,
\& everything appears to me
consistent. \qquad the $n^{\text {th }}$ term
divided by the $(n-1)^{\text {th }}$ term
would be, (as you have
written) $\frac{Z}{(2 n-2)(2 n-3)}, \&$ this correction would do instead of the others, \& be perhaps ['a' inserted] more simple mode of making it, as your demonstration would [76r] then remain correct, the $\underline{n}^{\text {th }}$ term being in that case the required unknown one instead of the $(n+1)^{\text {th }}$.
I am afraid all this is a little complicated to explain in letters, \& perhaps I have
still not succeeded very perfectly in doing so; but
I feel it now all very
clear in my own mind,
\& am only anxious to receive confirmation as to my being right, both as satisfactory
to me in the present instance, \& as tending to give me
[76v] confidence in future in my own conclusions, or, (if I am in this case puzzle--headed), a due diffidence of them.
I therefore beg your indulgence
for being so teasing.
Believe me
Yours most truly
A. A. Lovelace

