[174r] [(mostly) in AAL's hand]
Theorem. Page 199.
If N be a function of x and y, giving $\frac{d N}{d x}=p+q \frac{d y}{d x}$
then the equation $\frac{d u}{d x . d y}=V \cdot \frac{d N}{d x . d y}$ is incongruous \&
self-contradictory, except upon the assumption
that u is, as to x and y, a function of N;
or contains x and y only thro' N.
Let $N=\psi(x, y)$ give $y=\chi(N, x)$, and
suppose, if possible, that the substitution of this value of y in u gives $u=\beta(N, x), x$
not disappearing with y. Then x and y
varying

$$
\frac{d u}{d x \cdot d y}=\frac{d \beta}{d N} \cdot \frac{d N}{d x}+\frac{d \beta}{d N} \cdot \frac{d N}{d y}+\frac{d \beta}{d x}
$$

[in above line, $\frac{d u}{d x . d y}$ is crossed through in pencil, and ' 1 ' written above; $'=\frac{d u}{d x}+\frac{d u}{d y}$ ' added in pencil at end of line - in ADM's hand?]

$$
\begin{aligned}
& =\frac{d \beta}{d N} \cdot\left(\frac{d N}{d x}+\frac{d N}{d y}\right)+\frac{d \beta}{d x}=\frac{d \beta}{d N} \cdot \frac{d N}{d x . d y}+\frac{d \beta}{d x}= \\
& =V \cdot \frac{d N}{d x \cdot d y}, \text { which equation being }
\end{aligned}
$$

universal, is true on the supposition that x
does not vary, or that $\frac{d \beta}{d x}=0$. This gives $\frac{d \beta}{d N}=V$;

$$
\text { or } \frac{d u}{d x . d y}=V \frac{d N}{d x . d y}+\frac{d \beta}{d x}=V \frac{d N}{d x . d y}
$$

because $\frac{d \beta}{d N}$ and V being independent of the variations
$\& c, \& c$. Hence $\frac{d \beta}{d x}=0$ always ; or β does not
contain x directly, \&c.
I think the above is correct. I cannot see [174v] the use (page 200) of introducing t in the proof there given. Is it possible that I have committed an error in my original understanding of the ennunciation [sic] of the Theorem; $\&$ that the $d u$ ['of the equation' crossed out] and the $d N$ of the equation $d u=V \cdot d N$, do not mean the $d u$ and $d N$ derived from differentiating with respect to the quantities x and y,
already introduced ; but with respect
to ['some' crossed out] other given quantity? _
I suspect so .
[the following appears underneath in pencil - still in Ada's hand]

$$
\begin{aligned}
& u=\beta(N, x) \\
& \frac{d u}{d x}=\frac{d \beta}{d N} \quad \frac{d N}{d x}+\frac{d \beta}{d x} \\
& \frac{d^{n} u}{d x . d y}=
\end{aligned}
$$

