[37r] My dear Lady Lovelace
If you look back to
page 48, you will there
see that
$\frac{a+a^{\prime}+a^{\prime \prime}+\cdots}{b+b^{\prime}+b^{\prime \prime}+\cdots}$ always lies between the greatest \& least of $\frac{a}{b}[,] \frac{a^{\prime}}{b^{\prime}} \& c$ whatever the signs of $a[,] a^{\prime} \& c$ may be, provided that b, b^{\prime} $\& c$ are all of one sign. That is the reason why φx need not continually increase or decrease
in the next chapter
The paper you have sent me is correct. In page 70, the
reasons are given for
[37v] avoiding the common proof
of Taylor's Theorem, and 71 \&c
contains the amended proof.
Of $\frac{\varphi(a+h)}{\psi(a+h)}=\frac{\varphi^{\prime}(a+\theta h)}{\psi^{\prime}(a+\theta h}$ [bracket missing in last denominator] it cannot only be said that
it turns out useful. A
beginner can hardly see
why a diffl coeff ${ }^{t}$ itself
should be of any use
Yours truly
ADeMorgan
Feb ${ }^{\text {y }} 6 / 41$

