[48r]
Ashley

$$
\begin{aligned}
& \text { Sun }^{\text {dy }} 13^{\text {th }} \text { Sep }^{\mathrm{r}} \\
& \quad[1840] \text { [added in pencil by later reader] }
\end{aligned}
$$

Dear M ${ }^{\mathrm{r}}$ De Morgan
I am very much
obliged by your remarks \& additions. I believe I now understand as much of the points in question as I am intended to understand at present. I am much inclined to agree with the paragraph in page 48 ; for though the conclusions must be [48v] admitted to be most perfectly correct \& indisputable, logically
speaking, yet there is a
something intangible \& a
little unsatisfactory too, about
the proposition.
I expect to gain a good deal of new light, \& to get a good lift, in studying
from page 52 to 58 ; \qquad
though probably I shall be
a long time about this. I
could wish I went on
quicker. That is \qquad I wish
a human head, or my head at all events, could take in [49r] a great deal more \& a great deal more rapidly than is the case ; __ and if I had made
my own head, I would
have proportioned it's [sic] wishes
\& ambition a little more to
it's [sic] capacity. \qquad When I sit
down to study, I generally
feel as if I could never
be tired ; _ as if I could
go on for ever. _ I say
to myself constantly, "Now today
I will get through so \& so";
and it is very disappointing
to find oneself after an
hour or two quite wearied, \& having accomplished perhaps [49v] about one twentieth part of one's intentions, _ perhaps not that. When I compare the very little I do, with the very much _ the infinite I may say _ that there is to be done ; I can only hope that hereafter in some future state, we shall be cleverer than we are now. _

I am
afraid I do not understand what you were kind enough to write about the Curve; and I think for this reason, that I do not know what [164r] the term equation to a curve means. Probably with some study, I should deduce that meaning myself ; but having plenty else to attend to of more immediate consequence, I do not like to give my time to a mere digression of this sort. _ I should much like at some future period, (when I have got rid of the common Algebra \& Trigonometry which at present detain me), to attend particularly to this subject. _ At present, you [164v] will observe I have four distinct things to [something crossed out] carry on at the same
time ; the Algebra ; \qquad
Trigonometry ; \qquad Chapter $2^{\text {nd }}$ of the Differential Calculus ; \& the mere practice in Differentiation.

This last reminds me that my bookseller has at
last \& with much difficulty got me Peacock's Book ; \& I hope it will be of great use, for it's [sic] cost is £2..12..6! _ It was
originally 30^{5}. _ It is
[163r] coming here next week.
By the bye I have a
question to ask upon pages
$203 \& 204$ of the Algebra.
In consequence of a reference
to page 203, in the $9^{\text {th }}$ line
of the $25^{\text {th }}$ page of the
Trigonometry, I was induced
to look \& see what it
related to. Reading on
afterwards to the bottom of the page, I found
"A functional equation is an
"equation which is necessarily
"true of a function or functions
"for every value of the letter
"which it contains. Thus if,
[163v] " $\varphi x=a x$, we have $\varphi(b x)=$
" $a b x=b \times \varphi x$, or

$$
" \varphi(b x)=b \varphi x "
$$

"is always true when φx
"means ax."
So far I think is clear ;
but then what follows,
"Thus \&c

"If $\varphi x=x^{\alpha}$		$\varphi \alpha \times \varphi y=\varphi(\alpha y)$
" φx	$=a^{x}$	\ldots
		$\varphi x \times \varphi y=\varphi(x+y)$
" φx	$=a x+b \ldots$	$\frac{\varphi x-\varphi y}{\varphi x-\varphi z}=\frac{x-y}{x-z}$
" φx	$=a x$	
		$\varphi x+\varphi y=\varphi(x+y)$

I cannot trace the
connection. I suppose there is something I have not
understood, in the explanation of the Functional Equation. I hope before very long to have something further to send you upon Chapter $2^{\text {nd }}$ of the Calculus, either of success or of enquiry.

Has M^{rs} De Morgan returned yet, \& how is M^{r} Frend?

With many thanks,
Yours very truly
A. A. Lovelace

