[35r] My dear Lady Lovelace
We shall be happy to
see you on Monday Evening, and
Lord Lovelace too if he be not
afraid of the algebra
Your points in your letter are are [should be ' I '] think, clear enough in your own head. A little addition however may be made as follows.

You are not [something crossed out] to think that because x must be diminished without limit to prove a conclusion that conclusion is only true for small values of x, or for $x=0$.

For example suppose I know that

$$
(a+x)(a-x)=P+Q x+R x^{2}
$$

but of $P Q$ and R I only know that
they are independent of x. What
[35v] therefore they are for any
one value of x, they are for
any other. I find them thus
Since the preceding is by hypothesis
true for all values of x, and
since altering x does not alter
$P Q$ or R, I take $x=0$
to begin with

$$
a^{2}=P \text { when } x=0
$$

but a and P are independent
of x, therefore what relation
exists when $x=0$ exists always
or $\quad a^{2}=P$
Let $x=a$

$$
0=P+Q a+R a^{2}
$$

Let $x=-a$

$$
0=P-Q a+R a^{2}
$$

[something crossed out] subtract $\quad 2 Q a=0$ or $Q=0$
Here are two values of x made use
[36r] of.
Add

$$
\begin{aligned}
& 2 P+2 R a^{2}=0 \\
& R=-\frac{P}{a^{2}}=-1
\end{aligned}
$$

whence

$$
\begin{aligned}
(a+x)(a-x) & =a^{2}+0 . x-x^{2} \\
& =a^{2}-x^{2}
\end{aligned}
$$

if it must be of the form

$$
P+Q x+R x^{2}
$$

We are much obliged by your invitation to Ockham, but I am closely tied up by
lectures \& other things. Even at such times as Xtmas I am generally very busy
With kind remembrances to
Lord Lovelace I am
Yours very truly
$\underline{\text { ADeMorgan }}$

