[146r]
Ashley-Combe
Wed ${ }^{\text {dy }} .16^{\text {th }} \mathrm{Nov}^{\text {r }}$
['1842' or '1847' added by later reader]
[I think this might date from earlier than 1842, as it contains material that seems to fit better with the earlier letters - I'll try to slot it in]

Dear M^{r} De Morgan. I am very much obliged for your long letter. The Formula in Peacock comes out quite correct now that I have written diff. co of $(b-x)^{4}=4(b-x)^{3} \times(-1)=-4(b-x)^{3}$.
It is odd that notwithstanding the caution you gave me in Town on this very point, I should have fallen into the trap. There is nothing like one's own blunders after all for instruction. I do not however understand why example $(\overline{19})$ page 4 , has not come out wrong also in my working out. I enclose a copy of my solution, and it appears to me it ought to be wrong, because I surely should have had diff. co of $(1-x)^{4}=4(1-x)^{3} \times(-1)=-4(1-x)^{3}$, whereas I have diff. co of $(1-x)^{4}=4(1-x)^{3}$. \qquad
On looking over my development again very carefully, I am inclined to think that my solution $[146 \mathrm{v}] \frac{(1+x)^{2}}{(1-x)^{5}} \times(7+x)$, comes out right only because I have managed to make another blunder of a sign in the course of the proofs, which has corrected the first blunder. I therefore now write on the other side of the paper, what I think it should be.
The note in page 2 I do not imagine to be of any consequence. It is on "rendering the Differentiation "of complicated Functions sometimes much easier" by means of three Theorems from Maclaurin's Fluxions.

Certainly had I thought a little
more upon what I read some weeks ago, before
I wrote my last letter to you, I should not
have sent the question about $d u=\varphi(x) \times d x$ [flourishes at tops of stems of 'd's, here and after].
I ['must have' inserted] forgot exactly what a Differential Co-efficient
means, when I did so. \qquad But how is it then
that in your $1^{\text {st }}$ Chapter of the Differential Calculus"
there is no mention of the multiplication by $d x$?"

I conclude that the real Differential Co-efficient
is $\frac{d u}{d x}=\varphi(x)$, and that Peacock's solutions are"
not strictly speaking Differential Co-efficients. \qquad $"$
I think pages 13 to 15 of your Elementary
[147r] Illustrations bear considerably upon the observations in your letter, do they not? \qquad
Your explanation of Euler's proof of the Binomial Theorem is perfectly satisfactory to me. Unluckily
I have not any Book here which contains the Theory of Combinations. I wanted to refer to this when reading page 215, as I have forgotten it in it's [sic] particulars. However this can very well wait a short time, \& I have only to take the Formula for Combinations for granted meanwhile.
The necessity of the truth of $(1+x)^{n} \times(1+x)^{m}=(1+x)^{n+m}$ for all values of n and m, since it is true when they are whole numbers, I shall probably see more clearly at some further time. \qquad
I can explain exactly what my
difficulty is in Chapter X. _ "For instance, if we
"know that $\varphi(x y)=x \times \varphi y$, supposing this always
"true, it is true when $y=1$, which gives $\varphi(x)=$
$"=x \times \varphi(1)$. But $\varphi(1)$ is an independent quantity, "made by writing 1 instead of y in $\varphi(y)$. Let us "call it c \&c. ."
It is this substitution of 1 and of c, and consequent ascertainment of the form which will [147v] satisfy the equation, which is all dark to me. It is ditto in lines $12,13, \& 14$ from the top.

I understand quite well I believe from
"We have seen that if $\varphi x=c^{x} \& c$ ", all through the next page.
That I do not comprehend at all the means of deducing from a Functional Equation the form which will satisfy it, is I think clear from my being quite unable to solve the example at the end of the Chapter "Shew that the equation
" $\varphi(x+y)+\varphi(x-y)=2 \varphi x \times \varphi y$ is satisfied
"by $\varphi x=\frac{1}{2}\left(a^{x}+a^{-x}\right)$ ". I have tried
several times, substituting first 1 for x, then
1 for y. but I can make nothing whatever
of it, and I think it is evident there is
something that has preceded, which I have not understood. _The $2^{\text {nd }}$ example given for practice "Shew that $\varphi(x+y)=\varphi x+\varphi y$ can "have no other solution than $\varphi x=a x$ ", I have not attempted.
I have a question to ask upon page 229 .
"By extracting a sufficiently high root of z, we [148r] "can bring z^{m} as near to 1 as we please, or "make $z^{m}-1$ as small as we please ; that is "(page 187) $z^{m}-1$ may be made as nearly equal "to the sum of the whole series as we please". I cannot find what it is that is referred to in page 187 ; and Secondly, it appears to me somewhat of a contradiction that a quantity $z^{m}-1$ which can certainly be made as small as we please by the diminution of m, should become as near as we please to a fixed limit or sum (the $\log z$ I conclude is the sum of the series, referred to), since by continued diminution the quantity $z^{m}-1$ may become a great deal less than the sum of the Series, \& keep receding from it.
To return to Chapter X, there is one other thing in it that I do not understand. Page 205, lines 5, 6, 7 from the bottom. It seems to me fallacious to substitute first one value 0 , for a letter ; \& then another value, let $y=-x$, [148v] in the same equation \& in a manner at the same time. How can the two suppositions consist together at all.

I go on well with the Trigonometry, \& have nearly finished the Number \& Magnitude.
I think there is another Erratum in page 34 of the Trigonometry, line 13 from the bottom

$$
=\frac{O M}{O N} \cdot \frac{O N}{O P}-\frac{N R}{N P} \cdot \frac{N P}{N O} \& \mathrm{c}
$$

should be $\quad-\frac{N R}{N P} \cdot \frac{N P}{O P}$
I am really ashamed to send you such
troublesome letters. \qquad
Believe me
Yours most truly
A. A. Lovelace

