Dear M ${ }^{\mathrm{r}}$ De Morgan. I am indeed extremely obliged to you for all your late communications.
In two or three days more, I shall have several observations \& to send you in reply to some of them.
My object in writing today, is to make another enquiry concerning the substitution of $\varphi_{1}(a+h)-\varphi_{1} a$ for $\varphi(a+h)-\varphi a$ in page 100, for I perceive on carefully examining the passage, that I do not quite understand it
$\varphi_{1} x=\varphi x+C$, which ['last side' inserted] means the Primitive Function ['of $\varphi^{\prime} x$ ' inserted]
and the Primitive Function means the Function
which differentiated gives $\varphi^{\prime} x$
Therefore $\varphi_{1}(a+h)=\varphi(a+h)+C$
And $\varphi_{1} a=\varphi a+C$
Consequently $\varphi_{1}(a+h)-\varphi_{1} a=\varphi(a+h)+C-(\varphi a+C)$

$$
=\varphi(a+h)-\varphi a
$$

[152v] This is my version of it. But you tell me, $\varphi_{1}(a+h)=\varphi \overline{(a+h)}+C$

$$
\varphi_{1} a=\varphi a, \text { (which ought to be I say }
$$

$$
\left.\varphi_{1} a=\varphi a+C\right)
$$

From which we should have,

$$
\varphi_{1}(a+h)-\varphi_{1} a=\varphi(a+h)+C-\varphi a
$$

Consequently $\varphi_{1}(a+h)-\varphi_{1} a$ is not equal to $\varphi(a+h)-\varphi a$ as is required
to be proved, but is $=\varphi(a+h)-\varphi \overline{a+C .}$
I cannot unravel this at all.
Second ${ }^{\text {ly }}$: [something crossed out] I do not see why the Indefinite Integral only is $=\varphi x+C=$ Primitive Function.

$$
\text { of } \varphi^{\prime} x
$$

The argument at the top of page 101 seems to [something crossed out] me to apply equally to the Definite Integral

As follows : It is proved that

$$
\varphi_{1}(a+h)-\varphi_{1} a=\int_{a}^{a+h} \varphi^{\prime} x . d x
$$

$\varphi_{1} a$ is just as much here an arbitrary Constant
as it is in $\varphi_{1} x-\varphi_{1} a=\int_{a}^{x} \varphi^{\prime} x . d x$
Therefore $\int_{a}^{a+h} \varphi^{\prime} x . d x=\varphi_{1}(a+h)+C_{1}$

$$
\begin{aligned}
& =\varphi(a+h)+C+C_{1} \\
& =\varphi(a+h)+\underline{\text { an arbitrary Constant }}
\end{aligned}
$$

[153r] just as with $\varphi_{1} x-\varphi_{1} a=\int_{a}^{x} \varphi^{\prime} x . d x$
Thirdly: With respect ['to' inserted] the assumption that when a is arbitrary, then any function of a, say φa, is also arbitrary or may be anything we please, seems to me not always valid.
For instance if $\varphi a=a^{0}$, it must be
always $=1$. We may assume $a=$ anything we
like, but φa will not in this case be arbitrary.
It is curious how many little things I [something crossed out] discover in this Chapter, which in looking back upon
them, I find I have only half-understood.
I shall be exceedingly obliged, if you
can answer these points soon ; I think a
word almost may explain them, \& they rather
annoy me.
Believe me, with many thanks
Yours very truly
A. A. Lovelace

