Ockham Park Surrey

Dear M^r De Morgan. I am indeed extremely obliged to you for all your late communications. In two or three days more, I shall have several observations & to send you in reply to some of them. My object in writing today, is to make another enquiry concerning the substitution of $\varphi_1(a+h) - \varphi_1 a$ for $\varphi(a+h) - \varphi a$ in page 100, for I perceive on carefully examining the passage, that I do not quite understand it $\varphi_1 x = \varphi x + C$, which ['last side' inserted] means the Primitive Function ['of $\varphi' x$ ' inserted and the Primitive Function means the Function which differentiated gives $\varphi' x$ Therefore $\varphi_1(a+h) = \varphi(a+h) + C$ And $\varphi_1 a = \varphi a + C$ Consequently $\varphi_1(a+h) - \varphi_1 a = \varphi(a+h) + C - (\varphi a + C)$ $=\varphi(a+h)-\varphi a$ [152v] This is my version of it. But you tell me, $\varphi_1(a+h) = \varphi(a+h) + C$ $\varphi_1 a = \varphi a$, (which ought to be I say $\varphi_1 a = \varphi a + C)$ From which we should have, $\varphi_1(a+h) - \varphi_1 a = \varphi(a+h) + C - \varphi a$ Consequently $\varphi_1(a+h) - \varphi_1 a$ is <u>not</u> equal to $\varphi(a+h) - \varphi a$ as is required to be proved, but is $= \varphi(a+h) - \varphi a + C$. I cannot unravel this at all. Second^{ly}: [something crossed out] I do not see why the <u>Indefinite</u> Integral only is $= \varphi x + C =$ Primitive Function. of $\varphi' x$ The argument at the top of page 101 seems to [something crossed out] me to apply equally to the Definite Integral As follows : It is proved that

[152r]

 $\varphi_1(a+h) - \varphi_1 a = \int_a^{a+h} \varphi' x.dx$ $\varphi_1 a$ is just as much here an arbitrary Constant as it is in $\varphi_1 x - \varphi_1 a = \int_a^x \varphi' \overline{x.dx}$ Therefore $\int_{a}^{a+h} \varphi' x. dx = \varphi_1(a+h) + C_1$ $= \varphi(a+h) + C + C_1$ $= \varphi(a+h) + an$ arbitrary Constant

[153r] just as with $\varphi_1 x - \varphi_1 a = \int_a^x \overline{\varphi' x. dx}$ Thirdly : With respect ['to' inserted] the assumption that when a is arbitrary, then any function of a, say φa , is also arbitrary or may be anything we please, seems to me not always valid. For instance if $\varphi a = a^0$, it must be always = 1. We may assume a = anything we like, but φa will not in this case be arbitrary. It is curious how many little things I [something crossed out] discover in this Chapter, which in looking back upon them, I find I have only half-understood.

I shall be exceedingly obliged, if you can answer these points soon; I think a word almost may explain them, & they rather annoy me.

Believe me, with many thanks Yours very truly A. A. Lovelace