[62r]

> Ashley-Combe $10^{\text {th }}$ Nov ${ }^{\text {r }}$

Dear M ${ }^{\mathrm{r}}$ De Morgan. The last fortnight has been spent in total idleness, mathematically at least ; for we have had company \& been as they say gadding about. _ I must set too [sic] now \& work up arrears. _ But I have a batch of questions \& remarks to send.
First - on Peacock's Examples, which I have only now begun [62v] upon:
What does he mean by adding $d x$ to every solution? _ It appears to me a work of supererogation. _ I take the very first example in the book as an instance, and the same applies to all :
Let $u=a x^{3}+b x^{2}+c x+e$ :
it's [sic] differential, or $d u=$
$=3 a x^{2} d x+2 b x d x+c d x$
or $\left(3 a x^{2}+2 b x+c\right) d x$.
I should have written, \& in
fact did write : it's [sic] differential
or $d u=3 a x^{2}+2 b x+c$.
I suppose that this form
[63r] is used under the supposition
that $x$ itself may be a
function.
My result \& the book's do
not agree in one particular
in the $9^{\text {th }}$ example, page 2,
\& I am inclined to think
it is a misprint in the
latter : the Books says :
Let $u=x^{2}(a+x)^{3}(b-x)^{4}$
$d u=\left\{2 a b-(6 a-5 b) x-9 x^{2}\right\} x(a+x)^{2}(b-x)^{3} d x$
and I say :
$d u=\left\{2 a b-(6 a-5 b) x-x^{2}\right\} x(a+x)^{2}(b-x)^{3} d x$
In case it may save you
trouble, I enclose my working
out of the whole. $\qquad$
I do not the least understand [63v] the note in page 2. Not one of the three theorems it contains is intelligible to me.

I conclude you to have
the Book by you ; but if not I can copy out the note \& send it to you.

Secondly - to go to your
Algebra : I think there is
an evident erratum page 225,
line 8 from the bottom, where
$1+x+\frac{x-\frac{1}{n}}{2}+\frac{x-\frac{1}{n}}{2} \cdot \frac{x-\frac{2}{n}}{3}+\& c$
should certainly be
$1+x+x \frac{x-\frac{1}{n}}{2}+x \frac{x-\frac{1}{n}}{2} \cdot \frac{x-\frac{2}{n}}{3}+\& c$.
I have a little difficulty
in page 226, the last line,
[64r] "let $\frac{1+b}{1-b}=\frac{1+x}{x}$ which gives $b=$ $"=\frac{1}{2 x+1}$ ".
In the first place I do not
feel satisfied that the form
$\frac{1+b}{1-b}$ is capable of being
changed into the form
$\frac{1+x}{x}$. There are three
suppositions we may make
upon it, (supposing that
it is capable of this second
form). $x$ may be less
than $b$, in which case
the denominator must also
be less than $1-b$, and less
in a certain given proportion,
in order that the Fractional
[64v] Expression may remain the
same . _ $x$ may $=b$, in
which case the second form
can only be true on the
supposition that $1-b=x=$
$=b$, or $b=\frac{1}{2}$.
$x$ may be greater than $b$, in which case the denominator of the second form must also be greater than $1-b$, in a certain given proportion, in order that the Fractional expression may remain the same.
But secondly supposing $\frac{1+b}{1-b}$ to be under all circumstances [65r] susceptible of the form $\frac{1+x}{x}$, I cannot deduce from this equation $b=\frac{1}{2 x+1}$.

Your last letter, on the Binomial Theorem, was quite satisfactory to me, but I have some remarks to make on the second proof of it, pages 211 to 213. I think you well observe in the note page 213, that the two proofs supply each other's deficiencies ; for I like neither of them taken singly.
The latter one is what I should call rather cumbrous, especially the verification of $\varphi n \times \varphi m=\varphi(n+m)$ by [65v] actual multiplication in page 212 , which is an exceedingly awkward \& inconvenient process in my opinion.

Then I am not at all sure that I like the
assumption in the last
paragraph of page 212 .
It seems to me somewhat a large one, \& much more wanting of proof than
many things which in

Mathematics are rigorously \& scrupulously demonstrated. But these inconsistencies have always struck me occasionally, and are perhaps only in reality the inconsistencies [66r] in a beginner's mind, \& which long experience \& practice are requisite to do away with.
The end of Euler's proof, page 213, is not agreeable to me, and for this reason, that I cannot feel properly satisfied as yet with the little Chapter on Notation of Functions, and upon the full comprehension of this depends the force of the latter part of this proof.

I do not know why it is exactly, but I feel I only half understand that [66v] little Chapter X , and it has already cost me more trouble with less effect than most things have. I must study it a little more I suppose.
I hope soon I
may be able to return to your Differential Calculus. At the same time, I never more felt the importance of not being in a hurry.

I fancy great proficiency in Mathematical Studies is best attained by time ; constantly \& continually doing a little . _ If this is so, surely then the University [67r] cramming system must be very prejudicial to a real
progress in the long run,
particularly when one considers
how very very little School-boys
are ['generally' inserted] prepared on first going
to the Universities, with
anything like distinct
mathematical or even
arithmetical notions of the
most elementary kind.
I am now
puzzling over the Composition
of Ratios, but I hope in
a day or two more I shall
get successfully over that.
It plagues me a good deal.
[67v] I believe I thought some
years ago, that I understood
it ; but I am inclined to
think I certainly never did.
You see just at
this moment I am full of
unsatisfactory obstacles; but
I doubt not they will soon
yield. $\qquad$
With kindest remembrances to
$M^{\text {rs }}$ De Morgan, I am
Yours very truly
A. A. L

I think there is an erratum
in your Trigonometry, page 34 , line 7
from the top :
"let $N O M=\theta \odot, M O P=\varphi \odot \& c$ "
should be $\ldots \underline{\underline{N}} O P=\varphi \odot \& c$

